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Collective optical excitation of interacting localized electrons
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We investigate theoretically the role of dynamic screening in the intersubband absorption process of a
quasi-two-dimensional~quasi-2D! electron gas with in-plane localization caused by a strong disorder potential.
Due to a correlation effect in the single-particle spectrum this system is equivalent to an array of randomly
distributed, localized oscillators, which are mutually coupled by the electron-electron Coulomb interaction. In
the limit of low-electron density, a broad absorption spectrum reflects the disorder-induced distribution of the
individual transition energies. For increasing electron filling factor we find a depolarization-type blueshift
similar to the case of quasi-2D systems without disorder. Simultaneously a dramatic line narrowing is ob-
served, indicating a collective response of the interacting localized electrons. In this collective mode large
clusters of mutually phase-adapted oscillators are formed in the layer plane. Our results are relevant for the
interpretation of intraband absorption experiments in all kinds of disordered quasi-2D systems and in dense
arrays of artificial quantum dots. A similar effect is expected for inter-Landau-level transitions in magnetically
quantized 2D systems.@S0163-1829~99!06539-X#
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I. INTRODUCTION

Optically induced intersubband~IS! transitions are the
most characteristic excitations of quasi-two-dimensio
~quasi-2D! electron systems. Their theoretical description
volves many key concepts of modern semiconductor phys
like coherent interaction with a light field, many particle e
fects, disorder and ultrafast relaxation dynamics. These
cesses represent, however, not only a fascinating field of
damental research, but also form the basis of m
promising applications, like infrared detectors,1 modulators,2

lasers,3 and nonlinear devices.4,5

In order to optimize the design of such structures, it
essential to have a quantitative theory of the factors that
termine, for example, the peak position and line shape of
optical intersubband spectrum. In the present understand
these features result from an interplay of collective polari
tion and various broadening mechanisms.

It is now well established that the experimentally o
served intersubband resonance is~at least for the usual car
rier densities! a collective, plasmonlike response of the inte
acting electron gas and in general cannot be describe
terms of single-particle transitions. The importance of ma
particle effects shows up most clearly in the densi
dependent shift of the resonance peak position\vmax ~rela-
tive to the subband separatione105e12e0), which has been
explained by the depolarization field and excitonlike fin
state interactions.6–11 In addition, it has been shown tha
nonparabolicity12 of the electronic subbands, which would
a single-particle picture yield a broad absorption spectru
need not to be observable in an experiment, because
many-particle interactions tend to concentrate all oscilla
strength into a narrow, collective mode.13–16 Thus, strictly
speaking, it is not possible to infer the broadening mec
nisms acting in a sample by simply measuring the absorp
line width, especially when a depolarization blueshift of t
peak indicates strong electron-electron interactions.

Despite these complications, the finite width of IS lines
PRB 600163-1829/99/60~15!/11005~9!/$15.00
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usually ascribed to the various broadening mechanism
semiconductor heterostructures, like interface,17 charged
impurity18 or alloy scattering and phonon emissions. Tra
tionally these mechanisms are devided into two clas
called ‘‘homogeneous,’’ i.e., equally acting on each elem
tary oscillator, and ‘‘inhomogeneous,’’ i.e., resulting in di
ferences between these oscillators. The relative importa
of the two types is experimentally determined by compar
the line shape of the observed IS spectrum with a Lorentz
~indicating homoeneous broadening! and a Gaussian~char-
acteristic for inhomogeneous broadening!. Indeed there is
experimental evidence that supports these ideas by dem
strating that removal of the charged impurities from the
tive part of the structure results in a considerable l
narrowing19 and a gradual change from more Gaussian
more Lorentzian shape.20 In such modulation-doped sample
the predominant broadening mechanism is normally in
face roughness scattering. The linewidth of the Lorentz
can be further reduced by increasing the well width~weaker
sensitivity for interface fluctuations!21 and in some case
even approaches the theoretical limit determined by opt
phonon emissions.22 There is thus a tendency to believe th
inhomogeneous broadening~structural disorder! plays no
more significant role in high-quality samples.

Recently, more refined methods like fitting with a Voig
profile, or saturation spectroscopy, have revealed an in
mogenous contribution to the IS linewidth in samples, wh
the line shape was in between the two prototypes.23 How-
ever, the clearest way to separate both contributions is p
ably by hole burning spectroscopy. Such measurements h
convincingly demonstrated that homogeneous and inho
geneous broadening can be of comparable magnitude,
in modulation-doped samples.24 The observed spectrum i
actually a superposition of many relatively narrow Loren
ians, centered at different photon energies. Physically sp
ing, the system behaves like an inhomogeneous collectio
individual oscillators with a random distribution of reso
nance frequencies.
11 005 ©1999 The American Physical Society
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11 006 PRB 60C. METZNER AND G. H. DÖHLER
Yet, underlying the prevalent picture of IS transitio
there is still the concept of free electrons moving paralle
the layers and being only sometimes interrupted by an ela
or inelastic scattering events. Consequently, these proce
are characterized by a momentum (T2) and energy relaxation
time (T1).

Indeed, in a structurally perfect sample~no doping, inter-
face, or alloy disorder!, the lifetime of the excited~plane-
wave like! electron state would be limited by phono
assisted relaxation and this should result in a Lorentzian
line. However, as soon as structural disorder is introdu
into the system, coherent multiple elastic scattering of
carriers with the static imperfections will fundamenta
change the electronic single-particle wavefunctions. In m
realistic situations, a part of the electrons will becom
strongly localized in the layer plane. Even if the rando
potential created by the disorder is too weak or too-sh
range to cause strong localization, the~to a certain degree!
extended electron wave functions will, nevertheless,
modulated in the plane with a complex pattern of local sc
tering resonances. Therefore, disorder is not merely a s
perturbation on the free 2D electron gas, but requires
adopt a completely different theoretical viewpoint of the s
tem.

In this paper, we will present a model of the IS resonan
on the basis of disorder-localized single-particle states,
cluding dynamic effects of the electron-electron interacti
The organization of the paper is as follows. In Sec. II, o
general concept is outlined with reference to our earlier w
on this field. In Sec. III, a ‘‘localized version’’ of IS depo
larization theory is developed. For it’s efficient numeric
evaluation, a simple model system is introduced in Sec.
and the results of the calculations are presented in Sec
We summarize in Sec. VI. Finally, in Sec. VII, we discu
possible extensions and applications of our theory in rela
parts of physics.

II. GENERAL CONCEPT

The theoretical analysis of IS transitions in strongly d
ordered systems is considerably complicated by the a
tional lateral (x,y-) localization of the electron states. Ne
ther the subband indexm ~subband mixing!, nor the lateral
wave vectorkW ~no more free motion parallel to the layer!
can be considered as good quantum numbers any longer
homogeneous film of electrons is decomposed into a ran
array of ‘‘drops’’ or ‘‘natural quantum dots.’’ To obtain re
alistic results in this situation, it is clearly insufficient t
include the disorder only phenomenologically by som
‘‘broadening parameter.’’ Instead, the theory should
based from the start on single-particle statesu l & of the gen-
eral formw ( l )(RW )5(mf m(z)gm

( l )(x,y), with z-subband wave
functions f m(z) and localized lateral functionsgm

( l )(x,y).
Recently, exact diagonalization studies of this kind ha

been published for the case of modulation-doped quan
wells25 and doping superlattices,26 including several sub-
bands~i.e., m50 . . .M with M>1). Despite a drastic dis
order broadening of the density of states~of order 100 meV!,
it turned out that the spectrum of localized quantum statesu l &
can be devided into ‘‘correlated groups,’’$u l &%
→$$u( i )0&,u( i )1&, . . . u( i )M &%,$u( j )0&,u( j )1&, . . . u( j )M &%,
o
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. . . %. The groups (i ), ( j ), and so on constitute the abov
mentioned natural quantum dots. All statesu( i )m& belonging
to dot ~i! are localized in the same lateral region, typically
a local minimum of the disorder potential. They share a v
similar lateral structure and differ from each other by t
specific subbandm from which they~mainly! descent. Their
difference of eigenenergies is close to the subband spacin
the undisturbed~i.e., without disorder! system,emn

( i ) 5e ( i )m

2e ( i )n'emn . This is a quantum-mechanical formulation
the intuitive semiclassical picture of local subband edg
em(x,y) that fluctuate strongly but ‘‘in parallel.’’ If such a
system is excited with light polarized inz direction, transi-
tions are induced almost exclusively between correlated~in-
tradot! states~‘‘vertical transitions in real space’’! and cor-
respondingly the absorption line is much narrower than
broad density of states would suggest.

So far, the IS transitions in strongly localized system
have been calculated without any electron-elect
interaction,25 or with the inclusion of only static screening.26

In this paper, we investigate the role of dynamic man
particle effects for the IS absorption process on the basi
the previous single-particle results.

III. THEORY

The correlation effect in the one-particle spectrum lea
to a scenario of randomely located quantum dots (i ), each of
which contains~at least! two strongly localized statesu( i )0&
and u( i )1&. An electron occupying this quantum dot wi
perform resonant transitions between the two correla
states, if an electric ac field~the excitation light! of suitable
frequencyv'e10

( i )/\ is applied along thez direction. This
corresponds in real space to an oscillation of the electronz
direction within it’s associated quantum dot. Thus, each~oc-
cupied! dot acts as a localized two-level oscillator. Sin
electrons can relax from their excited state via phonon em
sion, the oscillators have a finite damping and thus energ
continuously absorbed from the light field. The individu
resonance frequenciese10

( i )/\ of the oscillators are differen
due to the disorder.

In the independent particle approximation the absorpt
spectrum of the whole system simply reflects the dispers
of thesee10

( i ) . However, the oscillating charge density in ea
dot causes a fluctuating~long-range! Coulomb potential,
which couples the motion of all electrons and opens the p
sibility of collective many-body effects. In the following w
describe this dynamic electron-electron interaction on
level of the time-dependent Hartree approximation.

The z-polarized excitation light beam is described by
homogeneous electric fieldF(t) with harmonic time depen-
dence,

F~ t !5FeW zcos~vt !, ~1!

acting on the electrons as an external potential~energy!:

Wext~RW ,t !5~2e!Fz cos~vt !. ~2!

In response, the electrons create an induced Coulomb po
tial,
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PRB 60 11 007COLLECTIVE OPTICAL EXCITATION OF . . .
Wind~RW ,t !5(
i

V( i )~RW ,t !, ~3!

where V( i )(RW ,t) is the individual contribution of localized
oscillator~i!. The total time-dependent potential prevailing
the system is then

W~RW ,t !5Wext~RW ,t !1Wind~RW ,t !. ~4!

In the linear response regime, no frequency components
produced except those contained in the excitation lig
Thus, we can decompose the monochromatic total pote
into two temporal Fourier components. Note that in our d
ordered system, the modulus and relative phase shift of
resulting field will both have a complicated position depe
dence:

W~RW ,t !5W~RW ,v!eivt1W!~RW ,v!e2 ivt ~5!

52uW~RW ,v!ucos@vt1Dw~RW ,v!#,
~6!

whereDw(RW ,v) is the phase of complex numberW(RW ,v).
The v component of the total potential experienced by
cillator ~i! is given by

W( i )~RW ,v!5
2eFz

2
1(

j Þ i
V( j )~RW ,v!, ~7!

where we have explicitely excluded self interaction. He
V( j )(RW ,v) is the temporal Fourier transform ofV( j )(RW ,t).

We now calculate the linear response of oscillator~i! to
this perturbation, assuming that initially~i.e., without excita-
tion! the electron is in the ground state~i0! and the excited
state~i1! is unoccupied. A small phenomenological dampi
term G ~with dimension of energy! is introduced to accoun
for homogeneous phonon broadening. We can expand
time-dependent wave function in terms of the localiz
eigenstates

C ( i )~RW ,t !5(
m

bm
( i )~v,t !wm

( i )~RW !. ~8!

Following the usual procedure of first-order time-depend
perturbation theory and neglecting the terms oscillating w
the natural frequencies

Dvm0
( i ) 5vm

( i )2v0
( i ) , ~9!

the coefficients in Eq.~8! are found to have the same fre
quency components as the excitation field

bm
( i )~v,t !5cm

( i )~1v!e1 ivt1cm
( i )~2v!e2 ivt. ~10!

The two componentscm
( i ) differ only by the sign ofv, de-

scribing resonant (2v) and anti-resonant (1v) excitation.
They are given by an expression well known from tim
dependent random phase approximation theory

cm
( i )~v!5

2^ imuW( i )~RW ,v!u i0&

\@Dvm0
( i ) 1v2 i ~G/\!#

. ~11!
re
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The induced space charge fluctuation is easily found fr
the wave function by

r ( i )~RW ,t !5~2e!@ uC ( i )~RW ,t !u22uw0
( i )~RW !u2#. ~12!

Neglecting terms of orderO(W2) ~linear response! and an-
tiresonant terms~which are small forv'Dvm0

( i ) ) one obtains

r ( i )~RW ,t !5(
m

~2e!wm
( i )!~RW !w0

( i )~RW !cm
( i )!~2v!eivt1c.c.

~13!

From now on, we disregard all higher excited statesm.1
and treat each oscillator as a two-level system. Using the
that the potentialW( i )(RW ,t) is real, we further rewrite the
resonant coefficient in the following form:

c1
( i )!~2v!5H 2^ i1uW( i )~RW ,2v!u i0&

\@Dv10
( i )2v2 i ~G/\!#

J !

~14!

5
^ i0uW( i )~RW ,v!u i1&

\@v2Dv10
( i )2 i ~G/\!#

. ~15!

It will be useful later to define aresponse function p( i )(v) of
oscillator ~i!

p( i )~v!5$\@v2Dv10
( i )1 i ~G/\!#%21 ~16!

and it’s spatialform factorr0
( i )(RW )

r0
( i )~RW !5~2e!w1

( i )!~RW !w0
( i )~RW !. ~17!

Further, we introduce a dimensionlessexcitation amplitude
u( i )(v)

u( i )~v!5p( i )~v!^ i0uW( i )~RW ,v!u i1&. ~18!

In terms of these definitions, the induced space charge fl
tuation of oscillator~i! can be written in compact form as

r ( i )~RW ,v!5r0
( i )~RW !u( i )~v!. ~19!

In order to calculate the corresponding potential, we use
Coulomb-Greens function

T~RW 2RW 8!5
2e

4pee0

1

uRW 2RW 8u
. ~20!

Thev component of the potential induced by oscillator~i! is
then given by

V( i )~RW ,v!5E d3R8T~RW 2RW 8!r ( i )~RW 8,v!. ~21!

With the abbrevation

T( i )~RW !5E d3R8T~RW 2RW 8!r0
( i )~RW 8! ~22!

this can be further simplified to

V( i )~RW ,v!5T( i )~RW !u( i )~v!. ~23!
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11 008 PRB 60C. METZNER AND G. H. DÖHLER
We now return to the potential experienced by oscilla
( i ), given by Eq.~7! and rewrite it in terms of the newly
introduced quantities

W( i )~RW ,v!5
2eFz

2
1(

j Þ i
T( j )~RW !u( j )~v!. ~24!

According to Eq.~18!, the response of oscillator~i! depends
on the matrix elements of potentialW( i )(RW ,v) in the
eigensubspace~i!,

^ i0uW( i )~RW ,v!u i1&5
2eF

2
^ i0uzu i1&

1(
j Þ i

^ i0uT( j )~RW !u i1&u( j )~v! ~25!

5
2eF

2
z( i )1(

j Þ i
T( i )

( j )u( j )~v!, ~26!

where we have introduced abbrevationsz( i ) andT( i )
( j ) for the

matrix elements of thez operator and of the induced pote
tial of oscillator ~j!, respectively. Note that the quantityT( i )

( j )

is simply the Coulomb interaction energy of oscillators~i!
and~j! in the case of unit excitation amplitude. Inserting E
~26! into Eq. ~18!, we obtain a dynamic equation, whic
determines the excitation amplitudes of the coupled tw
level systems for a given strengthF and frequencyv of the
excitation light

u( i )~v!5p( i )~v!•F2eFz( i )

2
1(

j Þ i
T( i )

( j )u( j )~v!G . ~27!

This can be expressed in the form of a complex linear sys
of equations, if we implicitely assume thatT( j )

( j )50 ~no self-
interaction!:

(
j

@d ( i )( j )2p( i )~v!T( i )
( j )#u( j )~v!5p( i )~v!

2eFz( i )

2
.

~28!

After solving this system numerically, we will comput
the absorption coefficienta(v) from the resulting ampli-
tudesu( i )(v). In a disordered system the optical power a
sorbed from the light field is, in principle, a function of th
in-plane position. We are, however, not interested in t
position dependence. Therefore, we perform in-plane a
ages over the relevant quantities. This operation is form
denoted by

^ . . . &xy5V21E . . . dx dy, ~29!

whereV is the lateral system area. In a first step, we cal
late the averaged, total space-charge fluctuation of the
tem:
r

.

-

m

-

s
r-
ly

-
s-

r̄~z,v!5K (
i

r ( i )~RW ,v!L
xy

~30!

5(
i

u( i )~v!^r0
( i )~RW !&xy ~31!

5(
i

u( i )~v!r̄0
( i )~z!. ~32!

Here, we have used Eq.~19! and defined anaveraged form

factor r̄0
( i )(z) of oscillator ~i!:

r̄0
( i )~z!5~2e!^w1

( i )!~RW !w0
( i )~RW !&xy . ~33!

At this point it should be remembered that in the abo
expression the indices 0 and 1 of the single-particle w
functions denote the ground- and first-excited state of
( i ). Each of these states are, in general,x-y-dependent linear
combinations of the undisturbed subbandsm

ws
( i )~RW !5(

m
f m~z!gm

( is)~x,y!, ~34!

Thus, the averaged form factor yields

r̄0
( i )~z!5~2e!(

mn
f n~z! f m~z!^gn

( i1)!~x,y!gm
( i0)~x,y!&xy

~35!

5~2e!(
mn

f n~z! f m~z!Gmn
( i ) , ~36!

with the lateral overlap intergralsGmn
( i ) . In the case of perfec

intradot ~intersubband! correlations, we would have

gm
( is)~x,y!5dmsg

( i )~x,y! ~37!

and the overlap integrals in Eq.~36! would simplify to

Gmn
( i ) 5dm0dn1^ug( i )~x,y!u2&xy5dm0dn1V21. ~38!

In this case, the averaged form factor can be written as

r̄0
( i )~z!5~2e!V21f 0~z! f 1~z!, ~39!

which is, due to the orthogonality of thez-subband wave
functions, a zero-mean function

E
2`

1`

dzr̄0
( i )~z!50. ~40!

Thus, the induced charge-density fluctation has a ze
monopole moment. Each oscillator basically represents a
calized dipole and, correspondingly, the resulting poten
has only a finite range.

We now calculate the ac current connected with the ab
charge-density fluctuation. The continuity equation

]

]z
j̄ ~z,t !1

]

]t
r̄~z,t !50 ~41!



-
e

th
o-

-

m
th
io
il

lo

s

n-

r-

ed

as
x-

e

ed
he

n-
n,

u-

.

for

ote

e

PRB 60 11 009COLLECTIVE OPTICAL EXCITATION OF . . .
links the average inducedz current j̄ (z,t) with the total
space-charge fluctuation. Transforming Eq.~41! into tempo-
ral Fourier space and solving for the current yields

j̄ ~z,v!5~2 iv!E
2`

z

dz8r̄~z8,v!. ~42!

By inserting Eq.~32! we obtain

j̄ ~z,v!5~2 iv!(
i

u( i )~v!E
2`

z

dz8r̄0~z8!. ~43!

Finally, thezz component of the dynamic conductivity ten
sor szz(v), the real part of which is proportional to th
absorption coefficienta(v), follows from the induced cur-
rent by

szz~v!5
1

FE2`

1`

dz j̄~z,v!. ~44!

Defining the quantity

l ( i )5E
2`

1`

dzE
2`

z

dz8r̄0
( i )~z8!/e, ~45!

which has the dimension of a length, we can express
conductivity in terms of the excitation amplitudes of the l
calized oscillators

szz~v!5
2 ive

FV (
i

l ( i )u( i )~v!. ~46!

In the case of perfect intradot correlations@Eq. ~39!# one can
easily prove the identityl ( i )52z( i )5const. Note that since
the excitation amplitudesu( i )(v) are proportional to the ex
ternal field strengthF ~linear response regime!, the conduc-
tivity szz(v) becomes independent ofF. In a similar way,
the number of oscillators (i 51 . . .Nosc) increases linearly
with the system areaV. Thus,szz(v) is independent ofV,
too.

IV. MODEL SYSTEM

We applied the above theory to a simple-model syste
which has the advantage of facilitating easy evaluation of
matrix elements and convenient numerical implementat
In this model, we consider a planar array of two-level osc
lators ~dots! of density n(2). Assuming for simplicity that
each oscillator is occupied with one electron,n(2) can also be
interpreted as the~2D-! electron density. All oscillators are
described by wave functions of the same form, however
cated at different random in-plane positionsrW ( i )

wm
( i )~RW !5 f m~z!g~rW2rW ( i )!. ~47!

This z-rW-separable form withm-independent lateral function
g(rW) captures the essence of the IS correlation effect~case of
perfect correlations!. Note that the structural~or off-
diagonal! disorder is provided here exclusively by the ra
dom in-plane distribution of the dot centers.
e

,
e

n.
-

-

In the longitudinal direction, we assumed an infinite ba
rier quantum well of thicknessa, yielding sine-typez wave
functions

f m~z!5A2/a sin$~m11!~p/a!@z2~a/2!#% with m50,1.

~48!

In the lateral direction, Gaussian functions have been us

g~rW2rW ( i )!5
b

Ap
e2(burW2rW( i )u)

2/2, ~49!

whereb51/r loc is a ‘‘localization parameter.’’
In order to make the effect of the Coulomb interaction

clearly visible as possible, we artificially introduced a bo
shaped line broadening into the single-particle levels~diago-
nal disorder!. The transition energy of each dot~i! has thus
been detuned from the undisturbed subband separatione10
by random shifts, which were equally distributed within th
intervall @2Dedis/2•••1Dedis/2#. The parameterDedis cor-
responds to the ‘‘inhomogeneous broadening.’’

V. RESULTS AND DISCUSSION

In the following, we present numerical results obtain
with the ‘‘sine-Gauss’’-model described above. For t
simulations we have typically usedNosc550 oscillators in a
finite system of lateral dimensionsLx5Ly5ANosc/n

(2), with
periodic boundary conditions in both directionsx andy. The
lateral positionsrW ( i ) of the oscillators have been chosen ra
domly, with the exception of a minimum distance conditio
r ( i )( j ).r min , to avoid unphysical configurations.

A quantity of central importance is, of course, the Co
lomb interaction energyT( i )

( j )5T(r ( i )( j )), which depends on
the parametersa andb of the single-particle wave functions
Figure 1 is a plot of the distance dependence ofT for various
parameter combinations. It shows dipolelike behavior
large distances, but saturates to a finite value atr ( i )( j )50,
due to the spatial extension of the charge distributions. N

FIG. 1. Coulomb interaction energyT( i )
( j ) as a function of the

interdot distancer ( i )( j ) in the ‘‘sine-Gauss’’ model system. Th
parameters were the thicknessa of the z-quantum well and the
lateral localization radiusb21. Case ~a!: a510 nm, b21

510 nm. Case ~b!: a55 nm, b21510 nm. Case ~c!: a
510 nm, b2155 nm.
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11 010 PRB 60C. METZNER AND G. H. DÖHLER
that the maximum coupling strengthT(0) and the range o
interactionr max

int @let us definer max
int as the distance whereT

decreases toT(0)/10# are mainly determined by the later
localization radiusb21. For realistic valuesb21'10 nm,
however,T(0) is only of order 0.5 meV andr max

int is about 30
nm.

In the following, we fix the wave function related param
eters to a5b21510 nm and the homogeneous phon
broadening toG51 meV. For this well thickness, the un
disturbed subband separation would bee10

( i )'170 meV~in-
finite barriers!.

We now turn to the resulting IS absorption spectrum@the
real part of the dynamic conductivity Eq.~46!# of a random
array of oscillators. The conductivity is conveniently pr
sented in the natural unit of the Drude values0
5n(2)e2t/m!, with a phenomenological scattering time r
lated to the homogeneous phonon broadening energt
5\/G. The absorption spectrum will, of course, depend
the inhomogeneous disorder broadeningDedis and the den-
sity of oscillators~electrons! n(2).

Figure 2 shows ensemble averaged intersubband sp
for fixed disorderDedis520 meV but different electron
densitiesn(2). Case~a! corresponds to the ‘‘dilute limit’’
n(2)→0, where the typical nearest-neighbor distancer̄ nn

51/An(2) exceeds the range of interactionr max
int and thus

Coulomb coupling can be neglected. In this case, the s
trum is, of course, only determined by the single-parti
properties and reflects the specific distribution of the in
vidual transition energies\Dv10

( i ) . Therefore, in our mode
we obtain a broad, box-shaped absorption band of w
Dedis , centered around the IS energy separatione10
'170 meV of the ‘‘undisturbed’’z-quantum well. The
spectrum remains essentially unchanged as long asn(2) is
smaller than the critical densityncrit

(2) 51/(r max
int )2, which is

about 1.131011 cm22 for our case ofr max
int 530 nm.

In cases ~b!–~d!, corresponding ton(2)51.0 . . . 5.0

FIG. 2. Intersubband absorption spectrum with diagonal dis
der Dedis520 meV for various 2D-electron densitiesn(2). The
spectrum has been averaged over an ensemble of 100 random
figurations, each containing 50 localized oscillators. The other
tem parameters were as follows:a510 nm, 1/b510 nm, G
51 meV. Case~a!: n(2)→0. Case~b!: n(2)5131011 cm22. Case
~c!: n(2)5231011 cm22. Case~d!: n(2)5531011 cm22. Case~e!:
n(2)5131012 cm22. Case ~f!: n(2)523012 cm22. Case ~g!:
n(2)553012 cm22.
n

tra

c-

-

th

31011 cm22, the effect of the electron-electron interactio
already becomes clearly visible in the spectrum. A peak
formed on the high-energy side of the single-particle band
the cost of absorption in the low-energy range.

This trend is continued in cases~e! and ~f!. The peak
becomes more pronounced, growing in height, reducing
width and shifing to higher energies. Note, however, tha
this electron density the presence of disorder could still
deduced from the spectrum by the long low-energy tail.

At even higher densities@case ~g!#, the blueshift and
change of shape of the peak become extremely pronoun
The line shape approaches a Lorentzian of a width limi
only by the homogeneous phonon broadeningG. Finally,
there remains almost no trace of the strong disorder in
spectrum.

It is clear that the density dependent blueshiftD\v(n(2))
of the absorption peak in Fig. 2 is a manifestation of t
well-known depolarization effect, here realized in a syst
of strongly localized states. It is also apparent from the ch
acteristic line distortion that the sharp absorption peak c
responds to a collective response of all electrons to the
ternal optical field.

However, it is desirable to understand in greater det
how the localized oscillators ‘‘cooperate’’ in the collectiv
mode. For a given excitation frequencyv, the dynamic mi-
crostate of the system is completely described by the mo
lus and phase of the complex excitation amplitudesu( i )(v)
of the individual oscillators. We have, therefore, analyze
specific configuration of 50 dots and visualized the in-pla
distribution of the oscillator amplitudes in Fig. 3. All param
eters have been chosen like in the case of Fig. 2~f!, i.e., the
electron density wasn(2)5231012 cm22. The centers of
the circles in Fig. 3 indicate the localization positions of ea
oscillator. The modulus and phase of an oscillator amplitu
are represented by the size of the cirle and the orientatio
the arrow, respectively. The circle diameterd is a linear me-
assure of the excitation level,d5d01cuu( i )(v)u, but a mini-
mum sized0 has been added for graphical reasons. In cas
in-phase oscillation with the external field (Dw50), the ar-
row points to the right, while out-of-phase motion (Dw5
2pi) would be represented by an arrow pointing to the le

Part ~a! corresponds to photon energy\v5180 meV,
which is in the low-energy tail of the IS resonance Fig. 2~f!.
It can be seen that only a few oscillators are strongly exc
at this frequency. There is a broad distribution of phases
such a way that similar phases are spatially grouped toge
Neighboring electrons mutually adapt their phases, t
forming coherently oscillating clusters. The extension
these clusters becomes larger, if the photon energy
proaches the peak energy of the absorption maximum.

Part~b! belongs to photon energy\v5185 meV, which
is close to the peak of the collective resonance. While
individual oscillators still have different excitation level
now the phase distribution is much smaller: A sing
coherent cluster has percolated over the~finite! system and
all electrons oscillate in phase with each other. This is
form of cooperation, which gives rise to the high value
total absorption.

For higher photon energies this collective phase adju
ment becomes even more pronounced, with allDw finally
approaching the value2p ~like the out-of-phase motion of a
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harmonic oscillator driven far beyond the resonance
quency!. However, the excitation levels are rapidly decre
ing after\v has passed the peak value.

VI. CONCLUSION

In the following, we summarize the key points of th
paper, relate the results to other parts of semiconductor p
ics and discuss possible future extensions of our theory.

In this paper, we have investigated IS absorption
z-polarized light in a quasi-2D electron layer with stro

FIG. 3. Visualization of the individual oscillator’s complex ex
citation amplitudes for a specific configuration at two different ph
ton energies. The system parameters were as in Fig. 2~f!, i.e., n(2)

5231012 cm22. The centers of the circles denote the in-pla
positions of the natural quantum dots in the simulation area. Mo
lus and phase of their amplitudes are represented by the size o
circles and the orientation of the arrows, respectively. In-phase
cillation corresponds to an arrow pointing to the right (Dw50),
out-of-phase motion is depicted by an arrow pointing to the
(Dw52pi!. Case~a!: Before resonance (\v5180 meV). Case
~b!: Close to resonance (\v5187 meV).
-
-

s-

f

lateral disorder. Such a spatially inhomogeneous elec
film has to be described by in-plane localized single-parti
wave functions. Since the IS transitions occur between c
related pairs of such states, the system can be viewed as
of distinct oscillators. These have resonance frequencies
tributed around the subband separation of the correspon
ideal layere10, but are fluctuating on a scaleDedis ~inhomo-
geneous broadening!, which is determined by the disorde
and IS correlation effects. Each individual oscillator contr
utes to the total IS spectrum a comparatively narrow abso
tion line. It’s ~homogeneous! width G is exclusively deter-
mined by the phonon~or photon! emission rate and the
oscillator strength depends on the overlap of the involv
lateral wave functions. Thus, in a single-particle picture~or
at not too high-electron density!, the IS spectrum is a linea
superposition of many phonon-broadened resonances an
final line shape will, in general, be neither Gaussian, n
Lorentzian. This picture is in agreement with recent spec
hole burning experiments, which demonstrate that the in
mogeneous broadeningDedis can be larger than the funda
mental homogeneous linewidthG, even in modulation doped
quantum wells.

Assuming the above scenario, we have formulated
theory of dynamic electron-electron interaction effects on
intersubband resonance, which is completely based on lo
ized single-particle states. For this purpose, we calculated
linear response of an interacting set ofN two-level oscilla-
tors, subject to both the external optical field and the
duced, selfconsistent Hartree field. For given frequency
the incoming light field, the theory describes the dynam
microstate of the system by a simple, linear system oN
equations, determining the individual~complex! excitation
amplitudes of the oscillators. The laterally averaged IS
sorption spectrum follows then essentially from a weigh
sum of these amplitudes.

We have numerically evaluated our theory for a simplifi
model system with ‘‘sine-Gauss’’ single-particle states an
box-shaped IS absorption spectrum~without electron-
electron interactions!. In this model, the Coulomb coupling
of neighboring oscillators is basically a dipole-dipole inte
action of finite ranger max

int . The many-particle effects hav
then been turned on by gradually increasing the electron d
sity n(2) or, in other words, by decreasing the average d
tancer̄ nn between the localized oscillators, untilr̄ nn<r max

int .
The simulations show a drastic, qualitative change of

IS spectrum as a function ofn(2). Starting from the broad
box-shaped absorption band atn(2)→0 ~reflecting the single-
particle properties!, the spectrum gradually evolves to an a
proximately Lorentzian line~corresponding to a many
particle excitation of the whole system!. With increasing
electron density, this resonance peak becomes narrower
shifts to higher energies, which is analogous to the case
quasi-two-dimensional systems with laterally extend
states. This collective effect could be explained by a mut
phase adaption of the Coulomb-coupled localized oscillat

This results demonstrates, that the ‘‘true,’’ inhomog
neous broadening in a disordered system can be comple
‘‘screened out’’ by the dynamic many-particle interactio
and thus may remain unobserved in an IS experiment
formed at fixed electron density. Especially, the Lorentz
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line shape of the IS spectrum allows in general no statem
about the nature of the line broadening.

VII. OUTLOOK

Our model system closely resembles an array of s
organized InxGa12xAs quantum dots, at least with respect
the form of the single-particle wave functions~compare
Refs. 28, 29, and 30 and references therein!. Actually, these
systems are very interesting candidates for the study
static27 and dynamic many-electron correlation effects. Y
there are also two major differences.

First, in typical InxGa12xAs dots the various interna
quantum states arelateral modes~e.g., corresponding to th
spectrum of a two-dimensional harmonic oscillator!, which
all belong to the samez-subband. When intraband absorptio
experiments are performed with such dot-arrays, con
quently, light is polarized parallel to the layers. Neverthele
the dynamic depolarization effect studied in this paper is a
effective between electrons oscillating in the lateral direct
and may cause a similar line shift and narrowing. We a
thus, working on an analogous theory for lateral polarizati

On the other hand, the situation studied in this paper m
be realized, for example, in strain-induced dots. In this c
cept, an ordinary quantum well is used to provide the~ad-
justable! z quantization, while the lateral confinement resu
from the strain field of a neighboring layer of dots. Thus,
a sufficiently wide quantum well several longitudinal mod
could be created, each associated with a similar set of~cor-
related! lateral modes.

Another major difference between our model a
InxGa12xAs dot arrays lies in the in-plane dot density. F
typical growth conditions the resulting densities may be
low to observe drastic effects of the interdot coupling. T
situation might be improved by charging each dot with mo
than one electron. However, this would require the inclus
of intradot Coulomb effects~see below!.

Thus, our theory basically applies to strongly disorde
quasi-2D systems, liked-doped layers or modulation dope
quantum wells with thin spacer layer. To directly compa
theoretical results with experimental data, it is nesseces
to use realistic, disordered quantum states, as they re
from exaxt diagonalization studies. Such simulations
now in progress.

Another class of systems, in which dynamic interacti
effects between localized oscillators should play an imp
tant role, are disordered 2D systems subject to a stro
magnetic field inz direction.31 The density of states is the
condensed into several, broadened Landau peaks. Exce
the center of each Landau peak, the wave functions are
l.
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erally localized and there should exist strong correlations
tween corresponding states of different Landau bands~be-
cause electrons in different Landau bands ‘‘see’’ the sa
lateral disorder!. Transitions are induced between such c
related states in cyclotron resonance experiments. There
there is a strong analogy to the case treated in this pape

In the present version of the theory we have treated
oscillators as two-level systems, assuming that each in
stateu( i )0& is connected~by the optical diplol operatorpz) to
only one correlated final stateu( i )1&. In actual disordered
systems, however, there can exist several final st
u( i )m&,m51 . . .M , with some of the transition energie
em0

( i ) being similar and close to the excitation photon ener
In such a case, all the involved quantum states must be
tained in Eq.~13! and one obtains a system of interactin
(M11)-level systems. This extension would not affect t
essence of the theory, but can of course have drastic co
quences for the resulting spectral shape. Also higher s
bands can have an effect on the 0-1 resonance, even if
are far separated energetically.

A difficulty arises concerning the Pauli principle, if dif
ferent electrons share the same one-particle states, i.e., i
case of multiple occupancy of the quantum dots. Then,
course, the intradot electron-electron interaction~‘‘Coulomb
blockade’’! becomes very important. This problem is close
connected with electron spin, which has been neglecte
the present work. In such a case, each dot must be desc
by a suitableN-particle wave function, which should still b
tractable for smallN.

From the theory of the intersubband resonance in syst
with laterally extended states it is well known that the dep
larization blueshift is partly cancelled by the exchang
correlation effects~vertex corrections, or excitonic final-stat
interactions!.7,8,10 It still remains to be clarified which role
such effects play in the strongly localized regime, where
wave functions belonging to different dots have typically
very small spatial overlap. Thus, exchange effectsbetween
the dots are suppressed and the corresponding Coulom
tegrals are expected to be small.

Finally, it should be mentioned that in the present sta
the electron-phonon interaction has been included only p
nomenologically by a homogeneous broadening energy.
are now working towards an explicit calculation of electro
phonon scattering times on the basis of realistic, localiz
electron states.
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