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Numerical integration of Einstein’s field equations
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Many numerical codes now under development to solve Einstein’s equations of general relativity in (3
+1)-dimensional spacetimes employ the standard ADM form of the field equations. This form involves
evolution equations for the raw spatial metric and extrinsic curvature tensors. Following Shibata and Naka-
mura, we modify these equations by factoring out the conformal factor and introducing three “connection
functions.” The evolution equations can then be reduced to wave equations for the conformal metric compo-
nents, which are coupled to evolution equations for the connection functions. We evolve small amplitude
gravitational waves and make a direct comparison of the numerical performance of the modified equations with
the standard ADM equations. We find that the modified form exhibits much improved stability.
[S0556-282(98)08124-1

PACS numbes): 04.25.Dm, 02.60.Jh, 04.30.Nk

[. INTRODUCTION introduce a large number of new, first order variables, which
take up large amounts of memory in numerical applications
The physics of compact objects is entering a particularlyand require many additional equations. Some of these formu-
exciting phase, as new instruments can now yield unpredations require taking derivatives of the original equations,
edented observations. For example, there is evidence that tidhich may introduce further inaccuracies, in particular if
Rossi X-ray Timing Explorer has identified the innermostmatter sources are present. It has been widely debated if such
stable circular orbit around an accreting neutron $fdr  hyperbolic formulations have computational advantages
Also, the new generation of gravitational wave detectors unf13]; their performance has yet to be compared directly with
der construction, including the Laser Interferometric Gravi-that of the original ADM equations. Accordingly, it is not yet
tational Wave ObservatoryLIGO), VIRGO, GEO and clear if or how much the numerical behavior of the ADM
TAMA, promise to detect, for the first time, gravitational equations suffers from their non-hyperbolicity.
radiation directly(see, e.g.[2]). In this paper, we demonstrate by means of a numerical
In order to learn from these observatidiasid, in the case experiment and a direct comparison that the standard imple-
of the gravitational wave detectors, to dramatically increasenentation of the ADM system of equations, consisting of
the likelihood of detection one has to predict the observed evolution equations for the bare metric and extrinsic curva-
signal from theoretical modeling. The most promising candi-ture variables, is more susceptible to numerical instabilities
dates for detection by the gravitational wave laser interferthan a modified form of the equations based on a conformal
ometers are the coalescences of black hole and neutron s@ecomposition as suggested by Shibata and Nakafidia

binaries. Simulating such mergers requires self-consisten{y/e will refer to the standard, §— K" form of the equations
numerical solutions to Einstein’s field equations in 3 spatialgg “system I” (see Sec. Il A beloy We follow Shibata and
dimensions, which is extremely challenging. While severalNakamura and modify these original ADM equations by fac-
groups, including two “Grand Challenge Alliances{3],  toring out a conformal factor and introducing a spatial field
have launched efforts to simulate the coalescence of compagt connection function§‘system 11;” see Sec. Il B belo
objects(see als¢4,5]), the problem is far from being solved. The conformal decomposition separates ‘“radiative” vari-
Before Einstein’s field equations can be solved numeriab|es from “nonradiative” ones in the Sp|r|t of the “York-
cally, they have to be cast into a suitable initial value form.| jchnerowicz” split[15,16. With the help of the connection
Most commonly, this is done via the standarét B decom-  functions, the Ricci tensor becomes an elliptic operator act-
position of Arnowitt, Deser and MisnéADM [6]). In this  ing on the components of the conformal metric. The evolu-
formulation, the gravitational fields are described in terms ofjon equations can therefore be reduced to a set of wave
spatial quantitiesthe spatial metric and the extrinsic curva- equations for the conformal metric components, which are
ture), which satisfy some initial constraints and can then besoupled to the evolution equations for the connection func-
integrated forward in time. The resultingy“- K" equations  tions. These wave equations reflect the hyperbolic nature of
are straightforward, but do not satisfy any known hyperbo-general relativity, and can also be implemented numerically
licity condition, which, as it has been argued, may causen a straightforward and stable manner.
stability problems in numerical implementations. Therefore, We evolve low amplitude gravitational waves in pure
several alternative, hyperbolic formulations of Einstein’svacuum spacetimes, and directly compare systems | and |l
equations have been propod&d-12]. Most of these formu- for both geodesic slicing and harmonic slicing. We find that
lations, however, also have disadvantages. Several of thesystem Il is not only more appealing mathematically, but
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performs far better numerically than system I. In particular,andR is its traceR= yinij . We have also introduced the
we can evolve low amplitude waves in a stable fashion formatter sourcep, S; and S;;, which are projections of the
hundreds of light travel time scales with system I, while thestress-energy tensor with respect to the unit normal vector
evolution crashes at an early time in system |, independent of ,

gauge choice. We present these results in part to alert devel-

opers of 3+1 general relativity codes, many of whom cur- PznanBT“ﬁ,

rently employ system |, that a better set of equations may

exist for numerical implementation. S==YiangT, G
The paper is organized as follows. In Sec. I, we present

the basic equations of both systems | and 1. We briefly dis- Si=7iaYsT*,

cuss our numerical implementation in Sec. Ill, and present
numerical results in Sec. IV. In Sec. V, we summarize ancBnd have abbreviated
discuss some of the implications of our findings. 1
MijESij+§7’ij(P_S), 9
II. BASIC EQUATIONS
A. System | whereS is the trace of5;, S=9'S;; .
The evolution equation&®) and(6) together with the con-
straint equationg4) and (5) are equivalent to the Einstein
d<2= — a2dt2+ yij(dx‘+ﬂidt)(dxj+ﬂjdt), (1)  equations, and are commonly referred to as the ADM form
of the gravitational field equation$,17]. We will call these
wherea is the lapse functiong' is the shift vector, an; is equations system I. This system is widely used in numerical
the spatial metric. Throughout this paper, Latin indices ard€lativity calculations(e.g.[18,19), even though its math-
spatial indices and run from 1 to 3, whereas Greek indice§Mmatical structure is not simple to characterize and may not
are spacetime indices and run from 0 to 3. The extrinsi®® ideal for computation. In particular, the Ricci tengdris
curvatureK;; can be defined by the equation _not an elliptic operat_or: yvhlle the Ias_t one of the four terms
) involving second derivatives{'y;; i, is an elliptic operator
acting on the components of the metric, the elliptic nature of

We write the metric in the form

PR i 2aKjj, (2)  the whole operator is spoiled by the other three terms involv-
ing second derivatives. Accordingly, the system as a whole
does not satisfy any known hyperbolicity condititsee also

where the discussion ifil1]). Therefore, to establish existence and
uniqueness of solutions to Einstein’s equations, most math-
E _ ﬁ —r 3) ematical analyses rely either on particular coordinate choices
dt ot P or on different formulations.
and whereL; denotes the Lie derivative with respectfa B. System lI

The Einstein equations can then be split into the Hamil-

tonian constraint Instead of evolving the metrig;; and the extrinsic curva-

ture Kj;, we can evolve a conformal factor and the trace of
the extrinsic curvature separately‘York-Lichnerowicz
split” [15,16). Such a split is very appealing from both a
theoretical and computational point of view, and has been
widely applied in numerical axisymmetric {21) calcula-
tions (see, e.g.[20]). More recently, Shibata and Nakamura

R—K;;K'+K?2=2p, (4)

the momentum constraint

DjKI-DiK=§;, (5 [14] applied a similar technique in a three-dimensional (3
+1) calculation. Adopting their notation, we write the con-
and the evolution equation for the extrinsic curvature formal metric as
d | Fij=e Py (10
aK,]=—D,DJa+a(R|J—2KI|K]+KK,J—MII) (6) and Choose
HereD; is the covariant derivative associated with, R;; is e*?=yP=del ;)" (11)

the three-dimensional Ricci tensor
so that the determinant ¢§;; is unity. We also write the

1 trace-free part of the extrinsic curvatukg, as
Rij 257 ('}’kj,il + Vil ki Yk~ Vi ,kl)

+ PUTIT =TT i) % Aij=Kij = 37K, (12
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whereK = yinij . It turns out to be convenient to introduce f*iE',;,jk“l—"}k: _»ﬂ ’ (21)
A =e 4PA.. =i . - . .
Ajj=e "TA;; . 13 where thel'j, are the connection coefficients associated with
7ij » and where the last equality holds becalsel. In terms

We will raise and lower indices dﬁij with the conformal ¢ these. the Ricci tensor can be writtgze]

metric%; , so thatAl =e**All (see[14]).
Taking the trace of the evolution equatiof® and (6) = 1 _ kL S
with respect to the physical metrig; , we find[21] Rij= =5 7 ijm+t Yadpl T i

Eqb:—laK (14) +&5’Im(2T|k(iT‘j)km+1:=(mT‘klj)- (22
dt 6

The principal part of this operatoﬁf'm?i“m, is that of a
and Laplace operator acting on the components of the m@fyic
It is obviously elliptic and diagonally dominarias long as
the metric is diagonally dominantAll the other second de-
+t5alp+9), rivatives of the metric appearing in E7) have been ab-
(15)  sorbed in the derivatives of the connection functions. At least
in appropriately chosen coordinate systeffisr example

R R+ 2K
ij §

d -
&KI—'y"DjDia-l-a

where we have used the Hamiltonian constréitto elimi-  8'=0), Egs.(16) and(17) therefore reduce to a coupled set
nate the Ricci scalar from the last equation. The tracefreef nonlinear, inhomogeneous wave equations for the confor-
parts of the two evolution equations yield mal metric%;, in which the gauge term& andT', the
conformal factor expg), and the matter termil;; appear as
i~__ — _24A. (16) sources. Wave equations not only reflect the hyperbolic na-
dt 7l 4 ture of general relativity, but can also be implemented nu-

merically in a straightforward and stable manner. The same
and method has often been used to reduce the four-dimensional
Ricci tensoiR , 5 [23] and to bring Einstein’s equations into a
symmetric hyperbolic fornj24].

Note that the connection functior§' are pure gauge
gquantities in the sense that they could be chosen, for ex-
ample, to vanish by a suitable choice of spatial coordinates
(“conformal three-harmonic coordinates,” compaf25)).

d -
gt A =e *(—(DiD;a) " +a(R["-S[")

+a’(K’Aij_2“Ai|’Alj). (17)

In the last equation, the superscrige denotes the trace-free = .
part of a tensor, e-gg;gl:: R;;— 7;R/3. Note that the tracR TheI" would then play the role of “conformal gauge source

could again be eliminated with the Hamiltonian constraintfunCtIonS (compare23,24). Here, however, we impose the

(4). Note also thaly;; andA;; are tensor densities of weight gaugbe Iby chc_)ogllnglj the_ shigf, and evolve th?; W('jth E?d
—2/3, so that their Lie derivative is, for example (24) below. Simi arly,K is a pure gauge varia len ' cou

k ' ' be chosen to vanish by imposing maximal time sli¢ing

_ L _ 2 An evolution equation for th&' can be derived by per-

EBAiF,ka?kAij+Aikﬁjﬂk+Akj3iﬁk—§Aijt9k/3’k- (18 muting a time derivative with the space derivative in Eq.
(21):

The Ricci tensoR;; in Eg. (17) can be written as the sum P 9 2
o o1 2 2ai- g 296 07|
HereR(] is It turns out to be essential for the numerical stability of the

system to eliminate the divergence/f with the help of the
momentum constrain®), which yields

—4%;(D'¢)(D¢), 20 5. _ T
EFIZ_ZAIJQ”]‘FZCX(FJKAJ_g’y”K’j_’y”Sj'f‘GA”d)’j)

R¢=—2D;D;¢—2%;D'D¢+4(D;¢)(D;¢)

whereD; is the derivative operator associated with, and
D'=%'D,;. J l~ij _ o=m(j gi) 2~ij |>

The “tilde” Ricci tensorR;; is the Ricci tensor associated F (’8 Vim2YEBmt 3 VA | 249
with ;;, and could be computed by insertifjg; into Eq. ~ _
(7). However, we can bring the Ricci tensor into a manifestly We now considewp, K, %;;, A;; andI'" as fundamental
elliptic form by introducing the “conformal connection func- variables. These can be evolved with the evolution equations
tions” (14), (15), (16), (17), and(24), which we call system Il. Note
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that obviously not all these variables are independent. In par- R
ticular, the determinant 6§;; has to be unity, and the trace g

of "Aij has to vanish. These conditions can either be used to
reduce the number of evolved quantities, or, alternatively, all 0.01
guantities can be evolved and the conditions can be used as a
numerical checkwhich is what we do in our implementa-

) 4
tion).
0.005
11l. NUMERICAL IMPLEMENTATION
In order to compare the properties of systems | and Il, we
implemented them numerically in an identical environment. S o N R SRS B
We integrate the evolution equations with a two-level, itera- 0 100 200 300

tive Crank-Nicholson method. The iteration is truncated after t

a certain accuracy has been achieved. However, we iterate at FIG. 1. Evolution of the trace of the extrinsic curvatugefor a
least twice, so that the scheme is second order accurate. small amplitude wave in geodesic slicing at the oritgre text for

The gridpoints on the outer boundaries are updated with @etaily. The solid line is the result for system II, and the dashed
Sommerfeld condition. We assume that, on the outer boundine for system I. The dotted line is the approximate solu(i@9).
aries, the fundamental variables behave like outgoing, radial
waves and compare the performance of systems | and Il for both

geodesic and harmonic slicing.
G(at—e?*%r)
r ' (25 B. Geodesic slicing

Q(t,r)=

) ) In geodesic slicing, the lapse is unity
Here Q is any of the fundamental variablésxcept for the

diagonal components &f;;, for which the radiative part is a=1. (28
Q=%,;—1), andG can be found by following the character-
istic back to the previous timestep and interpolating the corSince the acceleration of normal observers satistigs
responding variable to that poifsee alsd14]). We found =D, In a=0, these observers follow geodesics. The energy
that a linear interpolation is adequate for our purposes.  content of even a small, linear wave packet will therefore
We impose octant symmetry in order to minimize thefocus these observers, and even after the wave has dispersed,
number of gridpoints, and impose corresponding symmetryhe observers will continue to coast towards each other.
boundary conditions on the symmetry plains. Unless note&ince 8'=0, normal observers are identical to coordinate
otherwise, the calculations presented in this paper were peobservers, hence geodesic slicing will ultimately lead to the
formed on grids of (33 gridpoints, and used a Courant formation of a coordinate singularity even for arbitrarily
factor of 1/4. The code has been implemented in a parallesmall waves.
environment on SGI Power ChallengeArray and SGI CRAY The timescale for the formation of this singularity can be
Origin2000 computer systems at NCSA using DAGEE]  estimated from Eq(15) with a=1 and g'=0. The A;,
software for parallel processing. which can be associated with the gravitational waves, will
causeK to increase to some finite value, sy at timet,
IV. RESULTS even if K was zero initially. After roughly a light crossing
- time, the waves will have dispersed, and the further evolu-
A. Initial data tion of K is described by,K~K?/3, or
For initial data, we choose a linearized wave solution
(which is then evolved with the full nonlinear systems | and K~ 3Ko
II). Following Teukolsky [27], we construct a time- 3—Ky(t—tg)
symmetric, even-parity =2, M=0 solution. The coeffi-
cientsA, B andC (see Eq.(6) in [27]) are derived from a (see[14]). Obviously, the coordinate singularity forms tat
function ~3/Ky+ty as a result of the nonlinear evolution.
’ We can now evolve the wave initial data with systems |
F(tr)=A(tzrexp(—A(t=r)?). (26 and Il and compare how well they reproduce the formation
of the coordinate singularity.
Unless noted otherwise, we present results for an amplitude |n Fig. 1, we showK at the origin k=y=z=0) as a

A=10"° and a wavelength = 1. The outer boundary con- function of time both for system(dashed lineand system I

(29

ditions are imposed &,y,z=4. (solid line). We also plot the approximate analytic solution
We evolve these initial data for zero shift (29) as a dotted line, which we have matched to the system |
solution with valuek;=0.00518 and,=10. For these val-
B'=0, (27 ues, Eq.(29) predicts that the coordinate singularity appears
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FIG. 2. Evolution of the extrinsic curvature componédy, at FIG. 3. Evolution of the extrinsic curvature componéy, at

the origin in geodesic slicing. The solid line is the result for systemthe origin in harmonic slicing. The solid line is the result for system
Il, and the dashed line for system I. For system I, we constructed|, and the dashed line for system I. For system II, we constructed

K,, fromA,,, ¢, K and%,,. K,,fromA,,, ¢, K and%,,.

att~590. In the insert, we show a blow-up of system Il for (where thel';, are the connection coefficients associated
- i) . . . . I _
early times. It can be seen very clearly how the initial wave"ith the four-dimensional metrig,,z). For 8'=0, the above

content let grow from zero to the “seed” valu,. Once  condition reduces to
the waves have dispersed, system Il approximately follows da= — oK (31)
the solution(29) up to fairly late times. System I, on the @z a R
Z:)hpeera?;nd' crashes long before the coordinate S'nQU|ar'tVnserting Eq.(14), this can be written as

In Fig. 2, we compare the extrinsic curvature component
K,, evaluated at the origin. The noise aroune8, which is

present in the evolutions of both systems, is caused by r‘?ﬂ/hereC(x‘) is a constant of integration, which depends on

flecpons of the initial wave off the outer boundaries. Itis ihe spatial coordinates only. In practice, we choGe)
obvious from these plots that system Il evolves the equations. 1

stably to a fairly late time, at which the integration eventu-

ally becomes inaccurate as the coordinate singularity aBhe last section. Obviously, both systems do much better for

groatlz(h'slg.hV\lle stoprp])ed thlslcalculatlon whedn z‘e 'teratt'v.?his slicing condition. System | crashes much later than in
rank-icholson scheéme no longer converged atter a certai , jegic slicingafter about 40 light crossing times, as op-

maximum number of iterations. It is also obvious that syste osed to about 10 for geodesic slicingut it still crashes.

| performs extremely poorly, and crashes at a very earl ystem Il, on the other hand, did not crash after even over

“mlfn‘”?” bef?rett?e Cool_rdln?rt]etSItr;]gularlty. f f100 light crossing times. We never encountered a growing
IS important o reafize that the poor performance o instability that caused the code to crash.
system | isnot an artifact of our numerical implementation.

For example, the ADM code currently being used by the
Black Hole Grand Challenge Alliance, is based on the equa- V. SUMMARY AND CONCLUSION

tions of system I, and also crashes after a very similar time \yo numerically implement two different formulations of

[28] (see alsd 18], where a run with a much smaller initial ginstein's field equations and compare their performance for
amplitude nevertheless crashes earlier than our system Il evolution of linear wave initial data. System | is the
T_his shows.that the code’s crashing is.intri.nsic to the €QqUagtandard set of ADM equations for the evolutiongf and
tions and slicing, and not to our numerical implementation. K;; . In system II, we conformally decompose the equations
and introduce connection functions. The conformal decom-
position naturally splits “radiative” variables from “nonra-
diative” ones, and the connection functions are used to bring
Since geodesic slicing is known to develop coordinatethe Ricci tensor into an elliptic form. These changes are ap-
singularities for generic, nontrivial initial data, it is obviously pealing mathematically, but also have a striking numerical
not a very good slicing condition. We therefore also compareonsequence: system Il performs far better than system |.
the two systems using harmonic slicing. In harmonic slicing, It is interesting to note that most earlier axisymmetric
the coordinate time is a harmonic function of the coordi- codes(e.qg.[20]) also relied on a decomposition similar to

d(ae ®)=0 or a=C(x")eb, (32

In Fig. 3, we show results for the same initial data as in

C. Harmonic slicing

natesV*V ,t=0, which is equivalent to the condition that of system Il. Much care was taken to identify radiative
o 410 variables and to integrate those variables as opposed to the
I"=g*T' ;=0 (30 raw metric components. It is surprising that this experience
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was abandoned in the development of most13 codes, are present. This suggests that a system similar to system |l
which integrate equations equivalent to system |. Thesenay be a good choice for evolving interior solutions and
codes have been partly succes$iidl], but obvious problems matter sources, while one may want to match to one of the
remain, as for example the inability to integrate low ampli- hyperbolic formulations for a better treatment of the bound-
tude waves for arbitrarily long times. While efforts have aries.

been undertaken to stabilize such codes with the help of ap- The mathematical structure of system Il is more appealing
propriate outer boundary conditiorjd8,29, our findings than that of system I, and these improvements are reflected in
point to the equations themselves as the fundamental causiee numerical behavior. We therefore conclude that the
of the problem, and not to the outer boundaries. Obviouslymathematical structure has a very deep impact on the nu-
boundary conditions as employed in the perturbative apmerical behavior, and that the ability to finite difference the
proach in[18,29 or in the characteristic approach[B0] are  standard ‘¢—K” ADM equations may not be sufficient to
still needed for accuracy—nbut our results clearly suggest thafarrant a stable evolution.

they are not needed for stabilifg1].

Some of the recently proposed hyperbolic systems are
very appealing in that they bring the equations in a first
order, symmetric hyperbolic form, and that all characteristics It is a pleasure to thank A. M. Abrahams, L. Rezzolla, J.
are physical(i.e., are either at rest with respect to normalW. York and M. Shibata for many very useful conversations.
observers or travel with the speed of ligh®,12]. These We would also like to thank H. Friedrich for very valuable
properties may be very advantageous for numerical impleecomments, and S. A. Hughes for a careful checking of our
mentations, in particular at the boundaribsth outer bound- code. Calculations were performed on SGI CRAY
aries and, in the case of black hole evolutions, inner “apparOrigin2000 computer systems at the National Center for Su-
ent horizon” boundaries Some of these systems have alsopercomputing Applications, University of lllinois at Urbana-
been implemented numerically, and show stability propertie€hampaign. This work was supported by NSF Grant AST
very similar to our system [132]. Our system II, on the other 96-18524 and NASA Grant NAG 5-3420 at lllinois, and the
hand, uses fewer variables than most of the hyperbolic forNSF Binary Black Hole Grand Challenge Grant Nos. NSF
mulations, and does not take derivatives of the equationg?HYS 93-18152, NSF PHY 93-10083 and ASC 93-18152
which may be advantageous especially when matter sourcéARPA supplemented

ACKNOWLEDGMENTS

[1] W. Zhang, Z. P. Smale, T. E. Stohmayer, and J. H. Swank[11] H. Friedrich, Class. Quantum Gra¥3, 1451(1996.

Astrophys. J. Lett500, L171 (1998. [12] A. Anderson, Y. Choquet-Bruhat, and J. W. York, Jr., Top.
[2] K. Thorne, inProceedings of the Seventeenth Texas Sympo-  Methods Nonlinear Anall0, 353(1997.

sium on Relativistic Astrophysics and Cosmolaegited by H.  [13] For example at the Third Texas Workshop on 3-dimensional

Bohringer, G. E. Morfill and J. E. Tmper[Ann. (N.Y.) Acad. Numerical Relativity of the Binary Black Hole Grand Chal-

Sci. 759 127(1999)]. lenge, held at Austin, Texas, 199Proceedings can be ob-
[3] Information about the Binary Black Hole Grand Challenge can tained from Richard Matzner, Center for Relativity, University

be found at www.npac.syr.edu/projects/bh/, and about the Bi-  of Texas at Austin, Texas

nary Neutron Star Grand Challenge at jean-luc.ncsa.uiuc.edy/l4] M. Shibata and T. Nakamura, Phys. Rev5R 5428(1995.

nsnsgc/. [15] A. Lichnerowicz, Z. Angew. Math. Phy23, 37 (1944.

[4] K. Oohara and T. Nakamura, iRelativistic Gravitation and [16] J. W. York, Jr., Phys. Rev. LetR6, 1656(1971).
Gravitational Radiation edited by J.-A. Marck and J.-P. La- [17] Note, however, that Arnowitt, Deser and Misnjg] wrote

sota(Cambridge University Press, Cambridge, England, 1997 these equations in terms of the conjugate momemtinstead
[5] J. R. Wilson and G. J. Mathews, Phys. Rev. L&, 4161 of the extrinsic curvaturé; .
(1999; J. R. Wilson, G. J. Mathews, and P. Marronetti, Phys.[18] The Binary Black Hole Grand Challenge Alliance, A. M.
Rev. D54, 1317(1996. Abrahamset al, Phys. Rev. Lett80, 1812(1998.
[6] R. Arnowitt, S. Deser, and C. W. Misner, {@ravitation: An [19] The Binary Black Hole Grand Challenge Alliance, G. B. Cook
Introduction to Current Researcledited by L. Witten(Wiley, et al, Phys. Rev. Lett80, 2512(1998.
New York, 1962. [20] For example: J. M. Bardeen and T. Piran, Phys. R& 205
[7] S. Frittelli and O. Reula, Commun. Math. Phyk66, 221 (1983; C. R. Evans, Ph.D. thesis, University of Texas at Aus-
(1994). tin, 1984; A. M. Abrahams and C. R. Evans, Phys. ReB™D
[8] C. Bona, J. MasscE. Seidel, and J. Stela, Phys. Rev. L&8, 318(1988; A. M. Abrahams, G. B. Cook, S. L. Shapiro, and
600 (1995. S. A. Teukolsky,ibid. 49, 5153(1994).
[9] A. Abrahams, A. Anderson, Y. Choguet-Bruhat, and J. W.[21] Note also thatCgzp=B'd; ¢+ d; 3'/6.
York, Jr., Phys. Rev. Letf5, 3377(1996. [22] Shibata and Nakamurgl4] use a similar auxiliary variable
[10] M. H. P. M. van Putten and D. M. Eardley, Phys. Rev58) Fi=%;,; to eliminate some second derivatives from the Ricci
3056(1996. tensor.

024007-6



NUMERICAL INTEGRATION OF EINSTEIN'S FIELD . ..

[23] T. De Donder,La gravifique einsteiniennéGauthier-Villars,
Paris, 192}; C. Lanczos, Phys. 23, 537(1922; Y. Choquet-
Bruhat, inGravitation: An Introduction to Current Research
edited by L. Witten(Wiley, New York, 1962.

[24] A. Fischer and J. Marsden, Commun. Math. Phg8, 1
(1972.

[25] L. Smarr and J. W. York, Jr., Phys. Rev.10J, 1945(1978.

[26] M. Parashar and J. C. Brown, Proceedings of the Interna-
tional Conference for High Performance Computiedited by
S. Sahni, V. K. Prasanna, and V. P. Bhatkar Tf&Graw-
Hill, New York, 1995, also www.caip.rutgers.eduparashar/
DAGH/

PHYSICAL REVIEW D 59 024007

[27] S. A. Teukolsky, Phys. Rev. R6, 745(1982.

[28] L. Rezzolla, talk presented at the Binary Black Hole Grand
Challenge Alliance’s meeting at the University of Pittsburgh,
1998.

[29] M. E. Rupright, A. M. Abrahams, and L. Rezzolla, Phys. Rev.
D 58, 044005(1998; L. Rezzolla, A. M. Abrahams, R. A.
Matzner, M. Rupright, and S. L. Shapifanpublisheg

[30] N. Bishop, R. Gomez, L. Lehner, B. Szilagyi, J. Winicour, and
R. Isaacson, Phys. Rev. Left6, 4303(1996.

[31] Alternatively, the outer boundary conditions can be completely
removed by a conformal rescaling; see, for example, Fa-Hu
ner, Phys. Rev. 33, 701(1996; gr-qc/9804065.

[32] G. B. Cook and M. S. Scheéprivate communication

024007-7



