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Abstract

We examine the optimal threshold distribution in populations of noisy threshold devices. When the noise on each threshold is independent, and
sufficiently large, the optimal thresholds are realized by the suprathreshold stochastic resonance effect, in which case all threshold devices are
identical. This result has relevance for neural population coding, as such noisy threshold devices model the key dynamics of nerve fibres. It is also
relevant to quantization and lossy source coding theory, since the model provides a form of stochastic signal quantization. Furthermore, it is shown
that a bifurcation pattern appears in the optimal threshold distribution as the noise intensity increases. Fisher information is used to demonstrate
that the optimal threshold distribution remains in the suprathreshold stochastic resonance configuration as the population size approaches infinity.
© 2005 Elsevier B.V. All rights reserved.

PACS: 05.40.Ca; 87.19.La; 89.70.+c; 02.40.Xx

Keywords: Information theory; Neural coding; Suprathreshold stochastic resonance; Quantization; Optimal quantization; Population coding; Bifurcations; Point
density function
1. Introduction

A fascinating aspect of the behavior of populations of neu-
rons is their capability of reliability in the presence of very
low signal-to-noise ratios (SNRs) [1]. It has been established
by many studies that improved performance in individual neu-
rons can be achieved in the presence of large ambient noise, by
a mechanism known as stochastic resonance (SR) [2–4]. How-
ever, the vast majority of studies on SR in static nonlinearities
and neurons have been restricted to the case of subthreshold
signals since, for a single device and suprathreshold stimuli,
noise enhanced signal transmission disappears. For such sys-
tems, it has been pointed out that SR is a sub-optimal means
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for improving system performance, since optimal performance
can be gained by adjusting the threshold value [1,5]. Given that
a central idea of current theoretical neural coding is that neural
systems optimize information transmission [6], it is not clear
how this is reconciled with SR as a neural coding mechanism.

Here, however, we examine the performance of SR in a noisy
multi-threshold system, and show for the first time that a form
of SR can be considered to be an optimal coding scheme. Such
a study has relevance to both neural population coding [6,7], as
well as signal processing and lossy source coding theory [8,9],
and the growing overlap between the two fields [10]. The ap-
proach we take is to analyze the optimal encoding of a random
input signal by a population of simple threshold devices, all of
which are subject to additive iid (independent and identically
distributed) input noise. Although this approach greatly simpli-
fies the dynamics of realistic neural models, it does encapsulate
the main nonlinearity: that of a threshold that generates an out-
put spike when crossed. A natural measure to use for measur-
ing information transmission in noisy neural systems, and one
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which has been used extensively in computational neuroscience
[1], is that of mutual information.

1.1. Suprathreshold stochastic resonance

Previously, it has been shown for suprathreshold signal lev-
els in such a system that when all threshold values are equal
to the signal mean, the mutual information between the input
and output signals has a maximum value for a nonzero noise in-
tensity. This phenomenon was termed suprathreshold stochastic
resonance (SSR) to illustrate the fact that it is a form of stochas-
tic resonance that is not restricted to subthreshold signals [11].
Subsequently, the effect was also shown to occur in FitzHugh–
Nagumo model neurons [12] and applied to cochlear implant
encoding [13].

1.2. Summary of new results

In this current Letter, we discuss the optimality of SSR by
examining whether the mutual information can be increased
by adjusting the set of thresholds, which we denote as {θi},
i = 1, . . . ,N , while keeping the noise constant. For a Gaussian
signal and iid Gaussian noise, we show numerically that above
a certain noise intensity the optimal threshold settings occur
when all thresholds are equal to the signal mean. Hence, we
show the SSR effect is a case of SR where, given such large
ambient noise conditions, it is not possible to improve perfor-
mance by adjusting the threshold values.

Furthermore, we show that as noise increases from zero—
where the optimal thresholds are widely distributed across the
dynamic range of the signal—the values of the optimal thresh-
old settings go through a number of transitions where more and
more threshold values accumulate to fewer and fewer points, in
a series of bifurcations. Such a clustering of optimal thresholds
to a small number of point singularities appears to persist if we
let N approach infinity and hence, in this case there must be a
transition from continuous to singular solutions of the optimal
threshold values.

The paper is organized as follows. Section 2 discusses the
model in which SSR occurs, extends it to arbitrary threshold
values, and discusses the method we use to calculate the mutual
information between its input and output signals. Section 3 then
expresses our goal of optimizing the threshold values as a non-
linear optimization problem. Section 4 presents the results of
solving this problem, and discusses their main features. Finally,
Section 5 describes a method for approximately solving our op-
timization problem in the event of a large number of threshold
devices.

2. Array of threshold devices

The model we consider is shown in Fig. 1. This system con-
sists of N static threshold devices, which all receive the same
random input signal. This random signal is assumed to consist
of a sequence of independent samples, x, drawn from a distrib-
ution with probability density function (pdf), P(x).
Fig. 1. Array of N noisy threshold devices. Each device receives the same input
signal sample, and is subject to independent additive noise. The output from
each device, yi , is unity if the sum of the signal, x, and noise at its input, ηi ,
is greater than the corresponding threshold, θi , and zero otherwise. The overall
output, y, is the sum of the individual outputs, y = ∑N

i=1 yi , and is therefore a
discrete encoding of the continuously valued input signal, x.

The ith device in the model is subject to continuously valued
iid additive noise, ηi (i = 1, . . . ,N ), drawn from a probabil-
ity distribution with pdf R(η). Each noise signal is required to
also be independent of the signal, x. For each individual thresh-
old device, the output signal, yi , is unity if the input signal, x,
plus the noise on that threshold, ηi , is greater than the threshold
value, θi . The output signal is zero otherwise. The outputs from
each threshold device, yi , are summed to give the overall sys-
tem output signal, y. Hence, y is a discrete signal that can take
integer values, n ∈ {0, . . . ,N}, and is a lossy and nondetermin-
istic quantization of the input signal, x. Thus, the overall output
of the array of threshold devices is y = ∑N

i=1 yi . This signal
can also be expressed as a random variable dependent on x, in
terms of the signum (sign) function, as

(1)y(x) = 1

2

N∑
i=1

sign[x + ηi − θi] + N

2
.

Now, mutual information is defined as

I (x, y) = H(y) − H(y|x),

where H(y) is the entropy of the output signal, and H(y|x) is
the average conditional entropy of the output signal given the
input signal [14]. If we define P(n|x) as the conditional prob-
ability that the output is in state y = n, given the input signal
is x, then

H(y|x) = −
∞∫

−∞
P(x)

N∑
n=0

P(n|x) log2 P(n|x)dx,

where P(x) is assumed known. For our model, since the output
is discretely valued, we have the output entropy as

H(y) = −
N∑

n=0

Py(n) log2 Py(n),
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where the output probability mass function is given by

(2)Py(n) =
∞∫

−∞
P(n|x)P (x)dx, n ∈ {0, . . . ,N}.

Thus, the mutual information depends only on the conditional
probability distribution of the output given the input, which we
will refer to as the transition probabilities, and is given by

I (x, y) = −
N∑

n=0

Py(n) log2 Py(n)

(3)−
(

−
∞∫

−∞
P(x)

N∑
n=0

P(n|x) log2 P(n|x)dx

)
.

If we impose the constraint that all thresholds are set to the
same value, the SSR effect can occur, in which case the mutual
information has a maximum for nonzero noise intensity [11].
Such behavior has been shown to occur for noise with various
pdfs such as Gaussian [11], uniform [15], Rayleigh, exponential
[16] and Laplacian [17], as well as a variety of signal types
[18,19]. The effect is maximized when the thresholds are all set
to the signal mean [20]. SSR has also been shown to exist when
measures other than mutual information are used [18,21,22].

Our objective here however, is to relax the constraint that
all thresholds are identical, and to find the optimal threshold
values, {θ∗

i }. By optimal, we mean in the sense of maximum
mutual information between the input signal, x, and output sig-
nal, y. In order to find the mutual information for arbitrary
thresholds, we need a method for numerically calculating the
transition probabilities.

2.1. Calculating the transition probabilities

Let P̂i(x) be the probability of device i being “on” (that is,
signal plus noise exceeding the threshold θi ), for a given value
of input signal, x. Then

(4)P̂i(x) =
∞∫

θi−x

R(η)dη = 1 − FR(θi − x),

where FR(·) is the cumulative distribution function (cdf) of the
noise and i = 1, . . . ,N . For the particular case when the thresh-
olds all have the same value, then each P̂i(x) has the same value
for all i and we have P(n|x) given by the binomial distribution
[11]. However, in general it is difficult to find analytical ex-
pressions for P(n|x) and we will rely on numerics. Given any
arbitrary N , R(η), and {θi}, the set of probabilities, {P̂i(x)},
can be calculated exactly for any value of x from Eq. (4), from
which P(n|x) can be found using an efficient recursive formula
[16], and hence the mutual information calculated by numerical
integration of Eqs. (2) and (3).

3. Problem formulation

Our problem of finding the threshold settings that maximize
the mutual information can now be expressed as a nonlinear
optimization problem, where the cost function to maximize is
the mutual information, and there are structural constraints on
how the transition probabilities are obtained,

Find: max
{P(n|x)}

I (x, y)

Subject to:
{
P(n|x)

}
is a function of

{
P̂i(x)

}
,

(5)
N∑

n=0

P(n|x) = 1 ∀x, and {θi} ∈ Rn.

This formulation is similar to previous work on clustering and
neural coding problems solved using a method known as de-
terministic annealing [8,10,23]. In particular, the formulation
reached in [10] can be expressed in a fashion identical to prob-
lem (5) with the structural constraints removed. Due to this
difference though, the solution method used in that work to find
the optimal conditional distribution, {P(n|x)}, cannot be used
here, and instead we concentrate on optimizing the only free
variable, the set {θi}. This can be achieved with standard un-
constrained optimization techniques.

However, the objective function is not convex in {θi}, and
there exist a number of local optima. This problem can be
overcome by judicial selection of initial conditions or by em-
ploying random search techniques such as simulated annealing.
The results presented below were obtained by solving prob-
lem (5) using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm, combined with many different initial conditions in-
tended to track all local optima. The BFGS algorithm falls into
the sub-category of optimization algorithms known as quasi-
Newton methods [24].

4. Numerical results

We present results for the case of iid zero mean Gaussian
signal and noise distributions. If the noise has variance σ 2

η then
we have

P̂i(x) = 1

2
+ 1

2
erf

(
x − θi√

2ση

)
,

where erf is the error function. Let σ = ση/σx , where σ 2
x is

the variance of the Gaussian signal. Thus, σ is the inverse of
the square root of the input SNR. It is shown in [20] that when
the signal and noise both have the same distribution, the mu-
tual information is a function of the ratio, σ . Note for the case
of ση = 0 that it possible to analytically determine the opti-
mal thresholds [16], and that in this case, each threshold has
a unique value. Figs. 2, 3 and 4 show our results for the mutual
information and optimal threshold settings, {θ∗

i }, for N = 15
plotted against increasing σ . We have arbitrarily set σx = 1.
For other values of σx , the actual values of {θ∗

i } differ propor-
tionally to σx . Several interesting features are present in these
results.

Firstly, Fig. 2 shows that the mutual information obtained
with the optimal thresholds is strictly decreasing with increas-
ing σ . This means that no SR effect is seen for optimized
thresholds. The mutual information for SSR is also shown for
comparison. Note that for σ = 0, SSR provides only one bit
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Fig. 2. Plot of mutual information, I (x, y), against σ for N = 15 and Gaussian
signal and noise. The thick line shows the mutual information obtained for the
SSR situation of all thresholds equal to the signal mean. The thin line shows the
mutual information that occurs for optimized thresholds. For small σ , optimiz-
ing the thresholds provides a far higher mutual information than SSR. However,
as σ increases, the difference in mutual information between the two cases de-
creases, until for sufficiently large σ , SSR becomes optimal.

per sample, while if the thresholds are optimized the mutual
information is 4 bits per sample, since the output entropy is
log2 (N + 1) = 4. However, as σ increases, the difference in
mutual information between the two cases decreases, until for
σ � 0.7, SSR becomes optimal. While the fact that the mutual
information decreases with increasing σ means that there is no
advantage to be gained by increasing the noise level in such an
optimized system, the fact that SSR is optimal for sufficiently
large noise is still highly significant. Unlike a single threshold
device, where the optimal threshold value is always at the signal
mean regardless of the noise level and therefore SR can never
occur, this result shows that when the noise is large, changing
the thresholds from a situation where SR can occur gains no
advantage.

The actual optimal thresholds are shown in Figs. 3 and 4.
From Fig. 3 we observe, firstly, that for very small noise, the
optimal thresholds are consistent with the optimal noiseless val-
ues. There does not appear to be a discontinuity in the optimal
thresholds as the noise intensity increases from zero to some
small nonzero value. However, the most striking feature is the
fact that bifurcations are present. For σ between zero and some
critical value greater than zero, the optimal placement of the 15
thresholds are at unique values. However, for larger σ , a bifur-
cation occurs, and some of the optimal thresholds coincide to
the same value. As σ increases, more bifurcations occur, and
increasing fractions of the total number of thresholds tend to
cluster to fewer identical values. We will refer to the number
of thresholds with the same value as the size of a cluster, and
the actual threshold value of those thresholds as the value of a
cluster. Fig. 4 indicates with stem plots the fraction of the to-
tal number of thresholds at each cluster value for various values
of σ .
Fig. 3. Plot of optimal thresholds, {θ∗
i
} against σ for N = 15 and Gaussian sig-

nal and noise, with σx = 1. The optimal noiseless thresholds (σ = 0) are shown
with circles. Otherwise, the optimal thresholds are shown with dots. As with
σ = 0, for small σ all optimal threshold values are unique. However, as the
noise intensity, σ , increases, bifurcations occur so that more and more thresh-
olds cluster to fewer unique values. For sufficiently large σ , there is a single
cluster, and all optimal thresholds have the same value as the signal mean. The
bifurcations are due to the presence of many local optima. The local optimum
which provides the global optimum changes with σ , and therefore most bifur-
cations are discontinuous. Thus, it does not make sense to join up the paths of
individual thresholds with increasing σ , as individual thresholds within clusters
cannot be differentiated.

Fig. 4. Threshold point density function, λ(x,σ ), obtained for N = 15 and var-
ious values of σ . The y-axes give the fraction of thresholds in each cluster,
v(j, σ ) and the x-axis gives the cluster values, x = Θj . It is clear that as σ

increases, the number of clusters decreases.

This tendency of the optimal thresholds to form clusters at
identical values leads to regions of asymmetry about the x-axis
since, where for example there are two clusters of size seven
and eight, then the value of the cluster of size seven is larger
in magnitude than the value of the cluster of size eight. Note
that in such regions of asymmetry, there are two globally opti-
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mal threshold vectors. The second global solution is simply the
negative of the set of thresholds in the first global solution, that
is, the mutual information evaluated at {θ∗} is equal to the mu-
tual information evaluated at −{θ∗}. This result stems from the
fact that both the signal and noise pdfs are even functions.

For most of the bifurcations, the number of clusters de-
creases with increasing σ . Sometimes a continuous bifurcation
occurs as more than one cluster converges to the same value,
as σ increases, to form a larger, merged cluster. On other occa-
sions a discontinuous bifurcation occurs, and two clusters with
completely different values merge to form a larger cluster with
a value somewhere between the two values of the two merging
clusters. It does not appear possible for the number of clusters
to increase with increasing σ . However, further bifurcations can
occur within a region of σ with k clusters, when the sizes and
values of the k clusters change. For example, at σ = 0.49, there
are three clusters of size {3,5,7}, while for σ ∈ [0.38,0.48],
there are three clusters of size {4,7,4}.

The bifurcation structure is quite surprising, but appears to
be fundamental to the problem type, as we have found simi-
lar bifurcation structures in the optimal threshold settings for
measures other than mutual information, including correlation
coefficient and mean square error distortion (error variance),
and other signal and noise distributions. Finally, it is evident
that above a certain value of σ the SSR situation is optimal.
That is, the optimal quantization for large noise is to set all
thresholds to the signal mean.

4.1. Point density function

We now mathematically describe the observations made
above. For the purposes of optimization, the ordering of the
optimal threshold vector, {θ∗

i }, is not important. However, to
simplify the mathematical description, we now introduce an
ordered sequence notation for the optimal thresholds. Specifi-
cally, we label the ith optimal threshold value as θ∗

i , so that the
sequence (θ∗

i )Ni=1 is nondecreasing. In the absence of noise, it is
straightforward to show that each optimal threshold is given by

θ∗
i = F−1

x

(
i

N+1

)
, where F−1

x (·) is the inverse cdf of the signal.

We now introduce a concept used in the theoretical analy-
sis of high resolution quantizers in information theory—that of
a quantizer point density function, λ(x), defined over the same
support variable as the source pdf, P(x) [9]. The point den-
sity function has the property that

∫
x
λ(x) dx = 1, and usually

is only used in the context where the number of thresholds is
very large. In this situation, the point density function gives the
density of thresholds across the support of the signal pdf.

We observe from Fig. 4 that our empirically optimal thresh-
old sequence, (θ∗

i )Ni=1, can have at most k(σ ) unique values,
where 1 � k � N . When bifurcations occur as σ increases,
k(σ ) may either decrease or remain constant.

We now denote v(j, σ ) as the fraction of the total thresholds
in the j th cluster at noise intensity σ , where j ∈ {1, . . . , k(σ )},
so that

∑k(σ )
j=1 v(j, σ ) = 1. Thus, v(j, σ ) is the size of the j th

cluster divided by N . Denote the value of the j th cluster as Θj ,
so that the size of the cluster at x = Θj is Nv(j,σ ). As with the
ordered optimal threshold sequence, we can define an ordered
sequence of cluster values as (Θj )

k(σ )
j=1 . Unlike the optimal

threshold sequence, this sequence is strictly increasing with j .
We are now able to write a point density function as a func-

tion of σ to describe our empirically optimal threshold config-
uration. This is

(6)λ(x,σ ) =
k(σ )∑
j=1

v(j, σ )δ(x − Θj),

where δ(·) is the delta function. We also note that∫ a

x=−∞ λ(x,σ )dx is the fraction of thresholds with values less
than or equal to a, and that

∫ ∞
x=−∞ λ(x,σ )dx = 1. For the spe-

cial case of σ = 0 we can write the analytically optimal point
density function as

λ(x,0) =
N∑

j=1

v(j,0)δ(x − Θj)

(7)=
N∑

i=1

1

N
δ

(
x − F−1

x

(
i

N + 1

))
.

4.2. Explanation of the bifurcations

The discontinuous bifurcations in the optimal threshold di-
agram are due to the presence of many locally optimal thresh-
old configurations. In fact, numerical experiments find that for
every value of σ , there is at least one locally optimal solution—
that is a set of threshold values giving a gradient vector of the
mutual information with respect to {θi} of zero—corresponding
to every possible integer partition of N . For each partition,
there are as many locally optimal solutions as there are unique
orderings of that partition. For small σ , all of these local op-
tima are unique. As σ increases, more and more of these lo-
cal optima bifurcate continuously to become coincidental with
other local optima. For example, a local optimum correspond-
ing to k = 3 clusters, with {Nv(j,σ )} = {4,7,4} might have Θ2
and Θ3 converge to the same value with increasing σ . At the
point of this convergence, a bifurcation occurs, and the lo-
cal optimum becomes one consisting of k = 2 clusters, with
{Nv(j,σ )} = {7,8}.

5. Behavior for large N

We can make some analytical progress on the solution to
problem (5) by allowing the population size N to become very
large, a case that is biologically relevant [25]. Hence, if we
let N → ∞, and divide the optimal threshold sequence by N ,
then the result approximates a strictly nondecreasing, function,
Θ(z), defined on the continuous interval z ∈ [0,1]. For the
noiseless case Θ(z) = F−1

x (z), so that

lim
N→∞λ(x,0) =

1∫
z=0

δ
(
x − F−1

x (z)
)
dz = P(x),

that is, the point density function is the pdf of the signal.



188 M.D. McDonnell et al. / Physics Letters A 352 (2006) 183–189
However, for nonzero noise, our numerical solutions of
problem (5) indicate that even for very large N the clusters and
bifurcation structure persists. Hence, if we assume that this is
the case also for infinite N , there must be a transition at some σ

from a continuously valued to a discretely valued optimal Θ(z).
This is the reason that we claim the optimal threshold distribu-
tion contains point singularities for σ > 0.

Furthermore, our numerical results indicate that the loca-
tions of each bifurcation tend to converge to the same value
of σ as N increases. Under the assumption that this holds for
infinite N , we are able to make use of an approximation to the
mutual information to find the location of the final bifurcation,
that is the smallest noise intensity for which SSR is the optimal
coding strategy.

This approximation relies on an expression for a lower
bound on the mutual information involving the Fisher informa-
tion, J (x), and the entropy of an efficient estimator for x. Fisher
information has previously been used to study SSR [18,26] and
is a measure of how well the input signal, x, can be estimated
from a set of N observations. In the limit of large N , the entropy
of an efficient estimator approaches the entropy of the input sig-
nal, and if the distribution of this estimator is Gaussian then the
lower bound becomes asymptotically equal to the actual mutual
information [6,26]. This means that the mutual information can
be written as

(8)I (x, y) = H(x) − 0.5
∫
x

P (x) log2
2πe

J (x)
dx.

For a zero mean Gaussian input signal Eq. (8) becomes

(9)I (x, y) = 0.5
∫
x

P (x) log2
(
σ 2

x J (x)
)
dx.

The Fisher information for a given input sample, x, for the sys-
tem in Fig. 1 is

J (x) ≈
(∑N

i=1
dP̂i (x)

dx

)2∑N
i=1 P̂i(x)(1 − P̂i(x))

=
(∑N

i=1 R(θi − x)
)2∑N

i=1 P̂i(x)(1 − P̂i(x))
.

Thus, Θ(z) can be obtained by maximizing Eq. (9), given as-
sumptions on values of k(σ ) and v(j, σ ). Our empirical results
for small N show that for σ just smaller than the first bifurca-
tion, v(1, σ ) = v(2, σ ) = 0.5, and that λ(x,σ ) = 0.5δ(x − t) +
0.5δ(x + t), where t � 0. Under the assumption that this holds
for very large N , it is straightforward to numerically find the
value of t that maximizes Eq. (9) for any given σ . This maxi-
mization finds that the asymptotic location of the first bifurca-
tion is at σ � 0.865. This has been verified without recourse to
the Fisher information approximation for N up to 20000.

Note that this value of σ corresponds to an input SNR in the
order of 0 dB. This is particularly interesting given that SNRs
of about this magnitude are typical for sensory neural coding
[1], and indicates that perhaps sensory neural populations have
evolved to make use of this noise. If the noise signals in a
number of otherwise identical neurons are independent, then as
demonstrated in [12], the SSR effect can be exploited to over-
come the noise, while simultaneously encoding the signal in
a quantized manner. Furthermore as demonstrated in principle
here, for sufficiently large noise, it is optimal in this situation for
all neurons to be identical, rather than to have different thresh-
old values.

6. Conclusion

To summarize, we have shown that the optimally quantized
encoding of a Gaussian input signal by an array of indepen-
dently noisy threshold devices contains point singularities in its
threshold distribution, the number of which decreases in a series
of bifurcations as the noise intensity increases. We have also
found that for large enough noise, the optimal encoding is for all
thresholds to be equal to the signal mean. This shows that SSR
is a form of threshold-based SR that can be optimal. Finally,
a Fisher information approach has shown that for very large
population sizes, and Gaussian signal and noise, the noise in-
tensity at which SSR becomes optimal converges to σ � 0.865,
which means an input SNR in the order of 0 dB. This result
corresponds well with measurements of the SNR in real sen-
sory neurons.
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