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Light transmission from a twisted nematic liquid crystal: Accurate
methods to measure the azimuthal anchoring energy

S. Faetti* and G. C. Mutinati
INFM and Dipartimento di Fisica, Universita di Pisa via Buonarroti 2, 56127 Pisa, Italy

~Received 22 January 2003; published 6 August 2003!

In this paper, we analyze the light transmission from a twisted nematic liquid crystal~NLC! and we propose
two accurate and very direct optical methods to measure the azimuthal anchoring energy. In both of them, a
monochromatic beam of wavelengthl with a polarization vector that rotates at an angular frequencyv
impinges on a twisted nematic liquid crystal. The intensity of the transmitted beam is modulated at angular
frequency 2v with a phase shiftb, which is related to the surface azimuthal director anglef1 at the inves-
tigated interface. It is shown that there exists a special geometry where the simple adiabatic relationf1

5b/2 is satisfied up to second order in the small perturbative parametera5l/(2pDnj), whereDn is the
anisotropy of the refractive indices of the NLC andj is the twist distortion length. Furthermore, the small
residual higher order correction terms can be greatly reduced by choosing a proper geometry for the experi-
ment. With this choice, the range of validity of the adiabatic theory is greatly extended. The perturbative
theoretical results are fully confirmed by numerical calculations. The azimuthal anchoring energy coefficient
can be obtained by measuring phase shiftb versus the intensity of an applied magnetic field. These methods
greatly improve the accuracy of the previous transmitted light techniques and also provide accurate measure-
ments of strong azimuthal anchoring energies.

DOI: 10.1103/PhysRevE.68.026601 PACS number~s!: 61.30.Hn, 42.70.2a, 61.30.Gd, 78.20.Ci
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I. INTRODUCTION

The macroscopic behavior of nematic liquid crysta
~NLC! is described by the unit vector fieldn(r ) which is
called thedirector @1#. n(r ) represents the local average o
entation of the long molecular axes. The surface alignmenns
of the director is determined by the competition betwe
surface and bulk interactions.ns is characterized by the sur
face polar angleus that the director makes with axisz or-
thogonal to the surface and the surface azimuthal anglefs

that the director makes with axisx in the surface plane~see
Fig. 1!.

In the absence of external torques, the director is alig
along the direction~easy axis! that minimizes the anchoring
energyW(ns) @1,2#. W(ns) represents the work needed
rotate the director from the easy axis toward the actual
face orientation. Ifus is held fixed and equal to the eas
polar angleue ,W(us ,fs) becomes a function offs only,
which is called theazimuthal anchoring energy. Different
experimental methods have been used to measure the
muthal anchoring energy. Most of them consist in the opti
measurement of the polarization state of either transmi
@3–13# or reflected@14–16# light. In all these cases, a know
torque is applied on the director and the consequent rota
of the director at the surface is measured. The torque ca
generated either by applying external fields~magnetic or
electric! or exploiting the competition between different su
face orientations~hybrid cell @10#!.

In a typical transmission experiment, the polarization o
monochromatic beam, which is transmitted through a ne
atic layer, is measured. From this measurement, the sur
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azimuthal angle can be obtained. The calculation of the
pendence of the polarization of the transmitted light on
surface azimuthal angles requires a somewhat complex
merical analysis based on the Berreman transmission m
@17#. This needs a complex fitting procedure to obtain t
surface angles from the experimental results@8#. The uncer-
tainty on the bulk material constants of the NLC and on
thickness of the nematic layer limit the applicability of th
method to relatively weak anchoring energies.

The theoretical analysis of the experimental data beco
much simpler if the characteristic lengthj of the bulk twist
distortion is much greater than the optical wavelengthl ~the
Mauguin regime!. In such a case, if the polarization plane
the incident beam is parallel to the orientation of the direc
at the first solid-nematic interface, it remains parallel to t
local director field everywhere. Then, the polarization pla
of the outgoing transmitted beam is parallel to the direc
orientation at the second interface. This theoretical res
which is known as theadiabatic theorem, suggests a simple

FIG. 1. Orientation of the director at the interface (z50) be-
tween a nematic liquid crystal and an isotropic medium.fs andus

are the azimuthal and the polar angles of the director, respectiv
z is the axis orthogonal to the interface andx andy are two orthogo-
nal axes on the surface plane.
©2003 The American Physical Society01-1
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experimental method to measure the surface azimu
angles: the nematic layer is inserted between two polari
that are rotated until the intensity of the transmitted lig
vanishes. This occurs when the transmission axis of the
polarizer is parallel to the director orientation at the fi
surface and the analyzer is orthogonal to that at the sec
interface. Such a method has been often used in litera
~see, for instance, Ref.@3#! to measure the azimuthal ancho
ing energy. However, it provides accurate results only in
special case of extremely weak anchoring energies, wh
conditionj@l can be fulfilled. In fact, Oldanoet al. @5–7#
showed that the adiabatic theorem corresponds to the
order expansion of the Berreman matrix in the perturba
parametera5l/(2pDnj), whereDn5ne2no'0.2 is the
anisotropy of the refractive indices of the NLC. They show
that the first order correction is not negligible in most pra
tical situations and simulates a spurious surface rotation
the director, which depends strongly on phase shiftd
52p(ne2no)d/l between the extraordinary and ordina
optical beams. The first order correction is maximum ifd is
an even multiple ofp, but vanishes ifd is an odd multiple of
p. Therefore, in order to reduce greatly these spurious c
tributions, they measured the surface director angle by
ting the temperature of the NLC layer in such a way as
satisfy conditiond5mp, where m is an odd integer. Al-
though this choice greatly improves the accuracy of the
perimental results, the achievement of conditiond5mp
makes the experimental procedure somewhat heavy. In
ticular, an accurate thermostatation of the NLC and an ac
rate measurement of the optical dephasingd are needed. Fur
thermore, the measurement of the azimuthal ancho
energy can be performed only at those special temperat
where conditiond5mp is fulfilled.

More recently, Adrienkoet al. @11# proposed a differen
method with a twisted nematic layer subjected to a we
external magnetic field. In such a case, the first order no
diabatic terms proportional toa were taken into account in
the analysis of the experimental results. This method can
applied satisfactorily only to substrates with a relative
weak anchoring energy (W,1022 erg/cm2).

A special behavior occurs if the director twist is produc
by the competition between two different orientations of t
easy axes on the two plane surfaces of the NLC layer.
cording to Polossat and Dozov@10#, the bissectrice of the
two surface easy axes is a twofold symmetry axis. Exploit
this exact symmetry, they proposed a simple transmitted l
method that is virtually exact because it does not make us
any adiabatic approximation. The main drawback of t
technique is that it requires that the anchoring at the inve
gated surface be much lower than that at the counterp
Therefore, only moderately strong anchoring energies ca
accurately measured with this technique (W'1022

21023 erg/cm2).
In this paper, we analyze in detail the light transmiss

from a twisted nematic sample using both a perturbative
proach and an numerical analysis. We show that there
special geometry where the first order nonadiabatic contr
tions ~linear terms ina) vanishfor all values of the optical
dephasingd. Furthermore, the output signal depends only
02660
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the director azimuthal angle at interface 1~see Fig. 2!, which
is first encountered by the incident beam. Then,no assump-
tion is needed as far as the anchoring at the second interf
is concerned. These theoretical results have been obtain
using the Oldano perturbative approach and have been
confirmed by the numerical integration of the Berrem
equations. Furthermore, the numerical calculations show
the higher order contributions can also be greatly redu
with the choice of a proper experimental geometry. As
consequence of these theoretical results, we propose
two transmitted light methods~methods I and II! that provide
simple and accurate measurements of the azimuthal anc
ing energy at the investigated interface, also in the criti
case of strong anchoring energies (W'1 erg/cm2). The
measurement of the surface director angle is reduced to
standard measurement of phaseb of an oscillating signal.
From the experimental point of view, method I is slight
more complicated than method II, because it requires that
director at the second surface of the nematic cell and
analyzer axis are aligned parallel to the magnetic field~see
Fig. 2!. An imperfect alignment introduces systematic erro
in the experiment. On the contrary, method II does not
quire any special orientation of the director at interface 2 a
any analyzer. This makes the experimental set up of met
II much simpler and greatly limits the possible error sourc
Both these methods overcome the main drawbacks of
known transmitted light methods and greatly increase
accuracy of the measurements of the azimuthal ancho
energy. In particular, the measurements can be performe
any temperature and no assumption on the anchoring a
counterplate is needed. Furthermore, strong anchoring e
gies can be measured. Finally, the experimental appar
and the analysis of the experimental results is very simp

We believe that these experimental methods can also
resent a valid alternative to the reflectometric techniq
@14–16# which are known to be very accurate. In these
flectometric techniques, the surface director angle is obtai
from the measurement of the polarization of a monoch

FIG. 2. Schematic view of the geometry of method I. A nema
layer of uniform thicknessd is sandwiched between two paralle
solid plates. A magnetic field can be applied along ax axis in the
layer plane. The easy axis at interface 2 is parallel to the magn
field. A monochromatic beam passes through a rotating polar
and impinges at normal incidence on the layer. The polarization
of the analyzer is parallel to thex axis.
1-2
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LIGHT TRANSMISSION FROM A TWISTED NEMATIC . . . PHYSICAL REVIEW E 68, 026601 ~2003!
matic optical beam which is reflected by the interface.
shown in Ref.@14#, this measurement procedure is virtua
unaffected by the bulk director twist but it is more sensiti
to small external noise sources. In fact, the intensity of
reflected beam is two orders of magnitude lower than tha
the incident beam. Therefore, relatively high power la
sources are needed (>10 mW) and the actual accuracy o
the measurement is appreciably affected by the noise co
butions coming from the light diffused from the NLC an
from other external noise contributions.

The paper is organized as follows. In Sec. II, the m
aspects of the Berreman theory and of the Oldano pertu
tive approach are briefly discussed and a simple perturba
expression for the transmitted field is given. In Secs. II
and III B, we calculate the dephasingb for method I, using
the perturbative approach and the numerical Berreman
proach, respectively. In Sec. IV A, we use the Fourier op
and the perturbative approach to calculate dephasingb,
which corresponds to method II. Numerical calculations
given in Sec. IV B. Section V is devoted to the discussion
the experimental procedure that has to be used to mea
the azimuthal anchoring energy. Some preliminary exp
mental results are also given. Section VI is devoted to c
clusions.

II. TRANSMISSION OF A MONOCHROMATIC BEAM
IN A TWISTED NLC

A powerful matrix approach to the study of the transm
sion and the reflection from a layered anisotropic medi
was proposed many years ago by Berreman@17#. Consider a
plane electromagnetic wave of wavelengthl, which propa-
gates along thez axis in the positive versus and incides no
mally on a twisted nematic layer having the surfaces az
52d/2 andz5d/2 as shown in Fig. 2. The director field lie
everywhere in the layer planex-y and is given by n
5@cosf(z),sinf(z),0#, wheref(z) is the local director angle
with the x axis. We indicate byEx andEy the x andy com-
ponents of the electric field amplitude of the electromagn
wave and byHx and Hy the corresponding magnetic fiel
amplitudes. The electromagnetic field in any point of t
nematic slab is described by the four components ve
C(z)5(Ex ,Hy ,Ey ,2Hx). Consider now a very thin laye
of thicknessh!l inside the nematic LC. For sufficientl
small values ofh, the director orientation is virtually uniform
in this thin layer. According to Berreman,C(z1h) is given
by

C~z1h!5P̄~z,h!C~z!, ~1!

whereP̄(z,h) is the 434 transmission matrix across the th
layer of thicknessh, which is given by

P̄~z,h!5exp@ i2phD̄~z!/l#, ~2!

where matrixD̄(z) depends on the extraordinary and ord
nary refractive indicesne and no of the NLC and on the
director azimuthal anglef(z) ~see Eq.~23! in Ref. @17#!.
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From a numerical point of view, it can be convenient
calculateP̄(z,h) using the truncated Taylor expansion

P̄~z,h!511 i ~2ph/l!D̄~z!2~2ph/l!2D̄~z!D̄~z!/21•••.
~3!

The output vectorC(d/2) is related toC(2d/2) by the
following relation:

C~d/2!5F̄~d/2,2d/2!C~2d/2!, ~4!

whereF̄(d/2,2d/2) is given by

F̄~d/2,2d/2!5P̄~d/22h,h!P̄~d/222h,h!•••P̄~2d/2,h!.
~5!

OnceF̄(d/2,2d/2) is calculated, the amplitudes of the tran
mitted and of the reflected beams can be obtained using
procedures discussed in Ref.@17#. All the numerical calcula-
tions reported in the present paper have been performed
ing a Taylor expansion ofP̄(z,h) @see Eq.~3!# up to sixth
order, which ensures a rapid convergence and a satisfac
accuracy of the numerical results.

Some years ago, Oldanoet al. @5–7# proposed a perturba
tive approach to describe the light transmission in a twis
nematic layer subjected to a magnetic field of intensityH.
The perturbative parameter of the theory is

a5l/~2pDnj!, ~6!

wherej is the magnetic coherence length

j5AK22

xa

1

H
. ~7!

K22 is the twist elastic constant andxa is the anisotropy of
the magnetic susceptibility. Disregarding the coupling b
tween transmitted and reflected waves, the transmitted e
tric field can be described using a 232 matrix Jones ap-
proach. The equations for the transmitted field are written
a rotating reference system where thex and y axes remain
everywhere parallel and orthogonal to the local director a
Then, the two base vectors represent the extraordinary
the ordinary electric fields, respectively. The amplitudes
the extraordinary and of the ordinary base electric fieldsbe
andbo are not unitary but are chosen in such a way that
ordinary and the extraordinary waves have the same in
sity. This means thatbe andbo are proportional to 1/Ane and
1/Ano, respectively. Disregarding the reflections at the int
faces, the 232 transmission Jones matrix at the first order
the perturbative parametera reduces to@5–7#

T̄~d/2,2d/2!5exp~ ikad!Fexp~ id/2! i t

i t * exp~2 id/2!
G , ~8!

where symbol * denotes complex conjugation andt is the
small perturbative parameter@18#:
1-3



n

s

i-

t-

at

S. FAETTI AND G. C. MUTINATI PHYSICAL REVIEW E68, 026601 ~2003!
t52 ih1E
2d/2

d/2

exp~2 iDkz!
df

dz
dz, ~9!

where ka5p(ne1no)/l is the average wave vector,d
5Dkd52p(ne2no)d/l is the optical dephasing betwee
the extraordinary and the ordinary beams, andh1

5@A(ne /no)1A(no /ne)#/2'1. By successive integration
by parts, Eq.~9! can be written in the following form:

t5
h1

Dk S exp~2 iDkz!
df

dz U
1

2

2
i

Dk

3exp~2 iDkz!
d2f

dz2U
1

2

1••• D . ~10!

Since df/dz'Df/j and d2f/dz2'Df/j2, only the first
contribution in Eq. ~10! is of the first order in a
5l/(2pDnj)51/(Dkj). Then, at the first order of approx
mation,t in Eq. ~10! reduces to
d

a

ry
ld
e

02660
t5
h1

Dk FexpS 2 iDkd

2 D df

dz U
2

2expS iDkd

2 Ddf

dzU
1
G , ~11!

where (df/dz)u1 and (df/dz)u2 are the derivatives of the
director angle at surface 1(z52d/2) and 2(z5d/2), respec-
tively. If thicknessd is much greater thanj, the semi-infinite
sample approximation for the director field is very well sa
isfied and the two surface derivatives in Eq.~11! are given by
@1#:

df

dz U
2

5
sinf2

j
, ~12!

df

dz U
1

52
sinf1

j
, ~13!

where f1 and f2 denote the surface azimuthal angles
surface 1 and 2, respectively. From Eqs.~8! and~11!, we get
T̄~d/2,2d/2!5U exp~ ide! i @a exp~ ide!1b exp~ ido!#

i @a exp~ ido!1b exp~ ide!# exp~ ido!
U, ~14!
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where de52pned/l and do52pnod/l are the optical
dephasing of the extraordinary and the ordinary rays, ana
andb are two small parameters defined as

a52
h1

Dk

df

dz U
1

~15!

and

b5
h1

Dk

df

dz U
2

. ~16!

We denote byn1 and h1 two versors~in the layer plane!
parallel and orthogonal to the director at surface 1 and byn2
andh2 two versors parallel and orthogonal to the director
surface 2. AmplitudeEinc of the incident field atz52d/2
can be written in a compact form as

Einc5Ee
incn11Eo

inch1 , ~17!

whereEe
inc andEo

inc are the amplitudes of the extraordina
and the ordinary components of the incident electric fie
respectively. Using Eq.~14! and taking into account that bas
vectorsbe and bo are proportional to 1/Ane and 1/Ano (be

}n/Ane and bo}h/Ano), we obtain the following output
electric fieldEout at z5d/2:

Eout5Ee
out exp~ ide!1Eo

out exp~ ido!, ~18!

where
t

,

Ee
out5~Ee

inc1 iaAno /neEo
inc!n21 ibAne /noEe

inch2
~19!

and

Eo
out5 ibAno /neEo

incn21~Eo
inc1 iaAne /noEe

inc!h2 .
~20!

Equations~18!–~20! represent the fundamental result
the perturbative theory. Equation~18! shows that the electro
magnetic signal propagates in the twisted NLC as the su
position of two waves, the generalized ‘‘extraordinary’’
wave (Ee

out) and the generalized ‘‘ordinary’’ wave (Eo
out)

having phase velocitiesc/Ane and c/Ano , respectively. In
the adiabatic limit (a50 andb50), the extraordinary and
the ordinary electric fields in Eqs.~19! and~20! are reduced
to the standard extraordinary and ordinary waves. In part
lar, the corresponding electric fields are parallel and ortho
nal to the local director field. For nonvanishing values oa
and b, a part of the extraordinary incident field propagat
with the ordinary phase velocity and vice versa. Furth
more, an incident extraordinary~or ordinary! field does not
follow exactly the rotation of the director field. In the fo
lowing section we will show that it is possible to choose
proper geometry where the linear perturbative contributio
vanish. Therefore, with this special geometry the range
validity of the adiabatic theorem is greatly extended.
1-4
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III. METHOD I: THEORETICAL ANALYSIS

A. The perturbative analysis

Here we consider the geometry which corresponds
method I. An incident beam passes through a polarizer wh
rotates with angular frequencyv and impinges at norma
incidence on a nematic liquid crystal layer. A magnetic fie
H can be applied parallel to thex axis in the layer plane~see
Fig. 2!. The extraordinary and ordinary components of t
incident field amplitudeEinc are:

Ee
inc5E0 cos~vt2f1! ~21!

and

Eo
inc5E0 sin~vt2f1!, ~22!

whereEe
inc5Einc

•n1 and Eo
inc5Einc

•h1 and where the po-
larizer axis has been assumed to be parallel to the mag
field (x axis! at timet50. An analyzer with polarization axis
Â parallel to the director at surface 2(Â5n2) is inserted
after the NLC layer. The light intensity after the analyzer

I I
out5ao~Eout

•Â!@~Eout!* •Â#5ao~Eout
•n2!@~Eout!* •n2#,

~23!

where ao is a suitable proportionality coefficient and su
script I refers to method I. Substituting Eqs.~18!–~20! into
Eq. ~23! and disregarding terms of the second order in
perturbation parametera, we find:

I I
out5ao@~Ee

inc!212bAno /neEe
incEo

inc sind#. ~24!

In method I, the director at the second interface is paralle
the magnetic field. In this condition, it can be easily sho
that the director derivative at surface 2 is zero and coeffic
b in Eq. ~16! vanishes. Then, the output intensity in Eq.~24!
becomes

I I
out5ao~Ee

inc!25
I o

2
@11cos 2~vt2f1!#. ~25!

Up to the second order in the perturbative parametea
5l/(2pDnj), the output intensity is modulated at angul
frequency 2v with phase coefficientb52f1. Then, in this
case, the surface director angle can be obtained in a
direct way from the measurement of the phase coefficien
the transmitted beam intensity, using equalityf15b/2,
which corresponds to the prediction of the adiabatic theor
Note that this important theoretical result holds for any thic
ness and temperature of the NLC layer. It needs only that
director at surface 2 be parallel to the magnetic field. If t
latter condition is not satisfied,b does not vanish and Eq
~24! can be rewritten in the following equivalent form~up to
the second order ina!:

I I
out5

I o

2
@11cos 2~vt2f12g!#, ~26!
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where g denotes a phase shift due to the twist distorti
which is given by

g5
1

2
arctanS 2bAn0

ne
sind D . ~27!

In this case, phase shiftb of the intensity signalI I
out is b

52(f11g) and thus, the adiabatic theorem (b52f1) is not
satisfied. Phase shiftg in Eq. ~27! mimics an apparent rota
tion of the director at surfaceDfapp5g. A more accurate
expression can be obtained by taking into account the an
ropy of the ordinary and extraordinary transmission coe
cients at the solid-nematic interfaces. The improved exp
sion of g is

g5
1

2
arctanS 2bAn0

ne

ne1n

no1n
sind D , ~28!

wheren is the refractive index of the solid substrates.

B. Numerical calculations with the Berreman matrix

The theoretical results in Sec. III A were obtained usi
the first order perturbative theory. At this order of appro
mation, the simple adiabatic resultf15b/2 remains satis-
fied, provided that the director at surface 2 is set paralle
the magnetic field. With this choice the validity range of t
adiabatic theorem is greatly extended and the surface dire
azimuthal anglef1 can be directly obtained from the mea
surement of phaseb of intensity I I

out . However, also in this
case, some small residual corrections to the adiabatic th
rem are present, coming from the higher order perturba
contributions. This means that the surface director an
which is obtained experimentally using the adiabatic expr
sion f15b/2, is affected by a residual uncertainty. Ther
fore, it is important to calculate these contributions in ord
to estimate the actual accuracy of the proposed method.
detailed analysis of these higher order contributions can
also useful in finding suitable geometric conditions whe
they are minimized. This section is devoted to the numer
calculation of the ‘‘exact’’ behavior of the transmitted bea
in the twisted nematic layer. We will show that the high
order contributions lead to an additional small dephasing
intensity I I

out(t), which mimics a small apparent rotatio
Dfapp of the director at the surface. Furthermore, we w
show thatDfapp depends greatly on the director anglef1 at
surface 1 and vanishes if the director is orthogonal or para
to the magnetic field. This dependence suggests that the
curacy of the measurements can be greatly improved by
ting the easy axis at surface 1 almost orthogonal to the m
netic field.

The apparent rotationDfapp is calculated using the Ber
reman Matrix approach@17#. The accuracy of the numerica
program is checked by comparing the numerical results w
the exact expressions predicted in the limit casesH50 and
H→`. These limit cases are recovered with a relative ac
racy better than 1029. As a further control, we calculate th
sum of the transmitted and reflected intensities and we c
pare this sum with the incident intensity. The relative diffe
1-5
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ence between these quantities is found always lower t
1029. Dfapp is obtained using the numerical procedure d
cussed below. First we calculate the transmitted electric fi
amplitudesKe

out andKo
out , which correspond to an inciden

field of unitary amplitude polarized parallel or orthogonal
the director field at surface 1, respectively. Due to the line
ity of the Berreman equations, the output field amplitude
an incident field of amplitudeEo with a polarization which
rotates at angular frequencyv is

Eout5Eo@Ke
out cos~vt2f1!1Ko

out sin~vt2f1!#.
~29!

The output intensity of the transmitted beam after the a
lyzer is obtained by substitutingEout of Eq. ~29! into Eq.
~23!. After straightforward calculations we get

I I
out5I o

aI1bI

2
1

I o

2
A~aI2bI!

21cI
2cos 2~vt2f12g!,

~30!

where

g5
1

2
arctanS cI

aI2bI
D ~31!

andaI , bI , andcI are real numbers given by

aI5~Ke
out

•Â!@~Ke
out!* •Â#, ~32!

bI5~Ko
out

•Â!@~Ko
out!* •Â#, ~33!

and

cI52 Re$~Ke
out

•Â!@~Ko
out!* •Â#%. ~34!

Re(•••) denotes the real part of a complex number andÂ is
the analyzer axis parallel ton2 . I o is the intensity of the
incident beam. Equation~30! reduces to Eq.~25! in the Mau-
guin regime sincebI andcI vanish. Note that in the genera
case, the twist distortion produces both a spurious phase
2g of the oscillating signal and a change of its amplitud
The phase shift mimics an apparent rotationDfapp5g of
the director at the surface. This means that the actual sur
director anglef1 does not coincide withb/2 but is given by
f15b/22Dfapp . Therefore,Dfapp represents the uncer
tainty on the measurement of the director surface angle w
the adiabatic formulaf15b/2 is used.

Figure 3 shows the typical dependence of the appa
surface rotationDfapp5g on the intensity of the magneti
field. The material parameters of the NLC used to make
numerical calculations are those of the NLC 5CB at ro
temperatures that are given in the caption of Fig. 3. T
different full curves in Fig. 3 correspond to the appare
rotations obtained numerically for different values of the
rector azimuthal anglef2 at surface 2 and for a thicknes
d5235 mm, giving an optical dephasingd5140p1p/2
~for this value ofd, the first order nonadiabatic correction
have the maximum value!. The broken straight lines corre
spond to the predictions of the first order perturbative the
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@g in Eq. ~28!#. The numerical results accurately approa
the predictions of the perturbative theory for sufficien
small magnetic fields (H,2 kOe). This confirms the valid-
ity of the theoretical expressions obtained with the pertur
tive approach. In the special case wheref250°, the appar-
ent rotation is very small and is only due to the higher ord
perturbative contributions. In such a case and fora,0.28,
the apparent rotation is described very accurately~within
0.001°) by the following simple formula:

Dfapp5a2a21a4a4, ~35!

where a2 and a4 are adimensional numerical coefficien
which depend on the director surface anglef1 and on the
refractive indices of the NLC and of the substrate.a50.28
corresponds to the case where a magnetic field of 10 kO
applied to a 5CB sample at room temperature.

Figure 4 shows the dependence ofDfapp on a2 for some
values of the director anglef1 at surface 1 and forf2
50°. The full lines in Fig. 4 correspond to the best fits wi
equationDfapp5a2a21a4a4. In this range of values of
parametera, the quadratic contribution is the dominant on
~the best fit curves in Fig. 4 are very close to straight line!.
Results in Figs. 3 and 4 were obtained for a thicknessd of
the nematic layer, which corresponds to the optical deph
ing d5140p1p/2. However, ford.6j and f250°, the
apparent surface rotation is virtually independent of
thickness of the nematic layer and thus, on the opti
dephasingd. In particular, the maximum relative variation
of Dfapp due to changes of thickness are less than 1%.
the contrary, forf2Þ0°, the apparent surface rotation show

FIG. 3. Apparent rotationDfapp of the director at surface 1 vs
intensityH of the magnetic field. The full curves represent the
sults obtained using the numerical calculations~Berreman theory!
when the director azimuthal angle at the first interface isf1

545°. Different curves from the bottom to the top correspond
f250°, f2515°, f2530°, f2545°, f2560°, f2590°, respec-
tively. The broken lines represent the predictions of the first or
perturbative theory@Eq. ~28!#. The material parameters used
make the numerical calculations are those of the nematic liq
crystal 5CB at room temperature (T525 °C): ne51.717 andno

51.528 @24#, K2253.9331027 dynes @22#, and xa51.0731027

@23#. The refractive index of the solid plates isn51.51. The thick-
ness of the nematic layer isd5235 mm which corresponds to the
optical dephasingd5140p1p/2.
1-6
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LIGHT TRANSMISSION FROM A TWISTED NEMATIC . . . PHYSICAL REVIEW E 68, 026601 ~2003!
the sind dependence predicted by the perturbative appro
@see Eq.~28!#. Looking at Fig. 4, it is evident thatDfapp

depends greatly on the director anglef1 at surface 1 and
vanishes forf150° and f1590°, respectively. In fact, a
satisfactory approximated expression forDfapp is given by
~see Appendix A!

Dfapp5a21a
2

sin 2f1

2
, ~36!

wherea21 is a numerical coefficient which depends only
refractive indicesne and no of the NLC and on refractive
index n of the substrate. Forne51.717, no51.528, andn
51.51, we geta215257.3°. Equation~36! can be used to
estimate the residual uncertainty on the measurements o
surface director anglef1 when the simple adiabatic expre
sion f15b/2 is used. A more accurate analytical express
for Dfapp can be found in Appendix A.

In conclusion, the predictions of the first order perturb
tive approach are fully confirmed by the numerical calcu
tions. In particular, the first order corrections vanish if t
geometry of method I is used (f250°). A very important
result of the numerical calculations is that the small resid
higher order contributions also vanish when the directo
surface 1 is orthogonal or parallel to the magnetic fie
Therefore, in these special conditions, the adiabatic exp
sion of phase shiftb is virtually exact for any value of the
applied magnetic field. This latter results suggests that a
ther great improvement of the accuracy on the measurem
of the surface director angle can be reached by setting
easy angle at surface 1 almost orthogonal to the magn
field.

FIG. 4. Dfapp vs the square power of the perturbative para
etera51/(Dkj) defined in Eq.~6!. The director angle at surface
is f250°. The maximum value ofa2 corresponds to magneti
field H510 kOe. The points correspond to the numerical res
obtained with the Berreman approach. The full curves represen
best fits with Eq.~35!. Different curves correspond to the values
Dfapp obtained when the director angles at surface 1 have
values: f150°, f1515°, f1530°, f1545°, f1560°, f1

575°, andf1590°. The material and geometric parameters
the same as in Fig. 3.
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IV. METHOD II: THEORETICAL ANALYSIS

A. The perturbative analysis

Equation ~18! represents the perturbative expression
the output electric field amplitude for a monochromatic be
which passes through a nematic layered sample. If the n
atic sample forms a wedge with wedge angleuW!1 rad~see
Fig. 5!, Eq. ~18! is still satisfied but the local thicknessd of
the nematic sample becomes a linear function of thex coor-
dinate along the wedge axis

d5do1~ tanuW!x'do1~uW!x. ~37!

Then, the output field becomes

Eout5Ee
out exp@ i2pne~do1uWx!/l#

1Eo
out exp@ i2pno~do1uWx!/l#. ~38!

The wedge introduces two different phase modulations al
thex axis for the extraordinary and the ordinary optical ray
Then, according to the Fourier optics@19#, these two rays are
refracted at the two different angles (ne21)uW and (no
21)uW , respectively, as shown schematically in Fig. 5.

In such a case, it is possible to measure separately the
corresponding intensitiesI e

out and I o
out . The intensity of the

extraordinary wave is

I e
out5ao@~Ee

out!•~Ee
out!* #, ~39!

whereEe
out is given in Eq.~19!. By substituting in Eq.~39!

the expression ofEe
out given in Eq.~19!, taking into account

Eqs. ~21! and ~22! and neglecting all contributions of th
second order ina, we get

I e
out~ t !5

I o

2
@11cos 2~vt2f1!#. ~40!

Then, within the first order perturbative approach, the pr
ence of the director twist does not introduce any additio
phase shift in the oscillating signalI e

out(t). This is analogous

-

s
he

e

e

FIG. 5. Schematic view of the geometry of method II. A nema
liquid crystal wedge is inserted between two solid plates. A m
netic field can be applied along thex axis parallel to surface 1. The
director easy axis at surface 2 is parallel to the magnetic field
monochromatic beam passes through a rotating polarizer and
pinges on surface 1 at normal incidence. Due to the birefringenc
the NLC and to the presence of the wedge, the extraordinary
the ordinary beams are spatially separated.
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S. FAETTI AND G. C. MUTINATI PHYSICAL REVIEW E68, 026601 ~2003!
to what happened for method I in the special caseb50
(f250°), but nowthis result remains satisfied forany value
of b, that is, for any orientation of the director at the seco
interface. At this order of approximation, the phase shift
Eq. ~40! depends only on the director orientation at the fi
interface and is completely independent of the director
entation at the other interface.

B. Numerical calculations with the Berreman matrix

In order to verify the theoretical predictions of the pertu
bative approach and to obtain the higher order correctio
we have performed numerical calculations using the Be
man method. The procedure used here is a little more c
plicated than in the previous case, because the amplitude
the different waves~ordinary and extraordinary! have to be
separated from a proper numerical analysis, as shown in
pendix B. Using this numerical procedure, we were able
obtain the amplitude of the generalized extraordinary w
Ee

out . We denote by (Ke
out)e and (Ke

out)o the numerically
calculated amplitudes of the generalized extraordinary w
that correspond to an incident electric field of unitary amp
tude, which is polarized parallel or orthogonal to the direc
at the first surface, respectively. Due to the linearity of
Berreman equations, the amplitude of the generalized
traordinary wave, which corresponds to an incident field
amplitudeEo with a polarization vector which rotates wit
the angular velocityv, is given by

EII
out5Eo@~Ke

out!e cos~vt2f1!

1~Ke
out!o sin~vt2f1!#exp~ ide!, ~41!

where suffix II refers to method II. Then, the intensity of t
extraordinary wave in Eq.~41! is

I e
out5I o

aII1bII

2
1

I o

2
A~aII2bII !

21cII
2cos 2~vt2f12g!,

~42!

where

g5
1

2
arctanS cII

aII2bII
D ~43!

and

aII5~Ke
out!e•~Ke

out!e* , ~44!

bII5~Ke
out!o•~Ke

out!o* , ~45!

and

cII52 Re@~Ke
out!e•~Ko

out!o* #. ~46!

Equation ~42! reduces to Eq.~40! in the Mauguin regime
sincebII and cII vanish. In this case too, the main effect
the bulk director twist is an apparent rotationDfapp5g.

Figure 6 shows the dependence ofDfapp on a2 for f2
50° andf2590°, and withf1545°. Curves correspondin
to 0°,f2,90° are not shown because they lie between
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two curves in the figure. This means that the higher or
correction terms are poorly sensitive to the value of the
rector angle at surface 2.

Figure 7 shows the dependence ofDfapp on a2 for some
values off1 and with f250°. The predictions of the per
turbative procedure are entirely satisfied. In particular,
apparent director rotationDfapp5g does not show linear
contributions ina for all values of the surface director angle
f1 andf2. Furthermore, fora,0.28 (a2,0.078 in figure!
the apparent surface rotation is well represented by Eq.~35!
with coefficientsa2 anda4 that depend on the surface ang
f1 and on the refractive indices of the NLC and of the su
strate, and are poorly sensitive to the value of the direc
angle at surface 2. Furthermore, the leading contributi

FIG. 6. Apparent rotationDfapp of the director at surface 1, in
the case of method II, vs the square power of perturbative param
a51/(Dkj) defined in Eq.~6!. The two curves in the figure from
the bottom to the top represent the results obtained using the
merical calculations~Berreman theory! when the director azimutha
angle at the first interface isf1545°, while f250° and f2

590°, respectively. For clarity, the curves corresponding to
,f2,90° are not represented because they are internal to the
curves shown in the figure. Note thatDfapp is poorly dependent on
f2 and is always a quadratic function of parametera, in agreement
with the predictions of the perturbative theory. The material para
eters are the same as in Fig. 3.

FIG. 7. Dfapp vs the square power of the perturbative para
etera51/(Dkj) defined in Eq.~6! for casef250°. Different sym-
bols correspond to the numerical ‘‘exact’’ values ofDfapp , ob-
tained when the director angles at surface 1 have the valuesf1

50°, f1515°, f1530°, f1545°, f1560°, f1575, and f1

590°. The full lines correspond to the best fits with Eq.~35!. The
material parameters are the same as in Fig. 3.
1-8
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LIGHT TRANSMISSION FROM A TWISTED NEMATIC . . . PHYSICAL REVIEW E 68, 026601 ~2003!
which is quadratic ina, has the same functional dependen
as in Eq.~36!. More details on the higher order contribution
can be found in Appendix C.

V. MEASUREMENTS OF AZIMUTHAL ANCHORING
ENERGY

In this section, the experimental procedure which we p
pose to obtain the azimuthal anchoring energy is discus
Some preliminary experimental results will be given in t
final part of the section. To measure the azimuthal ancho
energy of the NLC, a magnetic fieldH ~or an electric fieldE)
is applied along thex axis ~see Figs. 2 and 5! to generate a
known surface elastic torque which changes the surface
rector azimuthal anglef1. At equilibrium, the surface elasti
torque is balanced by the anchoring restoring torque. To s
plify the theoretical analysis below, we assume that the c
acteristic twist distortion lengthj @Eq. ~7!# is much smaller
than the local thickness of the nematic layer so that the se
infinite approximation can be used@1#. Furthermore, we as
sume that the anchoring energy function is represented
the Rapini-Papoular expression@20#. Both these assumption
are not needed but allow us to simplify the theoretical ana
sis. In these conditions, rotationDf1 of the surface director
with respect to the easy axis satisfies the following bound
condition:

2
sin~fe1Df1!

j
5

W

2K22
sin~2Df1!, ~47!

whereW is the anchoring energy coefficient andfe the easy
azimuthal angle at surface 1~with respect to the magneti
field!. The left-hand side in Eq.~47! represents the surfac
elastic torque while the right-hand side is the restoring
choring torque. For sufficiently small magnetic field
@K22/(Wj)!1#, Df1 is very small and Eq.~47! is reduced
to

Df152
K22

Wj
sinfe . ~48!

Note that forDf1!1, Eq.~48! also holds in the case wher
the surface anchoring energy is not represented by the sim
Rapini-Papoular form. Substituting the explicit expression
j @Eq. ~7!# in Eq. ~48!, we get the equivalent form

Df152
AK22xa

W
H sinfe . ~49!

In this regime, the surface director rotation is proportiona
intensityH of the magnetic field with a proportionality coe
ficient which depends on the anchoring energy coefficientW.
Then, a simple way to obtain the anchoring energy coe
cient consists on measuring the rotation angleDf1 versus
the intensityH of the applied magnetic field@21#.

The full lines in Figs. 8~a–d! show the surface azimutha
rotation 2Df15fe2f1 versus intensityH of the applied
magnetic field for different values of the anchoring ener
coefficientW in the case of method I. The surface rotati
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has been calculated by solving the implicit equation~47!
with j given in Eq. ~7!. The material parameters used
make calculations are those of the nematic liquid crystal 5
at temperatureT525 °C ~see the figure caption in Fig. 3!.
The easy axis of surface 1 isfe589°. The full curves cor-
respond to the exact values of the surface director rotat
2Df1, while the points correspond to the values of the
tation angle which is obtained using the first order appro
mated expressionDf15Db/2. According to Eq.~49!, all the
full curves are well represented by a straight line for sm
enough magnetic fields. For weak anchoring energies@W
<1023 erg/cm2 in Fig. 8~a!#, the discrepancy between th
exact and the approximated (2Db/2) results is completely
negligible~below 1%) in the whole range of magnetic field
For W>331023 erg/cm2, some discrepancy between exa
and approximated results appears in the high magnetic
region. The difference between approximate results~points!
and exact results~full lines! is just equal toDfapp . It has to
be emphasized that a satisfactory agreement between
proximate ~points! and exact results~full lines! is always
observed forH,2 kOe. It is also important to emphasiz
that the differences between the adiabatic results and the
act ones, which are somewhat small in Figs. 8~a–d! will be
extremely higher in a standard geometry where the lin
nonadiabatic contributions do not vanish~see Fig. 3!. Let us
consider, for instance, the case of curveW7 in Fig. 8~c!. In
this case, the maximum discrepancy between the true sur
rotation and the approximated one is about 0.2°, which
about 20% of the true rotation. In this same case, the lin
corrections can reach maximum values of about 8° tha
about 800% of the true surface rotation. The broken lines
Figs. 8~a–d! show the values that are obtained by subtract
from b/2 the apparent rotationDfapp calculated analytically
using Eqs.~A8! and ~A9! with the numerical coefficients
given in Table I. The broken lines are virtually superimpos
to the full ones in Figs. 8~a–d! and small differences are
visible only for somewhat strong anchoring energies@Fig.
8~d!#. Similar results have been obtained for method II.

The more important feature of our geometry is related
the fact that the spurious rotationDfapp is a quadratic func-
tion of the magnetic field (a2}H2), while the true surface
rotation at small magnetic fields is a linear function of t
magnetic field. This suggests a very simple way to meas
the anchoring energy coefficientW which consists in restrict-
ing the analysis of the data to the region of magnetic fie
where the experimentally measured phase shift shows a
ear dependence on the intensity of the magnetic field@re-
gions belowH52 kOe in Figs. 8~a–d!#. The experimental
observation of a linear behavior ensures automatically
the nonlinear spurious nonadiabatic contributionDfapp is
completely negligible~points and full lines are virtually co-
incident in Fig. 8 forH,2 kOe). Therefore, equalityDb/2
5Df1 can be used to obtain the true surface director ro
tion. In these conditions, the anchoring energy coeffici
can be obtained in a very simple way from the measurem
of the proportionality coefficient betweenDf15Db/2 andH
@see Eq.~49!#. Some practical problem with this very simp
and direct method can only occur in the special case of v
strong anchoring energies@W'1 erg/cm2 in Fig. 8~d!#. In
1-9
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FIG. 8. Rotation angleDf1 of the director at surface 1 as a function of intensityH of the magnetic field in the case of method I. On t
vertical axis of Figs. 8~a–d! is shown the opposite ofDf1, which corresponds to differencefe2f1 between the azimuthal easy angle a
the actual director azimuthal angle. Points represent the values ofDf1 obtained using the approximate relationDf15Db/2. The full curves
correspond to the true surface director rotationDf1, while the broken curves represent the surface rotation which is obtained using re
Df15Db/22Dfapp , whereDfapp is the value of the apparent surface rotation calculated using the analytical expressions~A8! and~A9!
given in Appendix A with the numerical coefficients in Table I. Apart from Fig. 8~d! ~very strong anchoring energies!, the broken and full
curves appear to be superimposed. Different figures@~a!, ~b!, ~c!, and~d!# and different curves refer to the different values of the azimut
anchoring energy coefficient:W151024 erg/cm2, W253.1631024 erg/cm2, W351023 erg/cm2, W453.1631023 erg/cm2, W5

51022 erg/cm2, W653.1631022 erg/cm2, W751021 erg/cm2, W853.1631021 erg/cm2 andW951 erg/cm2. All the numerical data have
been obtained for the surface azimuthal angle at surface 1,fe589° and forf250°. The other parameters characterizing the NLC and
substrate are the same as in Fig. 3.
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fact, in a real experiment, the accuracy of the measurem
of the azimuthal anchoring energy coefficient depends a
on the accuracy on the measurement of phase coefficienb.
Many accurate experimental techniques have been devel
in the past to measure the phase coefficient of an oscilla
signal. A maximum accuracy of the order of 0.01° can
reached with these methods. If the anchoring is very str
@W5W951 erg/cm2 in Fig. 8~d!#, the surface director rota
tion in the linear portion of theDf1(H) curve corresponds
to very small values ofDf1 (Df1,0.02°) that are compa
rable to the experimental uncertainty on the measuremen
the optical phase shiftDb. In such a special case, it seems
be convenient to extend the experimental measuremen
the high magnetic field region also, where the surface dir
tor rotations are large enough but the nonlinear contribu
Dfapp is no more completely negligible. Also, in this case
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is possible to avoid errors due to the nonadiabatic contri
tions using the slightly more complicated procedure outlin
below. In fact, in this region of still small surface rotation
@see Fig. 8~d!#, Df1 is accurately represented by a line
function ofH @Eq. ~49!#, while the spurious contributions ar
quadratic inH. The main contribution to the spurious rota
tion Dfapp is given in Eq.~36!, which can be rewritten in
the compact form

Dfapp5b2H2 sin~2f1!, ~50!

whereb2 is a constant coefficient. Letfe be the azimuthal
easy angle at surface 1. For small surface director rotat
(uDf1u!1 rad), Eq.~50! becomes

Dfapp'b2H2 sin~2fe!12b2H2 cos~2fe!Df1 . ~51!
1-10
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LIGHT TRANSMISSION FROM A TWISTED NEMATIC . . . PHYSICAL REVIEW E 68, 026601 ~2003!
SubstitutingDf1 given in Eq.~49! into Eq. ~51!, we get

Dfapp'B2H21C2H3, ~52!

where B2 and C2 are constant coefficients. Then, th
magnetic-field dependence of the experimental phase
2Db/252Df12Dfapp is

2Db/2'A2H2B2H22C2H3, ~53!

where only coefficientA2 is related to the true surface rota
tion. Therefore, the true surface rotation and the ancho
energy coefficient can be obtained from a cubic polynom
fit of the experimental values of2Db/2 versus the magneti
field intensity H. Coefficient A25AK22xa/W of the linear
term provides a measurement of the anchoring energy c
ficient. Note that also in this case, no knowlege of the ma
rial and geometric parameters of the NLC is needed to ob
coefficientA2.

An example of this procedure is shown in Fig. 9. Points
Fig. 9 correspond to the numerical values ofDb/2 obtained
for an anchoring energyW51 erg/cm2. The full line repre-
sents the best fit with Eq.~53!. The anchoring energy coef
ficient is obtained from the best fit coefficientA2 using the

FIG. 9. Points denote the optical phase shift2Db/2 vs the
magnetic field intensityH for an anchoring energy coefficientW
51 erg/cm2 ~strong anchoring!. The full line corresponds to the
best fit with the cubic function in Eq.~53!.

TABLE I. a21( i ), a41( i ), a42( i ), and a43( i ) expressed in de-
grees corresponding to the adimensional coefficients defined in
~A9! in the case of method I.

a21( i ) a41( i ) a42( i ) a43( i )

i 51 257.079 45.745 25.406 157.38
i 52 25.1174 42.335 276.340 297.14
i 53 12.148 2143.56 262.82 21008.5
i 54 6.3125 253.913 98.030 2375.15
i 55 161.93 21423.2 2647.5 210152
i 56 35.904 2623.86 1194.8 24351.5
i 57 26.704 2424.33 796.62 22889.6
i 58 36.471 2178.45 307.46 21285.8
i 59 269.105 539.91 21005.5 3907.7
i 510 219.767 243.27 2459.82 1711.8
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simple relationW5AK22xa/A2. The anchoring energy coef
ficient, which is obtained from the best fit, isW
51.0025 erg/cm2 in a very good agreement with the actu
value W51 erg/cm2. In conclusion, very strong anchorin
energies can also be accurately measured using the tran
sion light methods proposed in this paper. It is important
emphasize here that no knowledge of the material parame
of the nematic LC and of the substrate is needed to ob
coefficientA2. The analysis above was focused on metho
but the same kind of results are also obtained in the cas
method II.

To verify the theoretical results obtained in this paper,
have performed a preliminary experiment~see Fig. 10! using
method II. The 5CB nematic sample was introduced by c
illarity ~in the isotropic phase! within a cell made of two
glass plates. Then, the sample was cooled toward the an
tropic phase. The glass plates were separated by two m
spacers having thicknessd1580 mm and d25200 mm,
placed at a distance of 5 mm to produce a wedge angleuW
51.4°. The surfaces of the plates in contact with the N
were treated by oblique evaporation of SiO at 60° to indu
a planar homogeneous alignment along the same direct
on the two plates. A laser beam impinged at the center of
cell, where the local thickness wasd5140 mm.

Here, we are also interested in showing that the nonlin
fitting procedure proposed above~Fig. 9! works well in the
case where the spurious director rotation is not negligib
For this reason, we have chosen experimental conditi
where the nonadiabatic contributions are appreciable. In
ticular, we have set the surface easy anglefe578° which is
far from the optimal conditionfe590° where nonlinear
contributions vanish. Furthermore, we used temperaturT
534.8 °C, which is close to the clearing temperatureTc
535.3 °C, in order to have a small value ofDn and thus, a
great value ofa. The maximum valuea50.31 was reached
at the maximum magnetic fieldH56.14 kOe. Black points

FIG. 10. Preliminary experimental results obtained us
method II with the nematic liquid crystal 5CB at temperatureT
534.8 °C. The substrate is a thin obliquely evaporated SiO la
Full points correspond to the experimental values of2Db/2 ob-
tained with method II. Open points are the surface rotation an
2Df1, as measured using the reflectometric method given in R
@16#. The broken line is the linear fit made on the first three f
points. The full line represents the fit with Eq.~53!.
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in Fig. 10 show the experimental phase shift2Db/2 versus
the intensity of the applied magnetic field, while open poi
correspond to the values of the surface director rotati
2Df1 which is obtained with a reflectometric method d
veloped by our group in the past@16#. This latter reflecto-
metric method is virtually insensitive to the effects of t
bulk director twist@14# but it is more sensitive to externa
noise sources as those caused by the light diffusion from
NLC. Within the experimental accuracy of the present m
surement (.0.1°), the two measurements~transmitted light
and reflected light! lead to the same linear behavior in th
low magnetic field region~full and open points are virtually
superimposed in Fig. 10 forH,1.5 kOe). The linear fit on
the first three full points in Fig. 10 leads to the broken li
which corresponds to the anchoring energy coefficientW
5(5.560.3)1023 erg/cm2, while the linear fit of the reflec-
tometric results ~open points! led to W5(5.7
60.3)1023 erg/cm2. The values ofW are calculated using
parametersK2251.9231027 dyn @22# and xa50.7131027

@23#. The full line in Fig. 10 represents the best fit with E
~53!. From coefficientA2 of this nonlinear fit, we recove
value W5AK22xa/A25(5.560.3)1023 erg/cm2 which was
obtained from the measurements restricted to the linear
gion. Therefore, the validity of the nonlinear fitting proc
dure is fully confirmed by the experiment. Of course, in t
case of Fig. 10, the surface director rotation in the low m
netic fields region is sufficiently high and the use of t
nonlinear fitting procedure is not useful. According to t
previous theoretical analysis, the nonlinear behavior, wh
is present in the transmission light, results~full points! can
be greatly reduced by setting the easy angle close to 9
This behavior is effectively confirmed in our experiment.

Before terminating this section we want to emphasize t
most of expressions given in this paper have been obta
in the case of a semi-infinite nematic sample. However,
proposed experimental methods can also be applied to
cases where the characteristic lengthj of the director distor-
tion is not much smaller than the local thicknessd of the
nematic sample. In such a case, the higher order perturb
contributions are usually negligible and the surface direc
angle is accurately obtained using equalityf15b/2. Now, a
little more complicated expressions have to be used to
culate the anchoring energy from the measured rotation
the director at the surface.

VI. CONCLUSIONS

The transmission of a monochromatic beam by a twis
nematic liquid crystal subjected to a magnetic field has b
investigated in detail, using both a perturbative approach
a numerical analysis. It has been shown that there exist
special geometric arrangements~method I and method II!
that allow one to obtain an accurate measurement of the
rector orientation at the surface, from the measuremen
phase coefficientb of the transmitted light intensity. In thes
special geometries, the surface azimuthal anglef1 is related
to b by the simple relation

f15b/2, ~54!
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up to the second order in the perturbative parametea
51/(Dkj). Furthermore, the small residual higher ord
contributions vanish if the director at surface 1 is orient
orthogonal to the magnetic field. Then, the influence of th
spurious contributions can be greatly reduced by setting
easy axis at surface 1 almost orthogonal to the magn
field. The experimental procedure is very simple and dir
and needs only a standard measurement of phase shift o
oscillating signal. This procedure makes it possible to i
prove greatly the accuracy attainable with the classical tra
mitted light methods. In particular, it is also possible to me
sure strong anchoring energies (W'1 erg/cm2) with a
satisfactory accuracy. The great simplicity and accuracy
these methods make them a valid alternative to the m
complex reflectometric methods too.

The two methods proposed here to measure the ancho
energy are virtually equivalent, but method I is very sensit
to the orientation of the easy axis on the second interfa
which must bef250°. A small misalignment of the directo
on the second interface introduces spurious contributi
~see Fig. 3! that are indistinguishable from those due to t
anchoring mechanism, because they exhibit the same li
dependence on the applied magnetic field. Furthermore,
method uses an analyzer with the transmission axis wh
must be set parallel to the director at surface 2. Therefor
great care must be devoted to the alignment procedures w
method I is used. On the contrary, method II is virtua
insensitive to the orientation of the director field on the s
ond interface and does not requires the use of an analyze
particular, method II can also be applied successfully t
symmetric cell having the same easy axes on both the in
faces~the preliminary experimental results given above we
just obtained in this geometric condition!. This latter tech-
nique requires only that a nematic wedge is built with
wedge angleuW.1°, sufficient to separate appreciably th
refracted ordinary and extraordinary beams. For all these
sons we think that method II should be preferred.
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APPENDIX A: HIGHER ORDER CONTRIBUTIONS
IN METHOD I

In this appendix we will restrict our attention to the sp
cial case of a semi-infinite nematic layer withf250° and
we will disregard the small residual dependence of the
parent surface director rotationDfapp on d. In such a case
according to the numerical results given in Sec. III B, t
apparent rotationDfapp is well represented by the expre
sion

DFapp5a2a21a4a4, ~A1!

wherea2 anda4 are the coefficients that depend only on t
azimuthal anglef1 at surface 1 and on the refractive indic
of the NLC (ne andno) and of the substrate (n). According
to the perturbative analysis given in Sec. III A,Dfapp is
1-12
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expected to depend essentially on the values of the de
tives of the director azimuthal angle at the first interface a
on 1/(Dk)5l/(2pDn) @see Eq.~10!#. For simplicity, we
will denote here these surface derivatives with symbolsf18 ,
f19 , f1- , f1

IV , and so on. For a semi-infinite NLC (d@j),
the first four surface derivatives are:

f1852
sinf1

j
, ~A2!

f195
1

j2

sin 2f1

2
, ~A3!

f1-52
1

j3
cos 2f1 sinf1 , ~A4!

f1
IV5

1

j4 F22sin 2f1 sin2 f11
sin 4f1

4 G . ~A5!

According to the analysis given in Sec. III A , the appare
director rotationDfapp is only due to the higher order pe
turbative contributions ina. The quadratic correctiona2a2

in Eq. ~A1! is expected to be derived from the sum of co
tributions that are proportional tof82 and tof9. However,
we find that the contribution proportional tof82 is com-
pletely negligible. Then, coefficienta2 can be written as

a25a21

sin 2f1

2
, ~A6!

where a21 is an adimensional numerical coefficient whic
depends only on the refractive indices of the NLC and of
substrate.

Points in Fig. 11 represent the numerical values of co
ficient a2 versusf1. The full line in Fig. 11 is the best fit o
the numerical data with the function in Eq.~A6!. Then, the
second order corrections to the Mauguin regime are pro
tional to the second derivative of the director azimuthal an
and vanish forf150° andf1590°. The fourth order cor-
rective contributionsa4a4 in Eq. ~A1! are expected to de

FIG. 11. Points represent the values of the adimensional co
cient a2 of Eq. ~A1! versus thef1-angle forf250° ~method I!.
Coefficienta2 has been obtained from the best fits in Fig. 4. T
full line represents the best fit with Eq.~A6!. The material and
geometric parameters of the NLC layer are the same as in Fig
02660
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4. However,
our numerical analysis shows that the first three contri
tions are sufficient to describe accurately the observed
havior. Then,a4 can be written in the general form as

a45a41F22 sin 2f1 sin2 f11
sin 4f1

4 G1a42

sin2 2f1

4

1a43

sin 2f1

2
sin2f1 , ~A7!

wherea41, a42, and a43 are adimensional coefficients tha
depend only on the refractive indices of the NLC and of t
substrate. Figure 12 shows the dependence ofa4 on f1 and
the corresponding best fit with the function in Eq.~A7!. In
this case too, coefficienta4 reduces to zero atf150° and
f1590°. In conclusion, a satisfactory analytical approxim
tion to DFapp is given by:

Dfapp5a21

1

~Dkj!2

sin~2f1!

2

1
1

~Dkj!4 H a41Fsin~4f1!

4
22 sin~2f1!sin2f1G

1a42Fsin~2f1!

4 G2

1a43

sin 2f1

2
sin2f1J . ~A8!

Coefficientsa21, . . . ,a43 in Eq. ~A8! depend on the refrac
tive indices of the NLC and of the substrate. To obtain
suitable analytical approximate expression for this dep
dence, we have repeated many~625! calculations of coeffi-
cientsa2 anda4 in Eq. ~A1!, changing the ordinary refrac
tive indexno , the optical anisotropyDn5ne2no , refractive
index n of the substrate, and the surface anglef1. Coeffi-
cientsa2 anda4 were obtained from the best fits ofDfapp
with the function in Eq.~A1! for a,0.28 (a,0.28 corre-
sponds toH,10 kOe for the NLC 5CB at room tempera
ture!. Oncea2 and a4 were known,a21, a41, a42, anda43
were obtained from the best fits ofa2 anda4 with the func-
tions in Eqs.~A6! and ~A7!. The investigated intervals o

fi-

.

FIG. 12. Points represent the values of coefficienta4 of Eq.
~A1! vs the f1 angle for f250° ~method I!. Coefficienta4 has
been obtained from the best fits in Fig. 4. The full line represe
the best fit with Eq.~A7!. The material and geometric parameters
the nematic liquid crystal layer are the same as in Fig. 3.
1-13
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refractive indices were 1.4,no,1.6, 0.07,Dn,0.28, and
1.4,n,1.7, which represent the typical values for stand
liquid crystals and substrates. Letno

m51.5, Dnm50.175, and
nm51.5 be the average values ofno , Dn, and n in each
interval and dno5no2no

m , dDn5Dn2Dnm, and dn5n
2nm. We find that a satisfactory analytical approximat
form for functionsai j (no ,Dn,n) in this restricted region of
material parameters is given by the following quadratic
pression:

ai j 5ai j ~1!1ai j ~2!dno1ai j ~3!dDn1ai j ~4!dn

1ai j ~5!dnodDn1ai j ~6!dnodn1ai j ~7!dDndn

1ai j ~8!dno
21ai j ~9!dDn21ai j ~10!dn2. ~A9!

Coefficientsai j (k), obtained by the best fits of the numeric
values ofa21, a41, a42, anda43 with Eq. ~A9!, are reported
in Table I.

Then, a suitable approximated value ofDfapp can be
obtained by using the analytical expression in Eq.~A8! with
a21, a41, a42, anda43 given by Eq.~A9! and withai j (k) in
Table I. We have verified that the values ofDfapp , which
are obtained using this procedure, coincide within 0.1° w
the ‘‘exact’’ ones in the whole range of parameters (1
,no,1.6, 0.07,Dn,0.28, 1.4,n,1.7, a,0.28, and 0
,f1,90). This uncertainty (0.1°) is greatly reduced f
low magnetic fields (a!0.28). Note that the main contribu
tion to Dfapp comes from the first quadratic term (a21).
Neglecting the fourth order terms (a41, a42, anda43) pro-
duces a maximum error of 0.04° at the maximum magn
field (a'0.28) in the whole range of material paramete
investigated here.

APPENDIX B: NUMERICAL METHOD TO OBTAIN THE
AMPLITUDE OF THE EXTRAORDINARY WAVE

In this appendix we describe briefly the numerical meth
used to extract the amplitude of the generalized extrao
nary wave from the numerical results obtained using the B
reman approach.

We consider a plane nematic layer of thicknessd. If the
reflections at the interfaces are disregarded, the amplitud
the transmitted beam is expected to be given by the sum
the two waves that propagate with the ordinary and extra
dinary phase velocities. In this case, the amplitude of
transmitted beam is reduced to the simple form in Eq.~18!.
In the more general case, where multiple reflections can
be disregarded, the output amplitude will be the superp
tion of a lot of different contributions. Here we consider on
two adjunctive contributions coming from the extraordina
and ordinary beams, which are reflected two times from
interfaces of the nematic sample. With this assumption,
amplitude of the transmitted electric field is

Eout5Ee
out exp~ ide!1Eo

out exp~ ido!1Ere
out exp~ i3de!

1Ero
out exp~ i3do!. ~B1!
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out andEo

out are the amplitudes of the beams that are nev
reflected by the interfaces, whileEre

out and Ero
out are the am-

plitudes of the beams that are reflected two times at the
terfaces of the NLC~the nematic wedge spatially separate
all these different terms!. The numerical Berreman procedur
allows us to directly calculate only the total output amplitud
Eout. In order to obtain amplitudeEe

out of the extraordinary
beam which is not reflected from the interfaces, we calcula
amplitudesE1

out , E2
out , E3

out , andE4
out , which correspond to

four different valuesd1 , d2 , d3, andd4 of thicknessd. Then,
by exploiting Eq. ~B1! we obtain a linear system of four
equations in the four unknownsEe

out , Eo
out , Ere

out , andEro
out ,

which is numerically solved. In Figs. 13~a,b!, the thickness
dependence of the real and imaginary parts of thex compo-
nent ofEout are shown. Points in Figs. 13~a,b! represent the
numerical values of Re(Ex

out) and Im(Ex
out), while the full

lines correspond to the result obtained by substituting in E
~B1! the numerical values ofEe

out , Eo
out , Ere

out , and Ero
out

obtained with the procedure discussed above. The very g

FIG. 13. Points denote the real@Fig. 13~a!# and imaginary@Fig.
13~b!# parts of thex component of the complex output amplitud
Eout of the electromagnetic wave versus thicknessd of the nematic
layer for a magnetic field of amplitudeH510 kOe. The full curves
are obtained by substituting in Eq.~B1! the numerical values of
Ee

out , Eo
out , Ere

out , andEro
out obtained with the procedure discusse

in this appendix. The surface director angles aref1545° andf2

50°. The material parameters are the same as in Fig. 3. The m
mum relative difference between the two calculated values
0.02%.

TABLE II. a21( i ), a41( i ), a42( i ), and a43( i ) expressed in de-
grees corresponding to the adimensional coefficients defined in
~A9! in the case of method II.

a21( i ) a41( i ) a42( i ) a43( i )

i 51 257.479 49.480 18.346 184.30
i 52 25.9545 36.895 262.914 256.52
i 53 29.8385 79.428 2156.43 565.55
i 54 0.92966 0.065852 22.4163 5.3930
i 55 15.806 2350.81 697.82 22497.7
i 56 243.920 449.87 2838.72 3173.4
i 57 264.450 666.72 21252.6 4748.3
i 58 262.567 338.32 2580.00 2440.6
i 59 55.428 2511.85 976.55 23673.8
i 510 9.9531 286.703 161.90 2619.00
1-14
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agreement between the two sets of data confirms that
~B1! represents satisfactorily the actual optical behavior.

APPENDIX C: HIGHER ORDER CONTRIBUTIONS
IN METHOD II

In this appendix we report detailed results concerning
dependence of the higher order corrections to the adiab
theorem in the case of method II. To calculate the hig
order correction terms, we restrict our attention to casef2
50°. In such a case, the director orientation at interfac
does not change when the magnetic field is switched
However, it has to be noted that the higher order correcti
,

T.

iq.

l.

.

l.

s.
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are poorly dependent on anglef2 in the case of method II.
Using the same procedure described in Appendix A , we
obtain a satisfactory analytical approximated form of t
kind in Eq.~A8! for the apparent rotationDfapp . The values
of coefficientsa21, a41, a42, anda43 are obtained using Eq
~A9! in the same ranges of values ofno , Dn, n, anda, as in
Appendix A. The numerical values of coefficientsai j (k),
obtained with this procedure are given in Table II.

The maximum uncertainty on the numerical values
Dfapp , which are obtained using the numerical coefficien
in Table II, is lower than 0.15° in the whole range of inve
tigated material parameters and reduces to less than 0.01
magnetic fields lower than 3 kOe.
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