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Probing the Potential Landscape Inside a Two-Dimensional Electron Gas
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We report direct observations of the scattering potentials in a two-dimensional electron gas using
electron-beam diffraction experiments. The diffracting objects are local density fluctuations caused by
spatial and charge-state distribution of donors in the GaAs-(Al,Ga)As heterostructures. The scatterers
can be manipulated externally by sample illumination or by cooling the sample down under depleted
conditions.

PACS numbers: 71.55.Eq, 72.20.Fr
The high electron mobilities that can be obtained
in the two-dimensional electron gas (2DEG) in GaAs-
AlxGa12xAs heterostructures continue to fascinate the
community [1,2]. At low temperatures the mobility of
electrons in a perfect 2DEG is limited by ionized donor
scattering. The donors are located in the doping layer,
some tens of nanometers away from the 2DEG. Because
of the random distribution of donor atoms, the scattering
potential is not homogeneous [3]. However, there are
theoretical [4] and experimental [5,6] indications that spa-
tial correlations between donors in different charge states
reduce the ionized donor scattering and thus enhance the
mobility.

These different charge states exist because for struc-
tures with a certain content of Al (x $ 0.2) the electronic
ground state of the Si donor is twofold [7–9]: First, a shal-
low donor state, which is associated with a normal substi-
tutional lattice site and a binding energy of �7 meV �d0 )
d1 1 e� . Second, a more localized, deep donor level with
a binding energy of �160 meV, the DX center, which de-
rives from lattice distortions at or near the donor site. In
fact, the latter is a negatively charged donor state, DX2. At
low temperatures (T , 130 K) DX2 states become stable
against thermal dissociation �DX2 , d0 1 e�.

Several aspects of the high mobility of a 2DEG can
now be explained by invoking spatial correlations between
donors in different states, d1 and DX2 [5,6], where the
roughening of the potential caused by donors in one state
is effectively screened by donors in the other state. The
electrostatic interaction should lead to regions of several
tens of nanometers in diameter where all the donors are in
one state [4], which then lead to regions of different den-
sity in the 2DEG below the donors [3,4]. The correlations
can be altered externally by sample illumination [7,10,11],
causing a dissociation of DX2 centers (Eexcite $ 1.2 eV)
and “bias cooling,” i.e., cooling the sample down while the
2DEG is depleted by an applied gate voltage [6,12–14]
(this prevents DX2 formation). In experiments performed
so far [5,6], the mobility of a 2DEG was inferred from
standard bulk conductivity measurements probing an av-
eraged scattering potential, which do not yield informa-
tion about the local distribution of shallow donors and DX
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centers. Moreover, the evidence for the occurrence of
donor correlations is only indirect.

In this paper we use a collimated electron beam, injected
and detected via quantum point contacts (QPC), as a local
probe for the scattering potentials in a 2DEG, which are
due to density fluctuations caused by the donor state cor-
relations. The observed interference patterns are analyzed
using a theoretical model based on a technique developed
by Saito et al. [15], extended to the situation where impuri-
ties are present. This model allows for a deduction of sizes
and locations of the scattering potentials. Experimentally,
the donor configurations are changed by illumination and
bias-cooling techniques.

For the experimental investigations, several gate-
defined nanostructures fabricated from conventional GaAs-
Al0.33Ga0.67As-heterojunction material are used. The
relevant part of the layer structure consists of 400 nm
undoped GaAs, 20 nm undoped Al0.33Ga0.67As (spacer
layer), 38 nm 1.33 3 1018 cm23 Si-doped Al0.33Ga0.67As,
and 17 nm undoped GaAs (cap layer). Typical values
for the carrier density and mobility are n � �1.5 2.3� 3

1015 m22 and m � 60 150 m2 �V s�21. A schematic
top view of a typical gate structure is given in Fig. 1a.
Schottky gates form two opposite QPCs (injector and
detector), separated by a distance of typically L � 4 mm.
In some samples the area in between the QPCs is partly
covered by an additional Schottky gate (light grey regions,
Fig. 1a). The conductance of the QPC can be adjusted in
such a way that only N conducting modes are transmitted
(N � Gh�2e2). An electrostatically defined QPC can
be used as the source of a narrow electron beam which
propagates in the 2DEG [16]. Any object, impurity,
potential fluctuation, etc., in the path of that beam leads to
spatial modifications of the beam’s wave function (diffrac-
tion) and therefore to distinct interference patterns in the
area behind this object, analogous to optical diffraction
experiments. To detect the electronic interference patterns
a second QPC in a certain distance L, smaller than the
ballistic mean free path, is used. A weak magnetic field
applied perpendicular to the electron propagation plane
will deflect the electron beam and therefore allows one to
monitor the electron-beam profile (interference patterns)
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FIG. 1. Schematic view of the sample: (a) shows the gate
structure and Ohmic contacts (crossed squares) of the device.
Dark grey: QPC gate; light grey: optional gate used for the
bias-cooling experiment; (b) defines lengths and the coordinate
system and displays the electron beam wave function C at the
exit of the injector QPC and after impurity scattering, Ci .

in the vicinity of the detector QPC [16]. A small, low
frequency ac voltage (Vex � 100 mV, 13 Hz) is applied
to the Ohmic contacts Ii , injecting an electron beam into
the 2DEG. Lock-in techniques are used to measure the
voltage drop, Vc, over the detector QPC (contacts: V 1

c and
V 2

c ) as a function of magnetic field. Experimentally, the
measured beam profile is not smooth, but rather exhibits
additional structure (see Figs. 2, 3, 4, and Ref. [16],
Fig. 1). Also other groups [17,18] presented data exhibit-
ing these features, but their origin has not been discussed
previously.

In the experiments, the samples were cooled down to
1.8 K and the QPC transmittance was adjusted to N � 1
for injector and detector. [Injection and detection of more
than one electronic mode leads to a convolution of dif-
ferent electronic wave functions (one for each mode) and
therefore to a smearing of the observed interferences.] The
opening angle of the beam could then be determined [16]
to be �18±. Figures 2, 3, and 4 show typical examples
of measured nonlocal magnetoresistances. The observed
structures are attributed to electron interference effects be-
cause of their marked temperature dependence (cf. Fig. 2).
The interference patterns are stable in time and charac-
teristic for a given sample. Between different cooling
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FIG. 2. Nonlocal magnetoresistance at different temperatures.
A simulation of the experimental result (at 1.8 K) is obtained
for a scatterer configuration indicated schematically in the top
left corner: Li,1 � 0.6 mm, 0.1 # yi # 0.2 mm and Li,2 �
0.6 mm, 0.4 # yi # 0.42 mm, respectively.

cycles the interference pattern changes only rarely. This is
in strong contrast with typical observations on electronic
quantum interferences, e.g., universal conductance fluctua-
tions (UCF). UCFs are related to electron scattering with
single impurities, whose “fingerprint” varies strongly from
cooldown to cooldown, while in high-mobility 2DEGs
scattering is due to random potential fluctuations, which
depend on the much more robust spatial charge correla-
tions of donors. Also, since UCFs are usually observed
in a multimode regime, the amplitude of the fluctuations
is much smaller than the almost 100% fluctuations dis-
cussed here.

In order to substantiate our interpretation of the experi-
mental observations, we now model the experimentally
found diffraction patterns to gain information about size
and location of scattering potentials. We use the simplest
possible model, based on an extension of the method of
Saito et al. [15]. The electron wave function at the exit of
a QPC is written as

C0�0, y� �

µ
2
W

∂1�2

cos

µ
py
W

∂

for 2 W�2 # y # W�2 , (1)

and zero elsewhere, if the QPC carries only one conduct-
ing mode (cf. Fig. 1b). W denotes the QPC width at the
exit. Using Green’s theorem with Dirichlet’s boundary
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FIG. 3. Experiment �E� and simulation �S� of the collimation
signal before (1) and after illumination (2). The fit parameters
for traces S1 and S2 are Li � 0.65 mm, 0.08 # yi # 0.16 mm
and Li � 0.65 mm, 0.08 # yi # 0.22 mm, respectively.

conditions the wave function can be calculated for any
point of the half plane (x . 0):

C�r0� �
i

2m�

Z
S

dS n�r� �C�r� �2ih̄=r�G1�r0, r�� . (2)

G1, the Green’s function in a weak magnetic field, which
can be approximated by the Green’s function at zero field,
G0�r0, r�, and a phase factor, u�r0, r�:

G1�r0, r� � eiu�r0,r� G0�r0, r� , (3)

u�r0, r� � 2
e
h̄

Z
A���R�t����

=RG0���R�t�, r���
j=RG0���R�t�, r���j

dt , (4)

a line integral along the gradient of G0�r0, r�. For a detailed
description of this method we refer to Ref. [15]. The wave
function in the detector QPC, CD�L, y�, at a distance x �
L can be written analogous to Eq. (1). The transmission
coefficient of the overall device can then be evaluated from

T �

Ç Z W�2

2W�2
C�

D�L, y0�C�L, y0� dy0

Ç2
. (5)

In order to simulate impurities, an intermediate line
is introduced between injector and detector, (0 , x �
Li , L). The wave function Ci is calculated at this line.
The simplest model for the effect of a scattering object
on the electronic wave function is just to set a part of
the wave function Ci to zero (cf. Fig. 1b). This modified
wave function is then propagated further to calculate CD ;
Eq. (5) then gives the transmission probability. Of course,
there are some limitations for the validity of the model:
FIG. 4. Experiment and simulation �S� of the collimation sig-
nal for the bias-cooling experiment. The applied voltages are
indicated in the figure. The fit parameter for trace S is Li �
2.00 mm and 0.18 # yi # 0.23 mm.

(i) Cutting off parts of a wave function is a very crude
method to simulate scattering. Neither diffusive backscat-
tering or forward scattering nor wave function matching at
the boundaries is considered. However, this approximation
is to a large extent justified by the finite dephasing length at
our experimental conditions (T $ 1.8 K); scattered elec-
trons have lost their coherence when finally reaching the
detector. (ii) The model neglects the strong collimation ef-
fect at N � 1. The Green’s function expands in the full
half-space behind the injector, leading to a broadening of
interference features in the simulation. (iii) This type of
modeling can never yield totally unambiguous solutions.
The scatterer configurations given as the insets in Figs. 2,
3, and 4 are those with the smallest number of scatterers
yielding simulations that satisfactorily reproduce the ex-
periment. “Satisfactorily” here implies that the magnetic
field values as well as the amplitudes of the fringes on
the main collimation signal are recovered, and that adding
an extra scatterer does not improve the agreement with
experiment in any drastic manner. The simulated traces
strongly depend on the actual impurity configuration, al-
ready a small variation of the size or location has a drastic
effect on the observed interference patterns. From com-
paring the numerical results we estimate the uncertainty
of the fitted values for Li and Wi —within our model—as
less than 5%.

What we cannot expect to recover from our modeling
is the broadening of fringes [because of our neglect of
the collimation effect, (ii)], as well as higher field struc-
tures as those of Fig. 2 at 225 mT, which occur only for
one field direction. Such features can be modeled only by
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incorporating multiple scattering, which is radically ne-
glected here, (i). Within these limitations, we find that
our model reproduces the experimental features remark-
ably well, cf. Figs. 2, 3, and 4. The main conclusion, how-
ever, that we draw from our modeling is that the observed
fringes apparently result from only a few scattering cen-
ters, whose dimensions are in the 20 to 150 nm range.

Next, we discuss experiments that prove that the diffract-
ing objects are due to the correlations in the distribution of
donor states. Figure 3, trace E1, shows the observed in-
terference pattern for a sample cooled down in the dark.
At 1.8 K the QPCs were defined and the collimation sig-
nal was measured. The simulation yielded a width of
Wi,S1 � 0.08 mm in a distance Li,S1 � 0.65 mm. Sub-
sequently, the device was illuminated using a 100 ms light
pulse of a red light-emitting diode (l � 670 nm) close
to the sample. The resulting interference pattern differs
significantly from the initial (Fig. 3, trace E2). Within
the model for DX-center formation described above, this
change can be attributed to a light-induced transformation
of donors from the DX2 state into the d1 state. At the
same time the sample exhibits a slight increase in the car-
rier density, in good agreement with a DX2 ! d1 conver-
sion. From the simulation S2 an increase in the width of
the scattering potential is found (Wi,S2 � 0.14 mm). The
observed change in the interference pattern of the electron
beam is direct evidence for a reconfiguration of the scat-
tering potential in the vicinity of the electron beam.

In Fig. 4 experimental curves are shown for a sample
with an extra pair of gates between injector and detector.
As indicated in Fig. 1a, these intermediate gates have a
small gap of approximately 300 nm centered at the line
connecting injector and detector. The collimation sig-
nal of this sample, cooled down without the intermediate
gates defined, exhibits a distinct interference pattern. The
simulation S reveals a scattering potential in the vicin-
ity of the electron beam just underneath the intermedi-
ate gate (Li � 2.00 mm and 0.18 # yi # 0.23 mm) for
Vbias � 0 V. As demonstrated in Ref. [6] one may sup-
press the formation of DX centers by depleting the 2DEG
through the application of a negative bias voltage at high
temperatures. Below T � 130 K this (uncorrelated) donor
configuration will be stable against thermal activation and
the bias voltage can be released. The interference pat-
terns resulting from applying exactly this procedure to in-
termediate gates are shown in Fig. 4 for Vbias � 20.5 and
21.0 V. The initial interferences are suppressed with in-
creasing negative bias voltage. This can be understood
by considering that the applied bias voltage suppresses the
formation of DX2 centers underneath the gates, leading to
a smoothening of the potential landscape in these regions.
The experiments, Figs. 3 and 4, thus yield conclusive evi-
dence that the observed interference patterns are indeed
related to correlations in the donor state distribution.

In conclusion, electron-beam experiments probe directly
the existence of long range correlations between donors in
2476
GaAs-(Al,Ga)As heterostructure on a microscopic level.
Using a numerical method to simulate scattering poten-
tials in the path of the electron beam in the 2DEG layer, it
proves possible to deduce the position and size of scatter-
ing potentials by fitting an experimentally obtained inter-
ference pattern of an electron-beam signal. The typical size
of the scatterers (20–150 nm) implies a collective effect
of randomly distributed donors. This distribution can be
changed by reducing the number of DX2 centers through
illumination and bias-cooling techniques. The experiments
show that a collimated electron beam is a sensitive tool in
the investigation of local potential fluctuations in a 2DEG.
For further study, it would be of interest to develop a more
sophisticated theory of electron-beam scattering. Simula-
tions using such a theory could in combination with, e.g.,
density-dependent experiments on the interference struc-
tures be used to yield a detailed picture of the shape and
size of the density fluctuations in a 2DEG.
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