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Collective optical excitation of interacting localized electrons
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We investigate theoretically the role of dynamic screening in the intersubband absorption process of a
quasi-two-dimensionghuasi-2D electron gas with in-plane localization caused by a strong disorder potential.
Due to a correlation effect in the single-particle spectrum this system is equivalent to an array of randomly
distributed, localized oscillators, which are mutually coupled by the electron-electron Coulomb interaction. In
the limit of low-electron density, a broad absorption spectrum reflects the disorder-induced distribution of the
individual transition energies. For increasing electron filling factor we find a depolarization-type blueshift
similar to the case of quasi-2D systems without disorder. Simultaneously a dramatic line narrowing is ob-
served, indicating a collective response of the interacting localized electrons. In this collective mode large
clusters of mutually phase-adapted oscillators are formed in the layer plane. Our results are relevant for the
interpretation of intraband absorption experiments in all kinds of disordered quasi-2D systems and in dense
arrays of artificial quantum dots. A similar effect is expected for inter-Landau-level transitions in magnetically
quantized 2D system§S0163-18209)06539-X]

[. INTRODUCTION usually ascribed to the various broadening mechanisms in
semiconductor heterostructures, like interfategharged
Optically induced intersubbandS) transitions are the impurity'® or alloy scattering and phonon emissions. Tradi-
most characteristic excitations of quasi-two-dimensionationally these mechanisms are devided into two classes
(quasi-2D electron systems. Their theoretical description in-called “homogeneous,” i.e., equally acting on each elemen-
volves many key concepts of modern semiconductor physicsary oscillator, and “inhomogeneous,” i.e., resulting in dif-
like coherent interaction with a light field, many particle ef- ferences between these oscillators. The relative importance
fects, disorder and ultrafast relaxation dynamics. These praaf the two types is experimentally determined by comparing
cesses represent, however, not only a fascinating field of furthe line shape of the observed IS spectrum with a Lorentzian
damental research, but also form the basis of manyindicating homoeneous broadeningnd a Gaussiakchar-
promising applications, like infrared detectdrsiodulators.  acteristic for inhomogeneous broadeninindeed there is
lasers® and nonlinear devices® experimental evidence that supports these ideas by demon-
In order to optimize the design of such structures, it isstrating that removal of the charged impurities from the ac-
essential to have a quantitative theory of the factors that deive part of the structure results in a considerable line
termine, for example, the peak position and line shape of thearrowing® and a gradual change from more Gaussian to
optical intersubband spectrum. In the present understandingyore Lorentzian shap@.In such modulation-doped samples,
these features result from an interplay of collective polarizathe predominant broadening mechanism is normally inter-
tion and various broadening mechanisms. face roughness scattering. The linewidth of the Lorentzian
It is now well established that the experimentally ob-can be further reduced by increasing the well wiglireaker
served intersubband resonanceds least for the usual car- sensitivity for interface fluctuatiop® and in some cases
rier densitieg a collective, plasmonlike response of the inter-even approaches the theoretical limit determined by optical
acting electron gas and in general cannot be described iphonon emission& There is thus a tendency to believe that
terms of single-particle transitions. The importance of manyinhomogeneous broadeningtructural disorder plays no
particle effects shows up most clearly in the density-more significant role in high-quality samples.
dependent shift of the resonance peak posifian,,y (rela- Recently, more refined methods like fitting with a Voight
tive to the subband separatien,= €; — €g), which has been profile, or saturation spectroscopy, have revealed an inho-
explained by the depolarization field and excitonlike final-mogenous contribution to the IS linewidth in samples, where
state interaction&:!! In addition, it has been shown that the line shape was in between the two prototypeidow-
nonparabolicity? of the electronic subbands, which would in ever, the clearest way to separate both contributions is prob-
a single-particle picture yield a broad absorption spectrumably by hole burning spectroscopy. Such measurements have
need not to be observable in an experiment, because ttfwnvincingly demonstrated that homogeneous and inhomo-
many-particle interactions tend to concentrate all oscillatogeneous broadening can be of comparable magnitude, even
strength into a narrow, collective mod&® Thus, strictly  in modulation-doped samplé$.The observed spectrum is
speaking, it is not possible to infer the broadening mechaactually a superposition of many relatively narrow Lorentz-
nisms acting in a sample by simply measuring the absorptiorans, centered at different photon energies. Physically speak-
line width, especially when a depolarization blueshift of theing, the system behaves like an inhomogeneous collection of
peak indicates strong electron-electron interactions. individual oscillators with a random distribution of reso-
Despite these complications, the finite width of IS lines isnance frequencies.
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Yet, underlying the prevalent picture of IS transitions ...}. The groupsi(), (j), and so on constitute the above
there is still the concept of free electrons moving parallel tomentioned natural quantum dots. All staféym) belonging
the layers and being only sometimes interrupted by an elastio dot (i) are localized in the same lateral region, typically at
or inelastic scattering events. Consequently, these processadocal minimum of the disorder potential. They share a very
are characterized by a momentuiiip] and energy relaxation similar lateral structure and differ from each other by the
time (T,). specific subbandh from which they(mainly) descent. Their

Indeed, in a structurally perfect samgle doping, inter-  difference of eigenenergies is close to the subband spacing of
face, or alloy disordgr the lifetime of the excitedplane-  the undisturbedi.e., without disorder system, e{}= €(iym
wave like electron state would be limited by phonon- — ¢ ,~eny,. This is a quantum-mechanical formulation of
assisted relaxation and this should result in a Lorentzian I$he intuitive semiclassical picture of local subband edges
line. However, as soon as structural disorder is introduced, (x,y) that fluctuate strongly but “in parallel.” If such a
into the system, coherent multiple elastic scattering of thesystem is excited with light polarized indirection, transi-
carriers with the static imperfections will fundamentally tions are induced almost exclusively between correléited
change the electronic single-particle wavefunctions. In mostradob states(*vertical transitions in real space”and cor-
realistic situations, a part of the electrons will becomerespondingly the absorption line is much narrower than the
strongly localized in the layer plane. Even if the randombroad density of states would suggest.
potential created by the disorder is too weak or too-short So far, the IS transitions in strongly localized systems
range to cause strong localization, tfie a certain degrée have been calculated without any electron-electron
extended electron wave functions will, nevertheless, bénteraction?® or with the inclusion of only static screenif@.
modulated in the plane with a complex pattern of local scatin this paper, we investigate the role of dynamic many-
tering resonances. Therefore, disorder is not merely a smaflarticle effects for the IS absorption process on the basis of
perturbation on the free 2D electron gas, but requires tehe previous single-particle results.
adopt a completely different theoretical viewpoint of the sys-
tem.

In this paper, we will present a model of the IS resonance

on the basis of disorder-localized single-particle states, in- The correlation effect in the one-particle spectrum leads
cluding dynamic effects of the electron-electron interactionig 5 scenario of randomely located quantum do}s éach of
The organization of the paper is as follows. In Sec. I, ourwhich containgat least two strongly localized state$i)0)
general concept is outlined with reference to our earlier workgpq |(i)1). An electron occupying this quantum dot will
on this field. In Sec. Ill, a "localized version” of IS depo- perform resonant transitions between the two correlated
larization theory is developed. For it's efficient numerical states, if an electric ac fieldhe excitation light of suitable
evaluation, a simple model system is introduced in Sec. Mrequencywme(lig/ﬁ is applied along the direction. This
and the results of the calculations are presented in Sec. Yyrresponds in real space to an oscillation of the electran in
We summarize in Sec. VI. Finally, in Sec. VIl, we discuss girection within it's associated quantum dot. Thus, eémth
possible extensmns and applications of our theory in relategupied dot acts as a localized two-level oscillator. Since
parts of physics. electrons can relax from their excited state via phonon emis-
sion, the oscillators have a finite damping and thus energy is
Il. GENERAL CONCEPT continuously absorbed from the light field. The individual

The theoretical analysis of IS transitions in strongly dis-'cSonance frequenciﬁ'gl h of the oscillators are different
ordered systems is considerably complicated by the add@u€ to the disorder. _ o .
tional lateral &,y-) localization of the electron states. Nei- In the independent particle apprOX|mat|on the apsorpn_on
ther the subband indem (subband mixing nor the lateral spectrum of the whole system simply reflects the dispersion

> (i) illati ity i
wave vectork (no more free motion parallel to the layprs of thesee’g. However, the oscillating charge density in each

can be considered as good quantum numbers any longer. THOt causes a fluctuatingong-range Coulomb potential,

homogeneous film of electrons is decomposed into a randor\ﬁv(?"Ch couples the motion of all electrons and opens the pos-

“ by o " : sibility of collective many-body effects. In the following we
array of “drops” or “natural quantum dots.” To obtain re- . . . . .
v . L o . L describe this dynamic electron-electron interaction on the
alistic results in this situation, it is clearly insufficient to

include the disorder onlv phenomenologically b SomeIevel of the time-dependent Hartree approximation.
“ : ”y P gicatly by The z-polarized excitation light beam is described by a
broadening parameter.” Instead, the theory should be g . T

. : homogeneous electric fiel(t) with harmonic time depen-
based from the start on single-particle stgt@sof the gen-

N ] dence,
eral form ¢(R)==,fn(2)g{)(x,y), with zsubband wave
functionsf () and localized lateral functiong,)(x,y).

Recently, exact diagonalization studies of this kind have
been published for the case of modulation-doped quantum . . )
well® and doping superlatticéd, including several sub- acting on the electrons as an external poterigakrgy:
bands(i.e., m=0...M with M=1). Despite a drastic dis- _
order broadening of the density of state§order 100 meV, WeY(R,t)=(—e)Fzcod wt). (2
it turned out that the spectrum of localized quantum stajes
can be devided into “correlated groups,”{|l)} In response, the electrons create an induced Coulomb poten-

—{{(H0).[(1) 1), ... [OM}EA()0).[(1) D), - - [(HM)},  tial,

Ill. THEORY

F(t)=Fe,coq wt), (1)
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ind S - The induced space charge fluctuation is easily found from
w (R.t)=2i VO(R,Y), (3 the wave function by

where VI(R,t) is the individual contribution of localized PR =(—e)[[¥ORZ~[eP (R (12
oscillator(i). The total time-dependent potential prevailing in Neglecting terms of orde®(W?) (linear respons)eand an-
the system is then tiresonant termgéwhich are small fo~A {\}) one obtains

W(R,t)=WeX{(R,t) + W4(R,t). (4) L _ _
. . pPORD=2 (—e)el)"(R) P (R)ch)*(—w)e'!+c.c.
In the linear response regime, no frequency components are m
produced except those contained in the excitation light. (13
Thus, we can decompose the monochromatic total potenti
into two temporal Fourier components. Note that in our dis-
ordered system, the modulus and relative phase shift of the

resulting field will both have a complicated position depen-that the potentiaW)(Rt) is real, we further rewrite the
dence: resonant coefficient in the following form:

ﬂrom now on, we disregard all higher excited states 1
“and treat each oscillator as a two-level system. Using the fact

W(R,1)=W(R, )& !+ W* (R, w)e 1t (5) ()= —<11|W(')(R,—w)|I0> 14
! Al A —w—i(T/h)]
=2|W(R,w)|co§ ot+Ae(R,w)],

(6) (i) WD(R,w)|i1)
whereA ¢(R, ) is the phase of complex numb#/(R, w). Alo—Aw—i(T/h)]
The o component of the total potential experienced by os-
cillator (i) is given by

(15

It will be useful later to define eesponse functionf(w) of
oscillator (i)

FZ+_2_ VO(R,w), 7) PV (w)={hlo—Aw{+i(T/h)]} 1 (16)
J#i

WO(R, w) = —

()
where we have explicitely excluded self interaction. Hereand it's spatiafform factor p (R)

VO)(R,w) is the temporal Fourier transform ®)(R,t). pl) (i) (i)

We now calculate the linear response of oscilldigprto (R) (—€)e (R)QD (R)' (a7
this perturbation, assuming that initialfiye., without excita- ~ Further, we introduce a dimensionlesscitation amplitude
tion) the electron is in the ground stafi®) and the excited u()(w)
state(il) is unoccupied. A small phenomenological damping
termI" (with dimension of energyis introduced to account u(‘)(w)=p(‘)(w)<i0|W(‘>(§,w)|i1). (18
for homogeneous phonon broadening. We can expand the

time-dependent wave function in terms of the localized!n terms of these definitions, the induced space charge fluc-
eigenstates tuation of oscillator(i) can be written in compact form as

(R, w)=pD(B)uD (). 19
In order to calculate the corresponding potential, we use the
Following the usual procedure of first-order time-dependenf-oulomb-Greens function

perturbation theory and neglecting the terms oscillating with

the natural frequencies —e 1

dmeeg ||§_ §’| ’

T(R-R')= (20)
Aw%zw(niq)—wg), 9
The v component of the potential induced by oscillatris

the coefficients in Eq(8) are found to have the same fre- then given by

guency components as the excitation field
bW (w,t)=c(+w)e*iot+cD(—w)e et (10) VO(R,0) = f P*R'T(R-R)pO(R ). (21)

The two components) differ only by the sign ofw, de-  With the abbrevation
scribing resonant-{ w) and anti-resonant+ w) excitation.

They are given by an expression well known from time- (i) 3 (i) 5
dependent random phase approximation theory T (R) d°R’ T(R R )P0 (R ) (22
—<im|W(‘)(§,w)|i0> this can be further simplified to

c(w)= (11)

A0+ w—i(T/h)] VO(R,0)=TO(R)UD(w). (23)
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We now return to the potential experienced by oscillator

(i), given by Eq.(7) and rewrite it in terms of the newly ;(Z,w)=<2 P(i)(ﬁ-w)> (30
introduced quantities ' Xy

—E uD()(p§(R))xy (31)

. —eFz oo
WO(R,w)= +2 TORUD(w). (29
iZi
According to Eq.(18), the response of oscillat¢r) depends = uD(w)p(2). (32
on the matrix elements of potentiaV)(R,») in the '
eigensubspace), Here, we have used E@L9) and defined amveraged form
factor p{’(z) of oscillator (i):
. —eF

i0|W(R,w)|ily=——(i0|z|i1 i .
GOIMWE(R w)li) =5~ (i0fzli1) D=~ e R R)y. (33

+2 <io|-|-(j)(|§)|i1>u(j)(w) (25) At thi_s point i_t s_hould be remembered_ that in the above

IEa expression the indices 0 and 1 of the single-particle wave

functions denote the ground- and first-excited state of dot
_eF (i). Each of these states are, in genexaj-dependent linear
=——z204+> Tu)( ), (26)  combinations of the undisturbed subbamas
2 o

. . (|) (is)
where we have introduced abbrevatiad and T{!) for the (R)= 2 Fm(2)gm”(6Y), (34)

matrix elements of the operator and of the induced poten- _

tial of oscillator (j), respectively. Note that the quantify}) ~ Thus, the averaged form factor yields

is simply the Coulomb interaction energy of oscillatdrs

and(j) in the case of unit excitation amplitude. Inserting Eq. _(I) 7 e £ (2 (2)(qiD*(x (i0) (x

(26) into Eq. (18), we obtain a dynamic equation, which @=(- )z n(2)Tm(2)(Gn ™ (4 Y)Gm (X Y))y

determines the excitation amplitudes of the coupled two- (35
level systems for a given strengkhand frequencyw of the
excitation light
=(—e)2 fn(2fm(2)GH,, (36)
. A —eF z(') .
U (w)=p(w)- +> THuD(w)|. (279  with the lateral overlap intergra3{y),. In the case of perfect
17 intradot (intersubbang correlations, we would have
This can be expressed in the form of a complex linear system al9(x,y) = 6mgM(x,y) (37)
of equations, if we implicitely assume th&f}}=0 (no self-
interaction: and the overlap integrals in E¢36) would simplify to
Z(i) Gg)n: 5m05n1<|g(i)(xvy)|2>xy: 5m05n1971- (38)
Lo —pd (OO =p
; [ty =P (@) Tey Jut (@) =p(@) —5—. In this case, the averaged form factor can be written as
(28) _
P (2=(-e)Q Ho(2)11(2), (39

After solving this system numerically, we will compute
the absorption coefficientv(w) from the resulting ampli-
tudesu’(w). In a disordered system the optical power ab-
sorbed from the light field is, in principle, a function of the +oo _
in-plane position. We are, however, not interested in this J dz;g')(z)=0. (40
position dependence. Therefore, we perform in-plane aver- o
ages over the relevant quantities. This operation is formallyrhus, the induced charge-density fluctation has a zero-

denoted by monopole moment. Each oscillator basically represents a lo-
calized dipole and, correspondingly, the resulting potential
has only a finite range.
—0-1
(=0 f .. .dxdy, (29) We now calculate the ac current connected with the above
charge-density fluctuation. The continuity equation

where(} is the lateral system area. In a first step, we calcu-
late the averaged, total space-charge fluctuation of the sys-
tem:

which is, due to the orthogonality of thesubband wave
functions, a zero-mean function

J—
—p(z,t)=0 (412)

0—
— +
o7ZJ(Z't) pric
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links the average induced current j(z,t) with the total L L R S B B
space-charge fluctuation. Transforming E4fl) into tempo- 0
ral Fourier space and solving for the current yields 25 ]
— z _ ~ 2.0 4
j(z,w)=(—iw)f dz' p(z',w). (42) ®
o E 5 -
>
By inserting Eq.(32) we obtain >
210 .
- . H z - " I
o= i03 W [ dzp@). @3 05 ]
i — o0
. . . . 0.0 i 1 n n T
Finally, thezz component of the dynamic conductivity ten- 0 5 10 15 20 25 30 35

sor o, ), the real part of which is proportional to the
absorption coefficienty(w), follows from the induced cur-
rent by

Distance (nm)

FIG. 1. Coulomb interaction energ¥) as a function of the
interdot distancer ;y(;, in the “sine-Gauss” model system. The
_ 1 +°°d wy 44 parameters were the thickneasof the z-quantum well and the
724 ©)= Fl_. 2)(z,0). (44) lateral localization radiusp~'. Case (a): a=10 nm, B!
=10 nm. Case(b): a=5 nm, B '=10 nm. Case(c): a
Defining the quantity =10 nm,B =5 nm.

(i +e 2 W In the longitudinal direction, we assumed an infinite bar-

I*= f_x dzj_xdz po’(z')le, (49 rier quantum well of thicknesa, yielding sine-typez wave
functions

which has the dimension of a length, we can express the ) )

conductivity in terms of the excitation amplitudes of the lo- fm(2)= V2/asin{(m+1)(m/a)[z—(a/2)]} with m=0,1.

calized oscillators (48)

—iwe In the lateral direction, Gaussian functions have been used

odw)= =g E 1Ou0 (). (46)

_ _ g(F_ F(i)): ﬁe*(ﬂlf*r(i)l)z/{ (49
In the case of perfect intradot correlatiditsy. (39)] one can \

easily prove the identity) = — z()=const. Note that since
the excitation amplitudes)(w) are proportional to the ex-
ternal field strengthF (linear response regimethe conduc-
tivity o,/{w) becomes independent & In a similar way,

the number of oscillatorsi€ 1 .. .Nys) increases linearly
with the system are@. Thus,o, () is independent of),

where8=1/r |, is a “localization parameter.”

In order to make the effect of the Coulomb interaction as
clearly visible as possible, we artificially introduced a box-
shaped line broadening into the single-particle leydlago-
nal disordey. The transition energy of each doj has thus
been detuned from the undisturbed subband separatipn

too. by random shifts, which were equally distributed within the
intervall[ — A eyi/2- - - + A€gis/2]. The parameteh ;5 COr-
IV. MODEL SYSTEM responds to the “inhomogeneous broadening.”
We applied the above theory to a simple-model system, V. RESULTS AND DISCUSSION

which has the advantage of facilitating easy evaluation of the

matrix elements and convenient numerical implementation. |n the following, we present numerical results obtained
In this model, we consider a planar array of two-level oscil-with the “sine-Gauss”-model described above. For the
lators (dots of density n®. Assuming for simplicity that  simulations we have typically uséd,.=50 oscillators in a
each oscillator is occupied with one electraf?) can also be  finite system of lateral dimensioths =L, = Noe/n®, with
interpreted as the2D-) electron density. All oscillators are periodic boundary conditions in both directionandy. The
described by wave functions of the same form, however IOTateral positionsf(i) of the oscillators have been chosen ran-

cated at different random in-plane positiang domly, with the exception of a minimum distance condition,
o o r'i)(i)>"min. t0 @void unphysical configurations.
i)/ By — J . - .
e (R)=fn(2)g(r—r)). (47 A quantity of central importance is, of course, the Cou-

L - _ lomb interaction energfth=T(r y;)), which depends on
Thisz-r-separable form witim-independent lateral functions  the parametera and 8 of the single-particle wave functions.
g(r) captures the essence of the IS correlation effemse of ~ Figure 1 is a plot of the distance dependenc® &dr various
perfect correlations Note that the structurallor off-  parameter combinations. It shows dipolelike behavior for
diagona) disorder is provided here exclusively by the ran-large distances, but saturates to a finite value g =0,
dom in-plane distribution of the dot centers. due to the spatial extension of the charge distributions. Note
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0.80 ——F——T——T—— 17— x 10t cm™2, the effect of the electron-electron interaction
[ 1 already becomes clearly visible in the spectrum. A peak is
= formed on the high-energy side of the single-particle band at
‘\90 the cost of absorption in the low-energy range.
& 020 This trend is continued in casds) and (f). The peak
& o5 becomes more pronounced, growing in height, reducing it's
= width and shifing to higher energies. Note, however, that at
,§ 0.10 this electron density the presence of disorder could still be
g— deduced from the spectrum by the long low-energy tail.
2 005 At even higher densitie§case (g)], the blueshift and
< change of shape of the peak become extremely pronounced.
0.00 The line shape approaches a Lorentzian of a width limited
150 160 170 180 190 200 210 only by the homogeneous phonon broadenlng Finally,
Photon Energy (meV) there remains almost no trace of the strong disorder in the
spectrum.

FIG. 2. Intersubband absorption spectrum with diagonal disor- |t js clear that the density dependent blueshiftw(n?))
der Aegis=20 meV for various 2D-electron densities®. The  of the absorption peak in Fig. 2 is a manifestation of the

spectrum has been averaged over an ensemble of 100 random cQQa||-known depolarization effect, here realized in a system

figurations, each containing 50 localized oscillators. The other SYSqf strongly localized states. It is also apparent from the char-
tem parameters were as followst=10 nm, 18=10 nm, I’ :

_ acteristic line distortion that the sharp absorption peak cor-

=1 meV. Casda): n?—0. Casgb): N®@=1x10" cm 2. Case . i
() N@=2x 10" em-2, Caseld): N@=5x 101 cm~2. Case(o): '[efr?cindiito Ia:ciclc()jllectlve response of all electrons to the ex
n®=1x10"2% cm 2. Case (f); n®=2x0% cm 2. Case (g): ermnal optical field. . .
n@=5%012 cm2 However, it is desirable to understand in greater detail,

' how the localized oscillators “cooperate” in the collective
that the maximum coupling strengf(0) and the range of Mode. For a given excitation frequenay the dynamic mi-
interactionr it [let us definer "t as the distance whefe  crostate of the system is completely described by the modu-
decreases td@(0)/10] are mainly determined by the lateral 'us and phase of the complex excitation amplitud€¥ o)
localization radius@~1. For realistic valuess 1~10 nm, O©f the individual oscillators. We have, therefore, analyzed a

however,T(0) is only of order 0.5 meV and, is about 30 specific configuration of 50 dots and visualized the in-plane
am. ax distribution of the oscillator amplitudes in Fig. 3. All param-
In the following, we fix the wave function related param- et€rs have been chose;n like in tr21e case of Fi, 2e., the
eters toa=g =10 nm and the homogeneous phonon€lectron density wasn(?=2x10% cm 2. The centers of
broadening to' =1 meV. For this well thickness, the un- the circles in Fig. 3 indicate the localization positions of each

disturbed subband separation would &8~170 meV (in- oscillator. The modulus and phase of an oscillator amplitude
finite barriers are represented by the size of the cirle and the orientation of

We now turn to the resulting IS absorption spectiihe the arrow, respectively. The circle diametkis a linear me-

real part of the dynamic conductivity E46)] of a random assure_o;[heh exﬂtation(;zveg,f: d0+c|ﬁ_(i)(|’”)|' buta Imini- .
array of oscillators. The conductivity is conveniently pre- MuMm Sizede Nas been adaed for graphical reasons. In case o

sented in the natural unit of the Drude value, in-phase oscillation with the external field £=0), the ar-
=n®e?7/m*, with a phenomenological scattering time re- row points to the right, while out-of-phase. ”.‘O“OM’:
lated to the homogeneous phonon broadening energy —pi) would be represented by an arrow pointing to the left.

=#/T". The absorption spectrum will, of course, depend on Part (a) corresponds to photon energy» =180 meV,

the inhomogeneous disorder broadening,;; and the den- which is in the low-energy tail of the IS resonance Fig‘.)2.
sity of oscillators(electrons n® s It can be seen that only a few oscillators are strongly excited

Figure 2 shows ensemble averaged intersubband spec@éthis frequency._ There is a broad dist_ribution of phases, in
for fixed disorderAey;s=20 meV but different electron sughawz_ay that similar phases are spatially grouped together.
densitiesn®. Case(a) corresponds to the “dilute limit” Neighboring electrons mutually adapt their phases, thus

@) . . o — forming coherently oscillating clusters. The extension of
n'*—0, where the typical nearest-neighbor distamgg  (hese clusters becomes larger, if the photon energy ap-

=1/yn® exceeds the range of interactiolf};, and thus  proaches the peak energy of the absorption maximum.
Coulo_mb coupling can be negle(_:ted. In this case, the Spec- part(b) belongs to photon energyw=185 meV, which
trum is, of course, only determined by the single-particlejs cjose to the peak of the collective resonance. While the
properties and reflects the specific distribution of the indi-ingividual oscillators still have different excitation levels,
vidual transition energieﬁAw(l'(),. Therefore, in our model now the phase distribution is much smaller: A Sing|e-
we obtain a broad, box-shaped absorption band of widtlgoherent cluster has percolated over (fieite) system and
Ae€gis, centered around the IS energy separatiefy  all electrons oscillate in phase with each other. This is the
~170 meV of the "undisturbed”zquantum well. The form of cooperation, which gives rise to the high value of
spectrum remains essentially unchanged as long@sis  total absorption.
smaller than the critical density((f,i)tz_l/(rm;))z, which is For higher photon energies this collective phase adjust-
about 1.x 10** c¢m™2 for our case of 0%, =30 nm. ment becomes even more pronounced, withAa}l finally

In cases (b)—(d), corresponding ton®=1.0...5.0 approaching the value 7 (like the out-of-phase motion of a
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lateral disorder. Such a spatially inhomogeneous electron
film has to be described by in-plane localized single-particle
wave functions. Since the IS transitions occur between cor-
related pairs of such states, the system can be viewed as a set
of distinct oscillators. These have resonance frequencies dis-
tributed around the subband separation of the corresponding
ideal layere;o, but are fluctuating on a scaleey;s (inhomo-
geneous broadeningwhich is determined by the disorder
and IS correlation effects. Each individual oscillator contrib-
utes to the total IS spectrum a comparatively narrow absorp-
tion line. It's (homogeneoyswidth I' is exclusively deter-
mined by the phonor(or photonl emission rate and the
oscillator strength depends on the overlap of the involved
lateral wave functions. Thus, in a single-particle pict(we

at not too high-electron densjtythe IS spectrum is a linear
superposition of many phonon-broadened resonances and the
final line shape will, in general, be neither Gaussian, nor
Lorentzian. This picture is in agreement with recent spectral
hole burning experiments, which demonstrate that the inho-
mogeneous broadeninjey;s can be larger than the funda-
mental homogeneous linewidth even in modulation doped
quantum wells.

Assuming the above scenario, we have formulated a
theory of dynamic electron-electron interaction effects on the
intersubband resonance, which is completely based on local-
ized single-particle states. For this purpose, we calculated the
linear response of an interacting setMftwo-level oscilla-
tors, subject to both the external optical field and the in-
duced, selfconsistent Hartree field. For given frequency of
the incoming light field, the theory describes the dynamic
microstate of the system by a simple, linear systenmNof
equations, determining the individuatomplex excitation
amplitudes of the oscillators. The laterally averaged IS ab-
sorption spectrum follows then essentially from a weighted
sum of these amplitudes.

We have numerically evaluated our theory for a simplified

(b) model system with “sine-Gauss” single-particle states and a
box-shaped IS absorption spectruifwithout electron-
electron interactions In this model, the Coulomb coupling
of neighboring oscillators is basically a dipole-dipole inter-

FIG. 3. Visualization of the individual oscillator's complex ex-
citation amplitudes for a specific configuration at two different pho-

ton energies. The system parameters were as in Fig.i2.,n®® . - int .
—2x102 cm 2. The centers of the circles denote the in-plane 2CtION of finite range ... The many-particle effects have

positions of the natural quantum dots in the simulation area. Moduth€n béen turned on by gradually increasing the electron den-
lus and phase of their amplitudes are represented by the size of tfY nf) or, in other words, by decreasing the average dis-
circles and the orientation of the arrows, respectively. In-phase osancer ,, between the localized oscillators, untjl,<r ...
cillation corresponds to an arrow pointing to the rigitg=0), The simulations show a drastic, qualitative change of the
out-of-phase motion is depicted by an arrow pointing to the left|S spectrum as a function af(?). Starting from the broad,
(A= —pi). Case(a): Before resonancefiw=180 meV). Case pox-shaped absorption bandréd®)— 0 (reflecting the single-
(b): Close to resonance: =187 meV). particle propertigs the spectrum gradually evolves to an ap-
proximately Lorentzian line(corresponding to a many-
harmonic oscillator driven far beyond the resonance freparticle excitation of the whole systémWith increasing
quency. However, the excitation levels are rapidly decreas-electron density, this resonance peak becomes narrower and
ing afterw has passed the peak value. shifts to higher energies, which is analogous to the case of
quasi-two-dimensional systems with laterally extended
states. This collective effect could be explained by a mutual
phase adaption of the Coulomb-coupled localized oscillators.
In the following, we summarize the key points of this  This results demonstrates, that the “true,” inhomoge-
paper, relate the results to other parts of semiconductor physieous broadening in a disordered system can be completely
ics and discuss possible future extensions of our theory. ‘“screened out” by the dynamic many-particle interactions
In this paper, we have investigated IS absorption ofand thus may remain unobserved in an IS experiment per-
z-polarized light in a quasi-2D electron layer with strongformed at fixed electron density. Especially, the Lorentzian

VI. CONCLUSION



11012 C. METZNER AND G. H. DCHLER PRB 60

line shape of the IS spectrum allows in general no statementsally localized and there should exist strong correlations be-

about the nature of the line broadening. tween corresponding states of different Landau baibés
cause electrons in different Landau bands “see” the same
VIl. OUTLOOK lateral disorder Transitions are induced between such cor-

related states in cyclotron resonance experiments. Therefore,

Our model system closely resembles an array of selfyhere is a strong analogy to the case treated in this paper.
organized InGa, _,As quantum dots, at least with respectto | the present version of the theory we have treated the
the form of the single-particle wave functionisompare  gscillators as two-level systems, assuming that each initial
Refs. 28, 29, and 30 and rgferenceg therehatually, these state|(i)0) is connectedby the optical diplol operatgp,) to
systems are very interesting candidates for the study Ghnly one correlated final stati)1). In actual disordered
statié’ and dynamic many_—electron correlation effects. Yetsystems, however, there can exist several final states
there are also two major differences. _ , |(iYm),m=1...M, with some of the transition energies

First, in typical InGa,_xAs dots the various interal (i) peing similar and close to the excitation photon energy.
quantum states afateral modes(e.g., corresponding to the |°g;;ch 5 case, all the involved quantum states must be re-
spectrum of a two-dimensional harmonic oscillatarhich — aineq in Eq.(13) and one obtains a system of interacting
all bel_ong to the samzesubband._When intraband absorption (M +1)-level systems. This extension would not affect the
experiments are performed with such dot-arrays, CONSEsggence of the theory, but can of course have drastic conse-
quently, I|g_ht IS polar.|ze<_j parallel to th? Iayers.. Neverth_elessquences for the resulting spectral shape. Also higher sub-
the dynamic depolarization effect studied in this paper is als@ ;45 can have an effect on the 0-1 resonance. even if they
effective between electrons oscillating in the lateral directionare far separated energetically. '
and may cause a similar line shift and narrowing. We are, " 5 difficulty arises concerning the Pauli principle, if dif-
thus, working on an analogous theory for lateral polarization¢e et electrons share the same one-particle states, i.e., in the

on the other hand, the_situati.on.studied in this Paper mayxase of multiple occupancy of the quantum dots. Then, of
be reallzedafor example, in strﬁlm-mduged dots._(ljn trgz CON%ourse, the intradot electron-electron interactit@oulomb
cept, an ordinary quantum well is used to provide taé- 146" hecomes very important. This problem is closely
justable z quantization, while the lateral confinement results .. nacted with electron spin, which has been neglected in
from the strain field of a neighboring layer of dots. Thus, iny, hresent work. In such a case, each dot must be described
a sufficiently wide quantum well several longitudinal modesy,, 5 oitapleN-particle wave function, which should still be
could be created, each associated with a similar set@t = -bie for smalN

From the theory of the intersubband resonance in systems

related lateral modes.
Another major difference between our model and,.;, laterally extended states it is well known that the depo-

In,Ga, ,As dot arrays lies in the in-plane dot density. FOr4;ati0n blueshift is partly cancelled by the exchange-

typical growth conditions the resulting densities may be 00,4 re|ation effectgvertex corrections, or excitonic final-state
low to observe drastic effects of the interdot coupling. The,

T ; : _ : interactions.”®1° It still remains to be clarified which role
situation might be improved by charging each dot with moreg,, -, effects play in the strongly localized regime, where the

tha_n one electron. However, this would require the inclusion, ;e functions belonging to different dots have typically a
of intradot Coulomb effectssee below. very small spatial overlap. Thus, exchange effdmtsveen

Thus, our theory basically applies to strongly disordereqne’qots are suppressed and the corresponding Coulomb in-
quasi-2D systems, liké-doped layers or modulation doped tegrals are expected to be small.

quantum wells with thin spacer layer. To directly compare “rinqy it should be mentioned that in the present stage,
theoretical results with experimental data, it is nessecessagy,q electron-phonon interaction has been included only phe-
to use realistic, disordered quantum states, as they rESLHbmenologically by a homogeneous broadening energy. We
from exaxt diagonalization studies. Such simulations areyre now working towards an explicit calculation of electron-

now in progress. ) _ o . phonon scattering times on the basis of realistic, localized
Another class of systems, in which dynamic interactiong|actron states.

effects between localized oscillators should play an impor-
tant role, are disordered 2D systems subject to a strong-
magnetic field inz direction®! The density of states is then

condensed into several, broadened Landau peaks. Except atOne of the author$C.M.) would like to thank the Deut-
the center of each Landau peak, the wave functions are lagche Forschungsgemeinschaft DFG for financial support.
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