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Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control
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We examine the quantum structure of continuum entanglement and in the context of short-pulse
down-conversion we answer the open question of how many of the uncountably many frequency modes
contribute effectively to the entanglement. We derive a set of two-photon mode functions that provide
an exact, discrete, and effectively finite basis for characterizing pairwise entanglement. Our analysis
provides a basis for entropy control in two-photon pulses generated from down-conversion.

PACS numbers: 42.50.Ar, 03.67.–a
Nonclassical properties of quantum states and their ap-
plications in communication have been a central topic in
the field of quantum information [1]. It is known that quan-
tum entanglement is the key to performing tasks that can-
not be realized classically [2]. For this reason it is crucial
to identify the methods of preparing and exploiting en-
tangled systems, and particularly to develop quantitative
methods for characterizing them. Among a few reliable
sources of quantum entanglement, polarization entangled
two-photon states generated from type-II phase-matched
parametric down-conversion [3] have been used to demon-
strate quantum teleportation [4,5], quantum dense coding
[6], and entanglement swapping [7,8].

Although such two-photon down-conversion states have
been widely used, their quantum features have not been
fully exploited. Often these two-photon states are said to
describe two particles, each with two internal states cor-
responding to the two polarizations. However, the influ-
ence of the vast Hilbert space associated with continuous
field modes is just beginning to be investigated [9–13]. In-
deed, a pair of entangled photons represents entanglement
in a much broader class of systems, namely, continuously
entangled quantum fields. Recently, Branning et al. have
demonstrated a way to engineer quantum correlations by
controlling spectral (frequency) amplitudes of two-photon
pulses [14]. Their experiment highlights possibilities for
applications in continuous-frequencies space. Note that
these continuous degrees of freedom are accessible even
in single photon or biphoton experiments.

Although the frequency continuum has infinitely many
degrees of freedom, entanglement between two photons
does not necessarily involve all of them. An open question
is how to identify which degrees of freedom are active.
The question is important because it is only when we un-
derstand how two photons are entangled that we may fully
exploit them as quantum resources.

Here we answer this question by introducing a specific
discretization of the continuum. This discretization is ex-
act (not an approximation), unique, and useful. As an ap-
plication to a realistic situation, we examine quantitatively
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the continuum entanglement of two-photon states genera-
ted in ultrashort pulse-pumped type-II down-conversion
[15]. With specified experimental parameters, we deter-
mine the underlying discrete mode structures and the en-
tropy of entanglement. Our approach is also applied to
quantify outcomes of entropy control via phase-adjusted
symmetrizations of two-photon amplitudes.

To begin, let us show, in a general form, a two-photon
state vector:

jC� �
Z

A�v1, v2�ây
H�v1�ây

V �v2� j0�H j0�V dv1dv2 .

(1)

Here â
y
H�v1� and â

y
V �v2� are creation operators with their

subscripts indicating the (horizontal and vertical) polariza-
tions. The function A�v1, v2� describes a two-photon
amplitude for an H-polarized photon with frequency v1
and a V -polarized photon with frequency v2. In this pa-
per we assume that both fields propagate in the same di-
rection, so the direction labels are suppressed. This can
be realized in down-conversion experiments in a collinear
phase-matched configuration.

The fields associated with the two polarizations are en-
tangled if A�v1, v2� cannot be factorized into a product of
functions of v1 and v2. We may test the factorizability of
A�v1, v2� by performing a Schmidt decomposition, i.e.,
by finding the eigenbasis of A such that it can be written
as

A�v1, v2� �
X
n

p
ln cn�v1�fn�v2� , (2)

where ln, cn, and fn are solutions of the integral eigen-
value equations,

Z
K1�v, v0�cn�v0� dv0 � lncn�v� , (3)

Z
K2�v, v0�fn�v0� dv0 � lnfn�v� , (4)
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with K1�v, v0� �
R
A�v, v2�A��v0, v2� dv2 and

K2�v, v0� �
R
A�v1, v�A��v1, v0� dv1. Note that

the kernels K1 and K2 can be interpreted as (one-photon)
spectral correlations, and cn and fn are their correspond-
ing eigenfunctions. Obviously, A�v1, v2� is factorizable
if there is only one term in the right side of Eq. (2).
Therefore the two-photon state is entangled if the number
of nonzero eigenvalues is more than one. We note that
the use of the Schmidt decomposition for continuous vari-
ables has been discussed by several authors [10,16]. An
important fact of the decomposition is that the eigenvalues
ln are discrete, except for those at l � 0. For a summary
of mathematical details, see Ref. [16].

With the help of the decomposition (2), we define effec-
tive creation operators by

b̂y
n �

Z
cn�v1�ây

H�v1� dv1 , (5)

ĉy
n �

Z
fn�v2�ay

V �v2� dv2 . (6)

From the orthogonality property of cn and fn, it is easy
to check that b̂n and ĉn satisfy the usual commutation
relations for bosons: �b̂n, b̂y

m� � �ĉn, ĉy
m� � dnm. In terms

of b̂’s and ĉ’s, the two-photon state takes the form

jC� �
X
n

p
ln b̂y

n ĉy
n j0�H j0�V (7)

in which the continuous integral (1) has been replaced by
an infinite discrete summation. We emphasize that the
discreteness is a consequence of the Schmidt basis and not
an approximate box quantization.

The several advantages of using these unique
“Schmidt-mode” operators now become clear. According
to the description in Eq. (7), the two photons of different
polarizations appear only in pairs in the Schmidt modes. If
a photon is found in a bn mode, then it is certain that the
second photon must be in the cn mode. In other words the
decomposition identifies precisely in what modes photons
go as pairs. The value of ln determines the occupation
probability of the corresponding mode pair.

As we shall see below, although there are infinitely
many modes in the fields, it may happen that only a few
ln’s are significant. Therefore the representation (7) also
tells us the effective dimension of the Hilbert space in
which the state lives. For example, if a state has only l1
and l2 nonzero, then the state can be written as jC� �
�
p

l1 j1H , 0H � j1V , 0V � 1
p

l2 j0H , 1H � j0V , 1V �� ≠ jvac0�,
where jvac0� denotes the vacuum state of modes other than
the two. Therefore the representation (7) distinguishes
which modes are in the vacuum state and then factors
them out. As a result, we can describe the state in a
lower-dimensional space. We remark that our present
work is for systems with pure states. It remains an
important issue as to how a Schmidt-type decomposition
may be useful in analyzing the structure of mixed states,
even for discrete systems [17].

The meaning of the bn and cn modes can be made more
obvious if we define a field operator in the space-time
domain �c � 1�: Ê

�1�
b �x, t� �

R
âb�v�e2iv�t2x� dv

with b � H, V . We define “pulse modes” by Fourier
transforms: un�t� �

R
dv cn�v�e2ivt , yn�t� �R

dv fn�v�e2ivt. By using the completeness of cn

and fn, the field operators take a simple form

Ê
�1�
H �x, t� �

X
n

b̂nun�t 2 x� , (8)

Ê
�1�
V �x, t� �

X
n

ĉnyn�t 2 x� . (9)

Hence, when viewed in the time domain a photon in a bn

or a cn mode refers to a single photon “traveling pulse”
described by un�t 2 x� or yn�t 2 x�. We note that the
expansion of the field operator in terms of pulse modes
shares a similar idea with a temporal-mode analysis of light
pulses generated in stimulated Raman scattering [18] or in
two-photon spontaneous emission [10].

Now we show that the general method described can
be applied to a case of practical interest: a two-photon
state generated by down-conversion of an ultrashort pump
pulse with type-II phase matching. By taking the down-
conversion phase-matching condition into account, the
two-photon state amplitude function is modeled by [19]

A�vo , ve� � a�vo , ve�F�vo , ve� , (10)

where a�vo , ve� is the spectral envelope and F�vo , ve�
is the phase-matching function, neither of them factorable:
a�vo , ve� � exp�2�vo 1 ve 2 2v̄�2�s2�, F�vo , ve� �
sinc�L��vo 2 v̄� �k0

o 2 k0
p� 1 �ve 2 v̄� �k0

e 2 k0
p���2	,

where s is the pump spectral bandwidth. Note that we
have used the subscripts o and e to relabel the polariza-
tions (ordinary and extraordinary fields). Here k0

o and
k0

e are the inverse of group velocities at the frequency
v̄, and k0

p is the inverse group velocity at the pump
frequency 2v̄. In typical experiments the parameters have
these values: s � 35 ps21, �k0

p 2 k0
e�L � 0.213 ps, and

�k0
p 2 k0

o�L � 0.061 ps, corresponding to the crystal
length L � 0.8 mm.

We have solved the integral eigenvalue equations (3) and
(4) numerically by discretizing the kernels Kj . Convergent
results are obtained if the infinite matrix is truncated at a
sufficiently large size (800 3 800 in our case). With the
parameters mentioned above, frequencies ranging 630s

around the mean frequency v̄ are needed. In Fig. 1 we
show the first ten values of ln. A contour plot of the two-
photon amplitude function A is given in one of the insets.
Our calculations show that the first six eigenvalues account
for 96% of the state. This indicates that the state vector
is effectively in a remarkably low-dimensional space. We
have also calculated the quantity
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FIG. 1. The first ten eigenvalues ln. The left inset shows the
contour plot of A in which Dvj � �vj 2 v̄�, � j � o, e�, in
units of s. The right inset shows S as a function of n. See text
for the parameter values used. The connecting line is to guide
the eye and has no other significance.

S �
nX

k�1

lk log2lk , (11)

which converges to the entropy of entanglement in the
n ! ` limit. An inset of Fig. 1 shows how S converges as
n increases. The first six modes contribute S 
 1.4 which
is already almost 80% of the large n limit S 
 1.8.

In Fig. 2 we show the shape of the mode functions cn

and fn for n � 1, 2, 3, and 4. Because of the asymmetry
of the ordinary and extraordinary fields, cn and fn are not
the same. The mode functions resemble the wave functions
of a harmonic oscillator, which have the property that they
are (essentially) their own Fourier transforms. Thus, our
pulse modes in the time domain also have shapes similar
to the spectral shapes in Fig. 2.

We point out that by decreasing the spectral bandwidth
s of the pump pulse, the entanglement can be increased.
For example, in the case s � 17.5 ps21, half of the band-
width used above, we find that the entropy of entangle-
ment can be increased to S 
 2.1, compared with the value
S 
 1.8 shown in Fig. 1. Such an enhancement can be
understood because a narrower bandwidth would imply a
stronger correlation between the photons, as suggested in
the function a�vo , ve�.

However, we have discovered that more powerful con-
trol of S is obtained in an easily achieved experimental
configuration mentioned by Branning et al. [14] in which
the knowledge of the generation time of a photon pair is not
degraded, as it is when the pump bandwidth is narrowed.
We refer to phase-adjusted symmetry [14], with amplitudes
Au�vo , ve� � A�vo , ve� 1 eiuA�ve, vo�. For sim-
plicity we consider here only the symmetric and antisym-
metric cases A6 corresponding to u � 0 and p. In the
5306
FIG. 2. The shape of the first two pairs of modes in frequency
space for the state in Fig. 1.

symmetric case we find that the entropy of entanglement
is decreased to S 
 1.4, smaller than the unsymmetrized
case. This is due to interference effects which enhance oc-
cupation in the lowest mode, increasing the lowest mode
probability to l1 � 0.74.

Interference is more drastic for the antisymmetric am-
plitude A2. In this case the eigenvalues ln form degen-
erate pairs (see Fig. 3). The value of the first eigenvalue
l1 � 0.27 is much smaller than the original case. Because
a larger number of modes are involved, the entropy of en-
tanglement is larger. We see that S 
 2.9, a value twice
that in the symmetrized case. The inset of Fig. 3 shows a
contour plot of A2. It is quite remarkable that interfer-
ence causes more complicated features than those in Fig. 1.
The lack of a single central peak indicates that the state is
more nonfactorizable.

Note that, if the original polarizations are associated
with distinct frequencies, i.e., if the original amplitude
function A�v1, v2� is localized far away from the di-
agonal axis v1 � v2, one has S 
 0. In this case (not
realized in the experiment of [14]) the mere exercise of
phase-adjusted symmetrization discussed above leads to
a state with entanglement of S 
 1. For example, a
symmetrization of a bi-Gaussian A�v1, v2� localized far
away from the diagonal would produce two symmetric bi-
Gaussians with respect to the diagonal axis, independent of
u. In this case, since the two Gaussians are far apart, their
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FIG. 3. Eigenvalues ln for the antisymmetrized two-photon
amplitude. The left inset shows the contour plot of A2. The
right inset shows S as a function of n. Same parameter values
used as those in Fig. 1, and again the connecting line is only to
guide the eye.

interference due to overlap can be neglected. Therefore
symmetrization and antisymmetrization yield the same en-
tanglement. However, if A�v1, v2� is localized on the
diagonal axis, entanglement will strongly depend on inter-
ference as described above, and values well in excess of
S � 1 can be achieved.

In summary, we first note that there are considerable
advantages to exploiting continuous variables in quan-
tum systems [20,21], and a recent demonstration includes
the realization of quantum teleportation based on continu-
ous field quadratures in squeezed light [22]. Here we
have presented what we believe to be the first complete
realization of entanglement involving the field-frequency
continuum of the quantum electromagnetic field in an es-
sential way. Infinitely many degrees of freedom are, in
principle, accessible for information processing even when
there are only two photons in the field. This is in contrast
to the situation discussed by Braunstein and Kimble [20]
and also fundamentally different from that of Zeilinger and
co-workers’ experiments [4,6].

We have shown that the Schmidt-mode basis gives a
unique intrinsically pairwise entanglement, leading to
an efficient representation for the system entropy. Our
explicit calculations were made in the familiar context of
type-II down-conversion, using experimentally realistic
parameters. Our results show quantitatively for the first
time the effectiveness of entropy control by experimental
management of the phase symmetry of spectral cor-
relations. Experimental determination of two-photon
amplitudes is an important next step, and understanding
how to measure Schmidt modes is the first task in this
regard. We speculate that diffractive analogs of Stern-
Gerlach spin filters will render the Schmidt modes directly
accessible in the laboratory [23].
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