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Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice

Olga L. Lazarenkova* and Alexander A. Balandin†
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~Received 4 January 2002; revised manuscript received 12 August 2002; published 30 December 2002!

We report on theoretical investigation of the electron and phonon energy spectra in a three-dimensional
regimented quantum dot superlattice. Our results are obtained by numerical solution of the Schro¨dinger and
elasticity equations using the finite-difference method. The calculations are performed for a Ge/Si material
system taking into account characteristic band-gap offsets, elastic stiffness constants, and other relevant pa-
rameters. Coupling among quantum dots in such a regimented structure results in formation of extended
electron states and minibands, provided that the disorder in the system is small. Electron and phonon densities
of states of these artificialquantum dot crystalsare also calculated. We demonstrate that the acoustic-phonon
dispersion in the quantum dot superlattice undergoes strong modification, which leads to emergence of qua-
sioptical branches. These branches are much lower in energy than optical phonons in bulk semiconductors and
thus may strongly affect energy relaxation processes. Other phenomena that originate from the specific electron
and phonon spectra in quantum dot superlattices, such as negative differential conductivity and carrier scat-
tering anisotropy, are also discussed.

DOI: 10.1103/PhysRevB.66.245319 PACS number~s!: 73.22.2f, 63.22.1m, 73.23.2b
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I. INTRODUCTION

Physical properties of individual semiconductor quant
dots~OD’s! have been extensively studied both theoretica
and experimentally.1 The effects of the size, shape, stra
fields, Coulomb interaction, and dielectric screening on e
tronic states and optical response of individual quantum d
are addressed in the literature in great detail.1–10 In a simpli-
fied picture, transport properties of arrays of weakly coup
quantum dots~with wave functions well localized in a dot!
are described in terms of hopping conduction, while opti
response is defined by the energy spectrum of individual d
and inhomogeneous broadening due to the size distribu
A more interesting and potentially practically important ca
is when strong coupling among dots leads to formation
two- ~2D! or three-dimensional~3D! extended minibands in
stead of localized quantum dot states. Such energy spec
modification is expected to take place provided that~i! the
quantum dots are regimented, e.g., periodicity of the qu
tum dots in an array is very high;~ii ! the dot size is homo-
geneous;~iii ! interdot distance and barrier height are sm
enough for significant electron wave-function overlap; a
~iv! the dots are crystalline, with low surface defect conc
tration. Quantum dot structures fabricated using differ
techniques always have some degree of disorder, which
be described by the Anderson or Lifshitz models. At t
same time, extended states and minibands can still be for
as long as the bandwidth due to wave-function overlap
ceeds the total broadening, which is mostly determined
the disorder inhomogeneous broadening.

Regimented or partially regimented 2D and 3D multip
arrays of quantum dots, also termed quantum dot supe
tices ~QDS!, have already been fabricated by a variety
techniques.2–7,11–13Regimentation along all three direction
in a structure described in Ref. 13 brings an analogy w
bulk crystals. In these artificial crystals the role of atoms
played by quantum dots. Thus, we refer to these structure
quantum dot crystals~QDC! or ‘‘supra crystals.’’ It is impor-
0163-1829/2002/66~24!/245319~9!/$20.00 66 2453
y

-
ts

d

l
ts
n.
e
f

um

n-

l
d
-
t
an

ed
-
y

t-
f

h
s
as

tant to note that the analogy with real crystals goes furth
specifically, to the carrier energy spectrum. In the discuss
to follow the term quantum dot crystal is used when t
intention is to emphasis that the regimentation, size, inter
distance, and quality of the dots are such that extended s
are formed. As a consequence, the energy spectrum of
supra crystals is characterized by emergence of 3D m
bands separated by complete stop bands or energy minig
The latter is not implied when the term quantum dot sup
lattice is used.

Formation of extended electron states and minibands h
already been observed in multiple quantum dot arrays. A
myev et al.14–16 demonstrated experimentally the evolutio
of electron states from individual~localized! to collective
~extended! states in a dense quantum dot ensemble that c
sisted of monodisperse small CdSe dots of average ra
R;1.6– 1.8 nm arranged in a cubical or hexagonal latti
Song et al.17 investigated in-plane photocurrent in se
assembled InxGa12xAs/GaAs quantum dot arrays. They re
ported that samples with inhomogeneous QD sizes sh
hopping conduction, which indicates the localization of c
riers in individual dots, while the highly ordered and siz
homogeneous quantum dot arrays exhibit negative differ
tial conductance that has been attributed to carrier ene
miniband formation. Yakimovet al.18,19investigated in-plane
electrical conductivity of arrays of Ge quantum dots on
with dot sizeD;12– 19 nm. In our preliminary study, whic
used an analytical solution of the Schro¨dinger equation for
the simplified model potential, we calculated the low-fie
electrical conductivity in QDS~Ref. 20! and obtained good
agreement with experimental curves of Refs. 18 and 19.

Apart from the fundamental scientific importance of t
investigation of electron~hole! and phonon spectra in reg
mented quantum dot arrays, there is a significant pract
interest in addressing this problem. Application of QDS
infrared photodetectors requires high values of mobility21 in
order to sweep the carriers. In the miniband transport reg
one can expect much higher carrier mobility than in the h
©2002 The American Physical Society19-1
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ping regime.17 Miniband conduction may also be desirab
for high-temperature thermoelectric applications of quant
dot arrays.1,22 Despite recent achievements in self-assem
of QDS and many experimental reports on electrical and
tical characterizations of such structures, few theoretical
pers deal with characteristics of aregimented ensembleof
quantum dots. The reports that can be found in
literature23–25 deal with calculation of the electronic state
only under some simplifying assumptions. Most theoreti
investigations are still focused on development of an ac
rate description of properties of a single dot.

In this paper we undertake a more general approach
investigate bothelectron and phonon spectra of three-
dimensional regimented quantum dot superlattices using
accurate numerical solution technique. The approach
posed in this paper is a drastic improvement of our ear
semianalytical solution for the model potential.25 Since the
symmetry of the model potential is the same as in one of
considered systems, the approach described in Ref. 25 g
very good qualitative results. The semianalytical solution
useful for better understanding specific features of the e
tron spectrum in QDC especially below the potential barr
On the other hand, for the subsequent calculation of the
lated physical properties, such as optical spectra or elect
conductivity, the absolute error of that approach is up
several dozens meV and increases significantly for
above-the-barrier states, which is unacceptable. The pre
calculation based on the finite-difference method~FDM!
scheme allows us to accurately describe both electron
phonon spectra in 3D QDC, examine above-the-bar
states, and take disorder into consideration by extending
simulation domain above one period of the structure.

II. THEORETICAL MODEL

We consider an orthorhombic 3D-regimented quant
dot superlattice~Fig. 1! and assume that the conditions f
formation of the extended carrier states are satisfied.
goal is to investigate electron and phonon spectra of
artificial quantum dot crystal. Since we are interested

FIG. 1. Schematic structure of the orthorhombic quantum
crystal.
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properties of a quantum dot crystal, e.g., theregimented en-
sembleof quantum dots, we limit our analysis to the simple
parallelepiped shape of the dots. The numerical solut
scheme described here can be readily applied to dots o
bitrary geometry.

A. Electron spectrum

Since experimentally investigated quantum dot arra
usually have quantum dot sizes significantly larger than
teratomic distances2–7,11 we restrict our model to dots of a
least a few nanometers in size. In this case we can calcu
the electron spectrum of QDC in the envelope wave-funct
approximation applied to a potential barrier profile of choic
The one-electron Schro¨dinger equation for such a system
written as

F2
\2

2
¹r

1

m*
¹r1V~r !Gw~r !5Ew~r !, ~1!

where \ is Planck’s constant, 1/m* is the reciprocal
effective-mass tensor,w(r ) is the electron wave function,E
is the electron energy, and the confining potential pro
V(r ) corresponds to an infinite sequence of quantum dot
sizesLx , Ly , andLz separated by the barriers of thickness
Hx , Hy , and Hz . The profile V(r ) is set to zero in the
barrier region, while inside the quantum dot it is equal to t
band offset in the conduction~or valence! band of the con-
sidered material system taken with a negative sign. The
formation about band structure of the host materials is
flected in the reciprocal effective-mass tensor 1/m* . The
effect of strain was approximately taken into account
changing the value of the corresponding band offset. T
confining potentialV(r ) was considered to be a piecewis
uniform function.

B. Phonon spectrum

Electron ~hole! mobility in technologically important
semiconductors such as Si or SiGe at room temperatur
limited by scattering on both acoustic and optical phono
The spectrum of optical phonons, which have high energ
the zone center, is not altered in QDC as strongly as
spectrum of acoustic phonons. There have been experime
indications that, especially at low temperatures, acous
phonon scattering dominates carrier relaxation in quan
dot arrays.17 Thus, we restrict our investigation to analysis
the acoustic-phonon modes in 3D-ordered quantum dots
bedded in some host material with different crystalline pro
erties. At a long-wavelength limit, the acoustic-phonon d
persion can be described by a continuum model.

If a quantum dot structure is made of semiconductors
cubic symmetry, such as Si and Ge with a diamond latt
(Oh

7 space group! or A3B5 compounds such as GaAs or InA
with a zinc-blende lattice (Td

2 space group!, the number of
independent elastic stiffness constants in the elasticity eq
tion reduces to 3:

t

9-2
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The similar expressions fory and z components of the dis
placement vectoru of a geometrical point inside the materi
of QDC with (i 5x,y,z) coordinates may be obtained b
cyclic exchange of (ux ,uy ,uz) and~x,y,z!. The elasticity Eq.
~2! in a nonuniform medium results from Euler-Lagran
equations for the system with a cubic crystal lattice. T
solution of these equations for the quantum dot ‘‘supra cr
tal’’ can be expressed in a plane-wave form by analogy w
regular bulk crystals,

u~r ,t !5A~r !exp@ i ~q•r2vt !#,

where uqu52p/l is the phonon wave vector, with phono
wavelengthl; r is the coordinate vector;t is time; andv is
the phonon frequency. The eigenvalues of Eq.~2! in bulk
material linearly depend on the phonon wave vector, a
should be in the continuum approximation. Note that
phonon modes are of a pure compression~longitudinal! type
or a pure shear~transverse! type if and only if the wave
propagates along a crystallographic direction of high symm
try; otherwise it has components of each type.

The limits of the applicability of the continuum approx
mation can be estimated from the comparison of the ca
lated dispersion branches with experimental data and lat
dynamics simulation results. Approximately, as long
acoustic-phonon dispersion remains linear the phonons
be formally treated in the continuum long-wave approxim
tion. Based on the experimental data provided in Ref. 28,
can estimate the lowest limit for Si to be about 10 meV alo
the @111# crystallographic direction and about 5 meV for G
along the same direction. It corresponds to about one-t
~one-fifth! of the Brillouin zone for silicon~germanium!. The
latter translates to the feature size of 2–3 atomic layers
real space. Thus our approach is rather accurate for des
tion of acoustic phonons in QDC with a feature size of s
eral nanometers. The unit cell of the QDC of orthorhom
symmetry is analogous to the unit cell of regular bulk cry
tals. Using this analogy, one can solve the elasticity Eq.~2!
with new quasiperiodic boundary conditions for QDC,

u~r1D!5exp~ iq•D!u~r !. ~3!

Equation ~3! constitutes the Bloch-Floquet theorem for
artificial quantum dot crystal, where vectorD
5(Dx ,Dy ,Dz) describes the new periodicity of the structu
~see Fig. 1!.

III. NUMERICAL APPROACH

The essence of the finite-difference method is a subs
tion for each differential operator in Eqs.~1! and ~2!, the
finite-difference operator defined on a preselected grid.
common problem associated with this method is the se
tion of an appropriate grid to achieve the desired accuracy
our case, due to orthorhombic symmetry of QDC and the
24531
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shape it is convenient to use a square grid with a cons
step. Since we do not consider disorder, we can limit
numerical procedure to just one period of the structure~see
Fig. 2!.

Instead ofn analytical partial differential equations for th
whole domain we now have a set ofnNxNyNz linear alge-
braic equations for the eigenfunctionswj at eachjth node of
the grid. HereNi denotes a number of nodes in thei direc-
tion. The finite-difference equations were obtained us
Euler-Lagrange equations from the discretized Lagrangia
the system, which ensured the Hermiticity of the correspo
ing matrix constructed on bonds with material paramet
determined on them. Material parameters, such as recipr
effective mass in the Schro¨dinger equation and elastic stiff
ness constants in the elasticity equation, change abrupt
the quantum dot boundaries. The latter gives one an un
tainty in defining the difference operator if the nodal po
lies on the boundary. To avoid this uncertainty we put t
vertex of the quantum dot, which is the closest to the orig
to the point with coordinates~1

2,
1
2,

1
2!, and further assumed

that the material parameterp changes linearly from its value
p1 in one material to its valuep2 in another material. We
found that the convergence is the best when the grid is c
sen in such a way that the quantum dot boundaries are c
to the middle of a bond.

In the FDM scheme for the Schro¨dinger equation we used
a central difference approximation for double derivative
The diagonal element of the QDC Hamiltonian, which co
responds to a node with coordinates (axj x ,ayj y ,azj z), has
the following index:

nxyz5NxNyj z1Nxj y1 j x ,

and it is equal to

FIG. 2. Simulation domain in orthorhombic quantum dot cry
tals with indicated grid and boundary conditions. Eigenfunctionsw
for considered partial differential equations are also shown.
9-3
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Hnxyznxyz
5Vxyz1

\2

2 F 1

ax
2 S 1

mx11/2,y,z*
1

1

mx21/2,y,z* D
1

1

ay
2 S 1

mx,y11/2,z*
1

1

mx,y21/2,z* D
1

1

az
2 S 1

mx,y,z11/2*
1

1

mx,y,z21/2* D G .
Note that values ofV and m* vary as the functions
of the node coordinates. The nodes with coordina
@ax( j x11),ayj yazj z#, @axj x ,ay( j y11),azj z#, and
@axj x ,ayj y ,az( j z11)# form the bonds alongx, y, andz di-
rections, respectively. The corresponding elements in
Hamiltonian are

Hnxyzn~x11!yz
52

r x

mx11/2,y,z* ax
2 \2/2,

Hn~x11!yznxyz
52

r̄ x

mx11/2,y,z* ax
2 \2/2, ~4!

Hnxyznx~y11!z
52

r y

mx,y11/2,z* ay
2 \2/2,

Hnx~y11!znxyz
52

r̄ y

mx,y11/2,z* ay
2 \2/2, ~5!

Hnxyzn~z11!yz
52

r z

mx,y,z11/2* az
2 \2/2,

Hnxy~z11!nxyz
52

r̄ z

mx,y,z11/2* az
2 \2/2. ~6!

Here the phase shiftr j is equal to unity everywhere excep
for the points withj j5Nj , where the phase shift is given b
the expression

r j5exp~ iqjdj!.

In the above Eqs.~4!–~6! r̄ j is the complex conjugate ofr j .
Due to its locality the finite-difference version of th
Schrödinger equation has only seven nonzero elements
row in the QDC electron~hole! Hamiltonian of (NxNyNz)
3(NxNyNz) size.

The FDM scheme for elasticity Eq.~2! is more compli-
cated than for Schro¨dinger Eq.~1! since it contains mixed
derivatives. The corresponding matrix has 35 nonzero
ments in each 3(NxNyNz) row.

To find the eigenvalues of the matrices generated for e
tron states and phonon modes we used theARPACK software
package.29 It uses the implicitly restarted Arnoldi method30

designed to solve large-scale eigenvalue problems and
lows one to diagonalize the sparse matrices such as t
described in this section.
24531
s

e

er

e-

c-

al-
se

IV. RESULTS AND DISCUSSION

As an example of a material system we consider Ge qu
tum dots grown on Si by molecular-beam epitaxy~MBE!.
Although state-of-the-art Ge/Si QDS are characterized o
by partial regimentation,4,5 continuous progress in MBE self
assembly most likely will lead to synthesis of 3D-regiment
quantum dot superlattices similar to those reported in R
12 and 13. We have carried out numerical simulations
QDC with the following parameters:Lx5Ly55.0, Lz52.5,
Hx5Hy52.5, and Hz51.25 nm; mhh

B 50.49m0 , mhh
W

50.28m0 , andVhh50.450 eV. For simplicity we restrict ou
analysis to heavy holes in Ge/Si QDC. This is done for t
reasons. First, most of the band-gap discontinuity betwee
and Ge goes to the valence band. Secondly, we can us
single-valley effective mass approximation since a sin

FIG. 3. Dependence of the eigenvalues of Schro¨dinger ~a! and
elasticity ~b! equations at the center of the quasi-Brillouin zone
Ge/Si QDC with the following parameters:Lx5Ly55, Lz52.5,
Hx5Hy52.5, and Hz51.25 nm as a function of the invers
squared number of nodes in every direction. The dashed lines
linear extrapolations of the dependencies to zero. The zero p
corresponds to the infinite number of nodes and thus the extr
lated eigenvalues are close to the ‘‘true’’ ones.
9-4
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ELECTRON AND PHONON ENERGY SPECTRA IN A . . . PHYSICAL REVIEW B66, 245319 ~2002!
potential energy maximum in the valence band is located
G point.

A. Accuracy of the FDM scheme

First, we verify the accuracy of the results obtained us
the outlined approach. The most important question w
dealing with numerical methods is dependence of the res
on the grid step, i.e., convergence of the developed F
scheme. Three-dimensional periodicity of QDC structu
dramatically reduces the number of nodes necessary f
good convergence of the finite-difference scheme compa
to a single quantum dot task.

Figures 3~a! and 3~b! show the dependence of the eige
values of Schro¨dinger @Fig. 3~a!# and elasticity@Fig. 3~b!#
equations at the center of the quasi-Brillouin zone~QBZ! as
a function of the inverse squared number of nodesN in every
direction. The zero point corresponds to the infinite num
of nodes and thus the extrapolated eigenvalues are clos
the ‘‘true’’ ones. The relative errord for N515 ~i.e., only
five nodes in barriers and ten inside dots! varies in the range
0.31%–4.01% for elasticity Eq.~2! eigenvalues and 0.32%
1.97% for phonon energies, correspondingly. The elect
energy relative error forN515 is 1.04%–4.45%. If the num
ber of nodes increases to 30, the error reduces to 0.33
1.12% for electron and 0.00%–0.93% for phonon energ
Thus it is enough to have as few as five to ten nodes insi
single quantum dot and in the spacer to achieve accu
better than 5% for the energy. Such good convergence m
it possible in the future to take disorder into consideration
expanding the simulation subdomain to several periods
QDC. Nevertheless we choose to useN530 in our calcula-
tions for the system without disorder.

B. Electron spectrum in QDC

Solid lines in Figs. 4~a! and 4~b! show the heavy-hole
dispersion of Ge/Si QDC calculated using the FDM outlin
in Sec. III. The energy is given with respect to the position
the potential barrier. Double brackets for the wave-vec
notation are introduced to distinguish direction in quant
dot supra crystals from crystallographic directions. For co
parison, we also present the heavy-hole dispersion~dashed
lines! in Ge/Si QDC with the same material parameters a
dot size but calculated for the model potential using o
semianalytical approach.25 This model potential of the type
V(x,y,z)5V(x)1V(y)1V(z), which approximates the
‘‘conventional’’ uniform-height potential barrier of QDC, al
lows for wave-function coordinate separation and analyt
solution.19,25,26 The three-digit numbersnxnynz near the
curves indicate the symmetry of the corresponding w
functions. The number of zeros in thej direction is equal to
(nj21). One can see that the analytical solution agrees w
with the FDM solution for below-the-barrier states. Arrow
indicate the energy difference between corresponding sta
Since the relative error for 30 nodes in every direction
very small ~<1%!, we can say that some discrepancy
these solutions is mostly due to the difference in the con
ing potentials used in Ref. 25, where we chose to allow
wave-function separation. The relative error of the elect
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FIG. 4. Heavy-hole dispersion in Ge/Si QDC with the followin
parameters:Lx5Ly55, Lz52.5, Hx5Hy52.5, andHz51.25 nm
along the@@100## quasicrystallographic direction~a! and along the
@@111## quasicrystallographic direction~b!. Solid lines show the dis-
persion found using the finite-difference method. Dashed lines s
the dispersion found for a model potential that allows for wav
function separation in the Schro¨dinger equation. Heavy-hole mini
bands on the plot are indicated by the three quantum numb
Arrows show the correspondence of these two solutions. The
ergy in units of eV is counted from the position of the potent
barrier. Note that below-the-barrier states obtained by differ
methods are close.
9-5
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OLGA L. LAZARENKOVA AND ALEXANDER A. BALANDIN PHYSICAL REVIEW B 66, 245319 ~2002!
energy found by this method in the center of the QBZ
1.32%–11.91% and the corresponding deviation in ene
varies from 3.1 to 53.2 meV. One can also notice that
FDM solution allows one to lift the degeneracy of som
dispersion branches away from the points of high symme
On the other hand, the accurate FDM solution presented
can be used as a validation procedure for simpler and fa
analytical solution with separable model potential, whi
may be more practical for the below-the-barrier states.

Similar to bulk crystals, the energy dispersion in QDC h
the full symmetry of the reciprocal lattice. In this artificia
crystal some of the energy bands are degenerate in the c
of the QBZ. Moving away from the point of high symmetr
in the center of the QBZ to a point of lower symmetry spl
the energy branches@see, for example, the second from t
bottom dispersion branch in the@@100## quasicrystallographic
direction in Fig. 4~a!#.

Figure 5 illustrates the electron density of states~DOS!
found using the simplified analytical solution and conve
tional definition

G~E!5
2

dE E d3k.

Here the integral is taken over the volume ink space
bounded by a surface of constant energyE. Coupling among
regimented quantum dots leads to a drastic change in
electron DOS as compared to single dots or quantum w
superlattices. The double peaks seen in Fig. 5 correspon
the same electron miniband. The stronger the interdot in
action, the larger the energy spacing between the peaks
a given structure the energy spacing is several dozen
meV. In quantum well superlattices the electron DOS has
arccosinelike form superimposed over a characteristic ‘‘st
case’’ due to a 2D electron continuum in planes perpend
lar to the growth direction. This is not the case for a quant

FIG. 5. Density of heavy-hole states calculated separately
each miniband in the tetragonal Ge/Si QDC with the parame
Lx5Ly55, Lz52.5, Hx5Hy52.5, andHz51.25 nm shown with
the dashed line. Their sum corresponding to the total density
states is shown with the solid line.
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dot crystal. Although for the lowest miniband the DOS in t
artificial crystal has an arccosinelike edge, it drops to zero
some higher energy since there is not 2D continuum, an
becomes much more complicated for higher-energy m
bands~Fig. 5!. On the other hand, the shape of the DOS
QDC is evidently different from a delta-function-like DOS o
single quantum dots or arandom array of noninteracted
quantum dots. Despite the analogy in shape to the DOS
regular bulk crystals, the energy scale for DOS peaks
quantum dot crystals is a thousand times smaller.

C. Phonon spectrum in QDC

Figure 6 presents the phonon dispersion in the@@100##
quasicrystallographic direction calculated using the FD
This quasicrystallographic direction in QDC is parallel to t
@100# crystallographic direction in the host material, assu
ing that the QDC structure is grown on the~001!-oriented
substrate. The phonon spectrum in Fig. 6 is presented in
extended Brillouin-zone scheme to emphasize the existe
of two different types of phonon modes in QDC that eman
from bulk acoustic modes. These modes are quasiacou
@v(q50)50# and quasioptical@v(q50)Þ0#.

Quasiacoustic modesare nothing else but folded acoust
branches of the host material. The multiple reflection
phonons from periodic interfaces leads to a minigap form
tion at the Brillouin-zone boundary. The degeneracy due
intersection of different branches is lifted everywhere exc
for the points of high symmetry. The same figure shows
acoustic-phonon dispersion in bulk Si~dashed lines! and
bulk Ge ~dot-dashed lines! along the@100# crystallographic
direction. The longitudinal and transverse sound velocit
are assumed to benL58433.2 andnT55844.6 m/s for Si,

r
rs

of

FIG. 6. Phonon dispersion in Ge/Si 3D regimented quantum
superlattice~solid lines! plotted for a structure with the following
parameters: Lx5Ly55.0, Lz52.5, Hx5Hy52.5, and Hz

51.25 nm. The dispersion is shown along the@@100## quasicrystal-
lographic direction. Acoustic-phonon dispersion relations in bulk
and Ge are indicated with dashed and dot-dashed lines, corresp
ingly. Dotted lines show the acoustic-phonon dispersion estima
from the volume fractions of Si and Ge in given QDC.
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and nL54913.8 andnT53542.4 m/s for Ge,28 respectively.
The value of the group velocity for the quasiacous
phonons in QDC lies between Si and Ge sound veloci
and it is not defined by the volume fractions of two consti
ent materials~see the dotted lines in Fig. 6!. Even in solid
alloys where atoms of two materials are randomly distribu
elastic properties change almost linearly only in ‘‘one-mo
behaved’’ systems such as Na12xKxCl.27 The composition
dependence of phonon energy in the SixGe12x alloy is far
from linear.28 In systems with a spatial regimentation like
QDC the deviation from linear dependence should increa

The quasiacoustic dispersion branches deviate downw
from the linear dependence at higher phonon energy.
transverse mode, which is doubly degenerate at the zone
ter, splits at the zone boundary. If the wave propagates a
the @@100## quasicrystallographic direction in QDC with te
tragonal symmetry (dx5dyÞdz), two shear modes@@010##
and @@001## are different. Ifdy.dz the @@010## mode bends
more strongly than the@@001## mode. However, if the phonon
wavelengthl is large compared to the QDC periodudu, e.g.,
l52p/uqu@udu, acoustic wave properties are determined
the averaged medium parameters~effective-medium approxi-
mation! and the fine structure of the medium does n
strongly affect the wave propagation. Indeed, this is clea
seen in the extended zone presentation when the pho
wave vector approaches the third Brillouin zone, which c
responds to the period of the quantum dot superlatticedx
57.5 nm along this direction. At this value of the wave ve
tor, the slope of the quasiacoustic modes that defined
group velocity increases.

Quasioptical modescorrespond to ‘‘nearly standing’
waves. One can view them as created by periodic sca
such as quantum dot interfaces. These modes can be ind
inside quantum dots or in the space between them. A ‘‘tru
standing wave would have a completely flat dispersion re
tion, which reflects the fact that this wave does not propag
through the crystal. In contrast, the dispersion branche
quasioptical modes can have a minimum. The latter me
that these modes propagate slowly going back and forth.
refer to these modes as quasioptical since they have a
zero energy in the center of the Brillouin zone, e.g., a cu
frequency. At the same time one should emphasize that t
modes are also emanating from acoustic bulk phonon mo
The regular optical-phonon modes have much higher ene
In Ge/Si QDC of the considered geometry the lowest q
sioptical branch has the energy of about 2.6 meV at the z
center. In bulk Si the longitudinal-optical~LO! and
transverse-optical~TO! phonon energies are\vLO

G 5\vTO
G

564.3 meV. In bulk Ge they are \vLO
G 5\vTO

G

537.2 meV.28 It is obvious that emergence of many qu
sioptical phonon branches in QDC that have low charac
istic energy may dramatically modify carrier energy rela
ation processes in such structures. This is somew
analogous to the change that electron-phonon interaction
dergoes in semiconductor quantum wires.31–33

D. Tuning transport properties of quantum dot supra crystals

Unlike ‘‘real’’ crystals where atoms, lattice geometry, an
interatomic distances are fixed entities, quantum dot su
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FIG. 7. Phonon dispersion~solid lines! and the first heavy-hole
miniband~solid line with dots! shown along@@100## ~a!. @@111## ~b!
quasicrystallographic directions in Ge/Si QDC with the followin
parameters: Lx5Ly55.0, Lz52.5, Hx5Hy52.5, and Hz

51.25 nm. For convenience, the heavy-hole energy is counted f
the miniband minimum.
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crystals represent ensembles of designer atoms with pote
for tuning their transport and optical properties. As an e
ample, we analyze here a possibility of achieving suppr
sion or anisotropy of some types of electron-phonon sca
ing in QDC. Suppression of electron-phonon scattering co
be beneficial for a variety of reasons, from improved pr
pects for observation of Bloch oscillations23 to applications
of Ge/Si QDC in photodetectors and thermoelectric devic
The important parameters of the carrier band structure
defines electron-phonon scattering are the~first! miniband
half width D1 and the energy gap between the first two mi
bandsE22E1 .

Let us consider single-phonon-assisted processes, w
are usually the most important ones. We compare heavy-
and phonon-dispersion branches along@@100## and @@111##
quasicrystallographic directions@see Figs. 7~a! and 7~b!#.
The first heavy-hole branches are shown with solid lin
~marked with circles!. A hole ~or an electron! can scatter
from its initial stateE(k i) to the final stateE(k f) with pho-
non \V(q) assistance if and only if both energy
conservation E(k f)2E(k i)5\V(q) and momentum-
conservationk f2k i5q laws are satisfied. Assuming a line
acoustic-phonon dispersion for small wave vectors, e
\V(q)5\vgq, one can find from the above equations t
condition for the allowed acoustic-phonon-assisted tra
tions:

E~k f !2E~k i !

\uk f2k i u
5ng . ~7!

Equation~7! can be graphically interpreted as a horde to
hole dispersion with the slope equal to the acoustic-pho
group velocity. In tetragonal (dx5dy.dz) QDC the heavy-
hole and phonon dispersion along@@100## @see Fig. 7~a!# and
@@010## directions generally have the smallest value of
slope, while@@111## @see Fig. 7~b!# is the direction of the
steepest branches. As one can see in Fig. 7~a! for given pa-
rameters of QDC there are no phonons available that
scatter holes within the same~first! miniband. Roughly, this
is because the hole miniband is very flat. Along the@@111##
quasi-crystallographic direction@see Fig. 7~b!# the slope of
the first hole miniband is much larger than the phonon gro
velocity of any branch. It results in scattering suppression
approximately 80% of the Brillouin zone except for the sm
areas near the center and the Brillouin-zone boundary. T
the hole-single-phonon scattering in QDC displays spa
anisotropy.

Interminiband transitions with assistance of one phon
are forbidden for the considered structure. The minigap
tween the first two minibands shown in Fig. 4,E22E1
;80– 100 meV, is larger than the optical-phonon ene
even in the bulk host material (\vLO

G 5\vTO
G 564.3 meV

for Si and\vLO
G 5\vTO

G 537.2 meV for Ge28!. At the same
time, multiphonon scattering in QDC may play a significa
role in energy relaxation processes due to the presenc
many quasioptical-phonon branches~see Figs. 6 and 7!. At
room temperature, these low-energy branches should ha
high population density in accordance with Bose-Einst
statistics.
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Analyzing obtained numerical results~see Fig. 4! we are
able to make the following important observation. The ex
tence of 3D minibands in quantum dot superlattices m
result in nonlinear dependence of electrical conductivity
the applied bias. The latter follows from the various pos
bilities for position of the quasi-Fermi level~QFL! with re-
spect to miniband edges. When the QFL is below the fi
miniband or lies in a gap between minibands, QDC manif
quasiinsulator or quasisemiconductor properties depen
on the temperature. When the QFL is inside a miniba
QDC exhibit quasimetallic properties. This changing beh
ior may lead to quasiphase transitions andnegative differen-
tial conductivityof regimented quantum dot structures. T
negative differential conductance in self-assemb
InxGa12x-As/GaAs quantum dot arrays has recently be
measured at a temperature of 4.5 K.17

V. CONCLUSIONS

We obtained the electron~hole! and phonon energy spec
tra in a three-dimensional regimented quantum dot supe
tice by solving the Schro¨dinger equation in the envelop
wave-function approximation and elasticity equation in t
continuum approximation. Both equations have been sol
numerically using the finite-difference method. Electr
~hole! and phonon densities of states, required for model
of transport and optical properties of quantum dot super
tices, were also calculated. Three-dimensional regimenta
of quantum dots in such superlattices brings a number
interesting analogies with bulk semiconductor crystals. C
pling among quantum dots in such a regimented struct
e.g., quantum dot crystal, results in formation of extend
electron states and minibands provided that the disorde
the system is small. We demonstrate that the acoustic-pho
dispersion in the quantum dot superlattice undergoes str
tunable modification, which leads to emergence of quasi
tical branches. These branches are much lower in en
than ‘‘true’’ optical phonons in bulk semiconductors and th
may strongly affect energy relaxation processes. We also
cussed some important phenomena that originate from
specific electron and phonon spectra in quantum dot su
lattices, such as negative differential conduction, carr
phonon scattering anisotropy, and suppression.

Note Added in Proof. We learned about a recent theore
cal study34 that suggests that minibands in quantum dot
perlattices are rather robust against morphological or c
figurational disorder, which adds validity to the assumptio
made in this work.

ACKNOWLEDGMENTS

This material is based upon work supported in part by
National Science Foundation under CAREER Award N
0093959 to A.A.B., and AFOSR STTR Contract N
F49620. O.L. is indebted to Professor L.P. Pryadko~UCR!
for his help with numerical solution.
9-8



u
,

in

h.

p.

,

-

J.

, G
d

se

N.

y,

gt

.

,

d

,

.

.

.

.

, J.

oc.

-
rge

ldi

at

s-

ys.:

, J.

ELECTRON AND PHONON ENERGY SPECTRA IN A . . . PHYSICAL REVIEW B66, 245319 ~2002!
*On leave from the Microelectronics Department, St. Petersb
State Electrotechnical University ‘‘LETI,’’ St. Petersburg
Russia.

†Corresponding author. Electronic address: alexb@ee.ucr.edu
1For a review, see, for example, K. L. Wang and A. Baland

Quantum Dots: Properties and Applications, inOptics of Nano-
structured Materials, edited by V. Markel and T. George~Wiley,
New York, 2000!, p. 515.

2N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Z
I. Alferov, and D. Bimberg, Semiconductors32, 343 ~1998!.

3V. Ya. Aleshkin, N. A. Bekin, N. G. Kalugin, Z. F. Krasilnik, A. V.
Novikov, V. V. Postnikov, and H. Seyringer, Pis’ma Zh. Eks
Teor. Fiz.67, 46 ~1998! @JETP Lett.67, 48 ~1998!#.

4J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang
Appl. Phys. Lett.74, 185 ~1999!.

5J. L. Liu, W. G. Wu, A. Balandin, G. Jin, Y. H. Luo, S. G. Tho
mas, Y. Lu, and K. L. Wang, Appl. Phys. Lett.75, 1745~1999!.

6P. C. Sharma, K. W. Alt, D. Y. Yeh, D. Wang, and K. L. Wang,
Electron. Mater.28, 432 ~1999!.

7A. Balandin, S. Bandyopadhyay, P. G. Snyder, S. Stefanovich
Banerjee, and A. E. Miller, Phys. Low-Dimens. Semicon
Struct.11Õ12, 155 ~1997!.

8T. Takagahara, Phys. Rev. B47, 4569~1993!.
9E. P. Pokatilov, V. A. Fonoberov, V. M. Fomin, and J. T. Devree

Phys. Rev. B64, 245328~2001!.
10V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S.

Balaban, and S. N. Klimin, Phys. Rev. B57, 2415~1998!.
11A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhya

Appl. Phys. Lett.76, 137 ~2000!.
12S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vo

and H. L. Hartnagel, Science285, 1551~1999!.
13G. Springholz, M. Pinczolits, P. Mayer, V. Holy, G. Bauer, H. H

Kang, and L. Salamanca-Riba, Phys. Rev. Lett.84, 4669~2000!.
14M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko

and U. Woggon, Phys. Rev. B60, 1504~1999!.
15M. V. Artemyev, U. Woggon, H. Jaschinski, L. I. Gurinovich, an

S. V. Gaponenko, J. Phys. Chem. B104, 11 617~2000!.
16M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko

H. Jaschinski, and U. Woggon, Phys. Status Solidi B224, 393
~2001!.

17H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M
Kawabe, Phys. Rev. B64, 085303~2001!.
24531
rg

,

.
.

,

,

18A. I. Yakimov, V. A. Markov, A. V. Dvurechenskii, and O. P
Pchelyakov, Pis’ma Zh. Eksp. Teor. Fiz.63, 423 ~1996! @JETP
Lett. 63, 444 ~1996!#.

19A. I. Yakimov, V. A. Markov, A. V. Dvurechenskii, and O. P
Pchelyakov, J. Phys.: Condens. Matter6, 2573~1994!.

20O. L. Lazarenkova and A. A. Balandin, inProceedings of the
Electrochemical Society, edited by M. Cahay, J. P. Leburton, D
J. Lockwood, S. Bandiopadhyay, and J. S. Harris~Electrochemi-
cal Society, Pennington, NJ, 2001!, Vol. 19, p. 238.

21E. Towe and D. Pan, IEEE J. Quantum Electron.6, 408 ~2000!.
22T. C. Harman, P. J. Taylor, T. L. Spears, and M. P. Walsh

Electron. Mater.29, L1 ~2000!.
23I. A. Dmitriev and R. A. Suris, Semiconductors35, 212 ~2001!.
24C. Goffaux, V. Lousse, and J. P. Vigneron, Phys. Rev. B62, 7133

~2000!.
25O. L. Lazarenkova and A. A. Balandin, J. Appl. Phys.89, 5509

~2001!.
26O. L. Lazarenkova and A. A. Balandin, in Proc. Mater. Res. S

677, AA4.4 ~2001!.
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