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1. INTRODUCTION

Over the last several years, the number of publica-
tions developing the theory of nonlinear waves and
structures in a degenerate plasma has increased mark-
edly. The reason is that rapid progress in the develop-
ment of electrophysical and laser technologies made it
possible to study not only the canonical examples of a
degenerate solid-state plasma (such as the electron–
hole plasma of semimetals like bismuth and of semi-
conductors like indium antimonide; see review [1]) but
also new examples that can be conditionally called
degenerate gas-phase plasmas and are represented by
high-density micropinch plasmas [2], laser-produced
inertial-confinement-fusion target plasmas [3], and
plasmas created by high-power femtosecond laser
pulses as they burn through solid bodies [4].

Waves in such plasmas can be described both in
kinetic theory [5] in which the unperturbed electron
distribution function can be determined from the
Fermi–Dirac law (see, e.g., [6, 7]) and in a simpler
hydrodynamic theory in which the equation of motion
is made consistent with the equation of state of a degen-
erate Fermi gas. This latter approach was used in
numerous recent papers (see, e.g., [8–19]). Thus, Man-
fredi and Haas [9] justified the use of a hydrodynamic
description of the components of a degenerate plasma.
With this description, Kuzelev and Rukhadze [8]
derived and analyzed the dispersion relation for elec-
tron waves in a degenerate plasma in linear theory and,
in [10, 14, 19], a nonlinear theory of ion sound was con-
structed for a plasma with degenerate electrons and
ions [10, 14] and for a plasma in which only the elec-
trons are degenerate [19]. In [11–13, 16, 17], the hydro-
dynamic description of a degenerate plasma was
applied to a dusty plasma in the nonlinear theory of dust
sound [11–13, 17] and in the theory of double dust
acoustic layers [16]. In addition, the theory of ion

acoustic waves in a degenerate electron–positron–ion
plasma was constructed by Mushtaq and Khan [18].
Papers [8–19] are cited as examples to show that the
theory of a plasma with degenerate components is now
becoming relevant and popular.

Papers [8–19] all make use of the equation of state
of a cold Fermi gas (

 

T

 

 = 0) in order to avoid mathemat-
ical difficulties that arise from accounting for the finite
temperature. It is known, however, that the energy dis-
tribution of a degenerate electron gas is characterized
by two energy spread parameters, the chemical poten-
tial 

 

µ

 

 (or the Fermi energy) and temperature 

 

T

 

, while
the energy spread for a classical ideal gas is determined
by a single parameter, the temperature 

 

T

 

. As a result,
with the cold equation of state, the problem is vastly
oversimplified because it is reduced to a one-parameter
problem, which coincides qualitatively with that for a
classical ideal gas and does not provide the possibility
of studying how the wave structure depends on the
competition between the parameters 

 

µ

 

 and 

 

T

 

.

Still another feature of these papers is that the math-
ematical formulas in them contain the chemical poten-
tial 

 

µ

 

 (the Fermi energy) of an unperturbed plasma. In
other words, this parameter was assumed to be constant
and, accordingly, the variation of 

 

µ

 

 in the wave was not
followed. As a result, the description was not so ade-
quate as it might have been. But the Pauli principle
implies that a compression (an increase in the density)
of the Fermi gas is accompanied by an increase in the
chemical potential, and on the contrary, a rarefaction of
the gas is accompanied by a decrease in 

 

µ

 

.

In the present paper, an equation describing the
structure of nonlinear waves in a degenerate electron
plasma is derived and solved exactly in the isothermal
hydrodynamic approach in which the equation of state
of a heated Fermi gas is employed and the variation of
the chemical potential 

 

µ

 

 in the wave is taken into
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account. The equation obtained is used to analyze the
wave structure by the pseudopotential method. In this
way, the maximum wave amplitudes and the critical
wave phase velocity are determined.

2. EQUATION OF STATE
OF A HEATED FERMI GAS

The equation of state of a heated Fermi gas is well
known [20, 21]; it is written in a parametric form in
terms of the Fermi–Dirac integrals,

 

(1)

(2)

 

Here, 

 

n

 

 and 

 

p

 

 are the density and pressure of the degen-
erate electron Fermi gas, 

 

m

 

 is the mass of an electron,

 

z

 

 = 

 

ε

 

/

 

kT

 

 is the electron energy, and 

 

η

 

 = 

 

µ

 

/

 

kT

 

.

For a long time, the Fermi–Dirac integrals in
Eqs. (1) and (2),

 

, (3)

n µ T,( ) 2mkT( )3/2

2π2
�

3
------------------------ z1/2 zd

z η–( )exp 1+
-----------------------------------,

0

∞
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p µ T,( ) 2
3
--- 2mkT( )5/2

4mπ2
�

3
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z η–( )exp 1+
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0

∞
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IFD ν η,( ) zν zd
z η–( )exp 1+

-----------------------------------

0

∞
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as well as the Planck integrals akin to them,

 

, (4)

 

were considered as being untakable analytically [22]
and were calculated in different approximations [20,
23]. The use of the equation of state of a heated degen-
erate gas in analytic models was thereby impeded, and
numerical methods were required.

But recently it has become clear [24, 25] that these
integrals can be taken analytically,

 

(5)

 

in terms of the long-known function L

 

i

 

ν

 

(

 

x

 

)

 

 [24–26],
which was, however, rarely used in physical problems.
This function, which is called the polylogarithm,

 

1

 

 is
defined by

 

(6)

 

As a result, the equation of state of a heated Fermi
gas can be written in the following nonintegral para-
metric form:

 

(7)

(8)

 

In such a simple form, the equation of state can eas-
ily be utilized in the hydrodynamic theories of a heated
Fermi gas. In the limit 

 

T

 

  0

 

, parametric equations of
state (7) and (8) pass over to the explicit equation of
state

 

(9)

 

versions of which were used in [8, 15, 18, 19].
Figure 1 shows the isotherms of a Fermi gas that

were calculated from equations of state (7)–(9). The gas
cannot be in a state below the zero (cold) isotherm.

It should be noted that, in [9–14, 16, 17], use was
made of a cold equation of state other than Eq. (9), spe-

 

1

 

 

 

In a book by Pykhteev and Meleshko [26], the polylogarithm is
denoted by 

 

L

 

ν

 

(

 

x

 

)

 

. In the Maple and Mathematica symbol mathe-
matics software packages, the polylogarithm 

 

Li

 

ν

 

(

 

x

 

)

 

 is denoted by
polylog(

 

nu, 

 

x) and PolyLog[

 

nu, 

 

x], respectively.
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Fig. 1. Isotherms of a heated ideal Fermi gas in normalized
quantities for (1) kT = 0 (the limiting cold isotherm),
(2) kT = 2, and (3) kT = 4. The temperature and chemical
potentials are normalized to kT ' = 1 eV; the density, to n =
(mkT ')3/2/21/2π3/2�3 = 0.24 × 1020 cm–3; and the pressure,
to p' = (mkT')5/2/21/2π3/2m�3 = 0.24 × 1020 eV cm–3. The
region where the waves cannot exist is hatched. Point A cor-
responds to an unperturbed plasma (the initial point).
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cifically, p = αN3, where α is a constant and N is the line
particle density per unit length. Of course, this cold
equation of state is a limiting case of an equation that
differs from parametric equation (7) and (8) and
describes a Fermi gas with other isotherms. Since two
different large groups of studies use two different mod-
els of a Fermi gas (and some may appear even in one
and the same volume of the journal [14, 15]), a few
words are to be said in order to clarify this point.

This alternative is resolved by noting that Eq. (9)
describes the dynamics of a three-dimensional Fermi
gas in three-, two-, and one-dimensional compression–
rarefaction processes, while the cubic equation of state
describes the dynamics of a one-dimensional Fermi gas
only in one-dimensional processes. Both of the equa-
tions are derived in the same way, i.e., based on inte-
grating the Fermi–Dirac distribution function over a
three-dimensional volume and a one-dimensional inter-
val, respectively.

Since there are but a few actual examples of a one-
dimensional Fermi gas, our choice of parametric equa-
tions of state (7) and (8) seems to be more relevant and
realistic.

3. EQUATION FOR NONLINEAR WAVES
IN A DEGENERATE ELECTRON PLASMA 

AND ITS EXACT SOLUTION

We begin with the following standard set of equa-
tions describing the dynamics of a degenerate electron
gas neutralized by an immobile uniform ion back-
ground:

(10)

(11)

(12)

where n0 is the unperturbed plasma density. We assume
that the initial state of the electrons, {µ0, T0, n0, p0}, is
uniform and corresponds to the initial point A in Fig. 1.

With parametric equations (7) and (8) and the rule
for differentiating the polylogarithm, the last term in
equation of motion (11) can be represented as

(13)

In what follows, we will consider the electron density
wave as an isothermal process, so the last term in
Eq. (13) vanishes.
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Let a wave run in the z direction with the velocity V.
In order to describe such a wave, we introduce the new
self-similar variable

(14)

This in fact indicates that we switch from the laboratory
frame of reference to a new frame moving with the
wave. As a result, with Eq. (13), the set of partial differ-
ential equations (10)–(12) is reduced to a set of ordi-
nary differential equations

(15)

(16)

(17)

Under the condition n = n0 for u = 0, the continuity
equation has the solution

(18)

and, under the conditions n = n0, µ = µ0, and ϕ = 0 for
u = 0, the solution to the equation of motion has the
form

(19)

We substitute Eq. (7) and solution (18) into solution (19)
and resolve the resulting equation with respect to the
potential ϕ to obtain

(20)

Figure 2 show representative plots of the function
ϕ(µ) (20). The plots have the form of a curve with one
minimum and two roots, on the ascending and descend-
ing branches. One of roots (20) is always at the point µ0,
which is the point µ0/kT on the plots. The branches with
a root other than µ0/kT are nonphysical and should be
discarded because they do not satisfy the condition for
the unperturbed plasma to be quasineutral. In Fig. 2, the
discarded branches are shown by dashes.

Depending on the value of the wave velocity V, two
cases are possible, as shown in Fig. 2: the minimum of
the function ϕ(µ) (20) lies to the left of the root µ0 on
the abscissa (Fig. 2a) and to the right of the root µ0
(Fig. 2b). Accordingly, in Fig. 2a, the discarded branch
is descending and, in Fig. 2b, it is ascending. Conse-
quently, in the case of Fig. 2a, function (20) is defined
on the interval [µmin, +∞) and, in the case of Fig. 2b, it
is defined on the interval (0, µmax]. In the case of Fig. 2a,
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the minimum of the function ϕ(µ) (20) corresponds to
the minimum possible value of µ in the wave and, in the
case of Fig. 2b, it corresponds to the maximum possible
value of µ; this is reflected in the choice of the sub-
scripts of the end values of µ.

Figure 3 demonstrates how the position of the mini-
mum of the curves in Fig. 2 depends on the wave veloc-
ity V. The critical case V = Vcrit, in which the position of
the minimum coincides with the point µ0, is singled out.

Turning again to Fig. 2, note that the ascending
branch in Fig. 2a is also nonphysical. In fact, as µ
increases with respect to µ0, the electron density n in

the wave grows, so the electron gas is compressed, giv-
ing rise to an excess negative charge and, accordingly,
to a negative potential. As a result, a steady-state wave
is possible only in the case of Fig. 2b, i.e., the wave
velocity lies in the range [Vcrit, +∞).

It should be noted that this situation with the possi-
ble range of wave velocities is typical of longitudinal
electron waves in a plasma as waves of the optical type.
For instance, it is well known that, in the linear approx-
imation, the phase velocity of a longitudinal electron
wave lies in the same range, [Vcrit, +∞). In particular
(see, e.g., [8], Sections 10, 11), for a classical Max-

wellian plasma, we have Vcrit = VTe =  in the iso-

thermal gas-dynamic model and Vcrit = VTe =

 in the kinetic model and in the adiabatic
gas-dynamic model with the adiabatic index γ = 3,
whereas, for a cold degenerate electron plasma, we

have Vcrit = VF/  =  in the “isothermal” gas-

dynamic model and Vcrit = VF =  in the
kinetic model. For the heated degenerate plasma being
investigated here, the exact expression for Vcrit can be
easily obtained by analyzing expression (20):

(21)
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yields the critical velocity Vcrit =  for a cold
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shown by dashes.
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electron Fermi gas. It might seem that, in the limit
µ0/kT  0, we can reduce expression (21) to that for

a classical isothermal plasma, Vcrit = . But in
this limit, we arrive at a somewhat different expression,

(22)

where ζ(x) is the Riemann delta function. The resulting
12% deviation from the critical velocity for a classical
plasma is easy to explain: it is due to the fact that,
because of the Pauli principle, no limiting transition
reduces the Fermi–Dirac distribution function to the
Maxwellian distribution function.

A plot of the function Vcrit(µ0) is displayed in Fig. 4.
The plot has the form of a monotonically ascending
curve that originates from the point with ordinate (22).
Below the curve, a steady-state wave cannot exist for
any value of µ0. For µ0/kT = 10—a particular case for
which numerical examples will be presented below—

we have Vcrit ≈ 2.66 .

In what follows, we will need expressions for the
first and second derivatives of function (20):

(23)

(24)

Applying the rule for differentiating a composite func-
tion,

(25)

and using Eq. (7) and derivatives (23) and (24), we
rewrite Poisson’s equation (17) as an autonomous dif-
ferential equation,

(26)

which describes longitudinal oscillations of the chemi-
cal potential in a steady-state nonlinear isothermal
wave in a degenerate electron plasma against an immo-
bile neutralizing background.

Although complicated, Eq. (26) has a general solu-
tion in quadratures. To find the solution, we apply the
following standard substitution, with which to lower
the order of the equation:

(27)
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Using the fact that Bernoulli’s equation always
has a general solution in quadratures (see [27], Sec-
tion 1.1.5),

(30)

where

(31)

and returning to the sought-for variable µ(ξ), we can
write the following general solution to Eq. (26) in terms
of two constants of integration, C1 and ξ0, which refer,
respectively, to the amplitude and phase of the wave:

(32)

Hence, the general solution to the equation for non-
linear waves of a degenerate electron gas is given by
formulas (29)–(32).

4. ANALYSIS OF THE WAVE STRUCTURE
BY BERNOULLI’S PSEUDOPOTENTIAL 

METHOD
With all the formulas, the above exact solution to

nonlinear wave equation (26) is rather lengthy. Never-
theless, it can be analyzed by the pseudopotential
method. This analysis is made possible by the form of
the integral in expression (30): the integral is seen to
correspond to the energy conservation law of some
nonlinear oscillator, so the nonlinear wave can be
described as a motion of an oscillator in pseudopoten-
tial field (30), in which case the chemical potential µ

plays the role of a pseudocoordinate and the wave vari-
able ξ, of a pseudotime.

We call the method used here Bernoulli’s pseudopo-
tential method in order to stress that solution (30),
which expresses an energy conservation law, has been
derived not from the equation of motion of an oscillator
in a given potential well (as was done in [28, 29]) but
from a more complicated equation (26), which reduces
to Bernoulli’s equation. A comparison between the
Sagdeev pseudopotential method and Bernoulli’s
method is made in the Appendix.

Bernoulli’s pseudopotential UB(µ) corresponding to
expression (30) can be conveniently written as a func-
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The result is

(33)

x2 C1 Φ µ( )exp=

+ 2 Φ µ( ) Φ µ( )–[ ] f 1– µ( )exp µ,d∫exp

Φ µ( ) 2 f 1 µ( ) µ,d∫=

ξ ξ0– µd

C1 Φ µ( ) 2 Φ µ( ) Φ µ( )–[ ] f 1– µ( )exp µd∫exp+exp
---------------------------------------------------------------------------------------------------------------------------∫ .=

UB µ( ) 1
π
---

e2

m�
3

---------- 2mkT( )5/2 2
mV2

kT
----------Li3/2

2 µ0

kT
------exp–⎝ ⎠

⎛ ⎞
⎩
⎨
⎧

exp=

×
3Li1/2

2 y
kT
------exp–⎝ ⎠

⎛ ⎞ Li 1/2–
y

kT
------exp–⎝ ⎠

⎛ ⎞ Li3/2
y

kT
------exp–⎝ ⎠

⎛ ⎞– yd

Li3/2
y

kT
------exp–⎝ ⎠

⎛ ⎞ mV2Li3/2
2 µ0

kT
------exp–⎝ ⎠

⎛ ⎞ Li1/2
y

kT
------exp–⎝ ⎠

⎛ ⎞ kTLi3/2
3 y

kT
------exp–⎝ ⎠

⎛ ⎞–

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

µ0

µ

∫
⎭
⎪
⎪
⎬
⎪
⎪
⎫

× 2
mV2

kT
----------Li3/2

2 µ0

kT
------exp–⎝ ⎠

⎛ ⎞
3Li1/2

2 η
kT
------exp–⎝ ⎠

⎛ ⎞ Li 1/2–
η

kT
------exp–⎝ ⎠

⎛ ⎞ Li3/2
η

kT
------exp–⎝ ⎠

⎛ ⎞– ηd

Li3/2
η

kT
------exp–⎝ ⎠

⎛ ⎞ mV2Li3/2
2 µ0

kT
------exp–⎝ ⎠

⎛ ⎞ Li1/2
η

kT
------exp–⎝ ⎠

⎛ ⎞ kTLi3/2
3 η

kT
------exp–⎝ ⎠

⎛ ⎞–

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

µ0

y

∫–

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

exp

µ0

µ

∫

×
Li3/2

3 y
kT
------exp–⎝ ⎠

⎛ ⎞ Li3/2
µ0

kT
------exp–⎝ ⎠

⎛ ⎞ Li3/2
y

kT
------exp–⎝ ⎠

⎛ ⎞–

mV2Li3/2
2 µ0

kT
------exp–⎝ ⎠

⎛ ⎞ Li1/2
y

kT
------exp–⎝ ⎠

⎛ ⎞ kTLi3/2
3 y

kT
------exp–⎝ ⎠

⎛ ⎞–

------------------------------------------------------------------------------------------------------------------------------------dy.



PLASMA PHYSICS REPORTS      Vol. 34      No. 5      2008

NONLINEAR ISOTHERMAL WAVES IN A DEGENERATE ELECTRON PLASMA 409

Figure 5 shows the plots of pseudopotential (33) for
different values of the wave velocity V. An analysis of
the plots yields the following conclusions.

For V > Vcrit (Fig. 5a), the plots of the pseudopoten-
tial have the form of a curve with a local minimum at
µ = µ0 and a local maximum at µ < µ0. The well is
asymmetric with respect to its minimum. The right
slope of the well corresponds to the compression phase
of the electron gas in the wave. It is ascending without
bound and approaches the vertical asymptote at µ 
µmax. The left slope of the well corresponds to the rar-
efaction phase and is ascending from the minimum at

µ0 but only to a certain local maximum. Being on the
whole asymmetric with respect to µ0, the well is nearly
parabolic in the small vicinity of µ0, so the small oscil-
lations of the oscillator are almost harmonic there and
the wave profile is almost sinusoidal.

The oscillations of the oscillator in the well corre-
spond to a periodic wave. Moreover, since the well is
asymmetric, the profile and amplitude of a wave of
arbitrary (not low) intensity in the compression phases
differ from those in the rarefaction phases. In the rar-
efaction phase, the maximum amplitude of the wave is
determined by the position of the local maximum,
whose distance from the local minimum increases with
V. Given this tendency, it is easy to conclude that the
highest rarefaction (when there are none of the elec-
trons in the ion background) is possible only when the
wave velocity V is infinite (it is only to be noted that, for
µ values that are low in comparison with the tempera-
ture, Fermi gas looks like a classical gas).

The largest-amplitude oscillations of the oscillator
at the position of the local maximum determine a sepa-
ratrix in the phase diagram and could correspond to a
solitary wave. But this solution does not satisfy the con-
dition µ  µ0 at ξ  ±∞ and thus should be dis-
carded. Hence, as in the classical case [29], solitary
waves cannot exist in a degenerate electron plasma.

Figure 5b shows a representative plot of the pseudo-
potential for V < Vcrit. The plot has the form of a poten-
tial hill, whose left slope approaches the vertical
asymptote at µ  µmin. The motion of the oscillator
along such a hill is unstable, a fact that provides another
piece of evidence in support of the conclusion made in
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the previous section: a steady-state longitudinal elec-
tron wave with the velocity V < Vcrit cannot exist in a
degenerate plasma.

In order to give a better insight into the mechanism
for oscillations in a degenerate electron gas, we show in
Fig. 6 how the electron distribution function in the wave
varies when the Fermi step is broadened and narrowed
periodically.

5. NUMERICAL EXAMPLE

In order to illustrate the solution obtained, let us
consider a numerical example. Figure 7 shows profiles
of the physical quantities varying in the wave: the
chemical potential µ(ξ) as a solution to Eq. (26), the
electron density n(ξ) calculated from Eq. (7), the elec-
tron gas pressure p(ξ) calculated from Eq. (8), and the
electrostatic potential ϕ(ξ) calculated from expres-
sion (20). The kinetic energy density of the electron gas
in the wave, Ek(ξ), can be calculated too, but since
p(ξ) = 2/3Ek(ξ), the kinetic energy density profile
exactly follows the pressure profile.
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Fig. 6. Schematic of oscillations in the electron distribution
function in the wave.
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All of the profiles were calculated for a regime in
which the amplitude of oscillations of the chemical
potential is large (i.e., when the maximum amplitude in
the rarefaction phase differs from the maximum possi-
ble amplitude by less than 0.5%). The chemical poten-
tial profile in the wave resembles a sequence of peaks
in the electron density alternating with dips in it during
prolonged rarefaction phases. The electron density pro-
file n has the same shape, as well as the electron pres-
sure profile p. Oscillations in the electrostatic potential
ϕ are more sinusoidal than those in µ, n, and p. As
expected from an analysis of expression (20), the quan-
tities µ, n, and p are in phase with each other, while the
electrostatic potential ϕ oscillates in antiphase with
them.

6. CONCLUSIONS

In the present paper, we have derived, investigated,
and exactly solved a nonlinear differential equation
describing oscillations of the chemical potential in a
one-dimensional steady-state wave propagating in a
degenerate electron gas against an immobile neutraliz-
ing ion background. In the derivation, we have used the
equation of state of a heated Fermi gas written in terms
of polylogarithms.

We have shown that the wave profile can be only
periodic and that solitary waves cannot exist. We have
found that the amplitude of oscillations of the chemical
potential in the wave is limited and that the profile of a
large-amplitude wave is highly nonsinusoidal.

The oscillations have been analyzed by Bernoulli’s
pseudopotential method, which is a generalization of
the Sagdeev pseudopotential method.

We have also found that the wave phase velocity is
bounded below by a critical velocity and have calcu-
lated the exact value of the latter.
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APPENDIX

The long-known Sagdeev pseudopotential method,
which was applied for the first time in [28, 29] to ana-
lyze nonlinear ion acoustic waves, is quite simple in
essence: the equations describing the wave dynamics
are reduced in one way or another to an ordinary differ-
ential equation for a nonlinear oscillator,

(A.1)d2ψ
dξ2
--------- FS ψ( ),=

which is then to be analyzed. Here, the functional FS(ψ)
plays the role of a pseudoforce; the physical quantity ψ,
describing the wave structure, of a pseudocoordinate;
and the wave variable ξ = z – Vt, of a pseudotime. We
can multiply Eq. (A.1) by dψ/dξ and integrate the
resulting equation once to obtain

(A.2)

Hence, the problem is reduced to that of analyzing
the motion of a nonlinear oscillator in a given pseudo-
potential US(ψ).

In principle, the solution to differential equation (A.2)
can always be written in quadratures in an implicit
form:

(A.3)

where ξ0 is a constant of integration. However, the inte-
gral in implicit solution (A.3) cannot always be taken
analytically, in which case the solution provides little
insight into the dynamics of the process under investi-
gation. This is why the nonlinear oscillator is more
often analyzed without reference to solution (A.3). The
technique of such an analysis was considered in [30].

The analysis is based on determining the positions
of the equilibrium points. The local minima of the
pseudopotential US(ψ) determine the periodic oscilla-
tions of a nonlinear oscillator that correspond to a peri-
odic wave. The local maxima of US(ψ) determine the
separatrices in the phase diagram of a nonlinear oscil-
lator that correspond to solitary (soliton-like) waves.

Unfortunately, in many problems, it is impossible to
obtain an equation of the form (A.1), as is the case in the
present work. But it is often possible to derive a more
general equation of the form (see relationship (25) and
also [19, 31–34])

(A.4)

We lower the order of this equation by making the
replacement p(ψ) = dψ/dξ. As a result, we arrive at Ber-
noulli’s equation

(A.5)

The general solution to Bernoulli’s equation (A.5)
has the form

(A.6)

1
2
--- dψ

dξ
-------⎝ ⎠

⎛ ⎞
2

– FS ψ( ) ψd∫– C+ US ψ( ).= =

ξ ξ0–
ψd

2US ψ( )–
--------------------------,∫=

d2ψ
dξ2
--------- FB ψ( ) GB ψ( ) dψ

dξ
-------⎝ ⎠

⎛ ⎞
2

.+=

dp
dψ
------- GB ψ( ) p FB ψ( ) p 1– .+=

p2 C Θ( )exp=

+ 1 N–( ) Θ( ) Θ–( )FB ψ( )exp ψ,d∫exp
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where Θ = 2 (ψ)dψ. Accordingly, we can write

(A.7)

Here, the physical quantity ψ, describing the wave
structure, again plays the role of a pseudocoordinate;
the variable ξ, of a pseudotime; and the functional
UB(ϕ), of a pseudopotential.

In order for the Sagdeev pseudopotential US(ψ),
which is obtained from Eq. (A.1), not to be confused
with the pseudopotential UB(ϕ), which is obtained from
Eq. (A.4), the latter is called here Bernoulli’s pseudo-
potential, because it is obtained from the solution to
Bernoulli’s equation (A.5).

The pseudopotential UB(ϕ) is analyzed in the same
manner as US(y). In this way, it is convenient to choose
the constants C in Eq. (A.2) and solution (A.7) so that
US, B(ψ0) = 0 (where ψ0 is the unperturbed value).

The expression for Bernoulli’s pseudoforce is
obtained by differentiation, –dUB(ψ)/dψ.
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