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Abstract 

Using a self-consistent kinetic theory for longitudinal plasma waves and dust grain charging currents, the nonlinear 
dielectric function of a dusty plasma in the presence of electromagnetic fields has been derived analytically. Resonances 
with various dusty plasma modes have been investigated. 

There has been much recent progress in the study of charged dust grains in plasmas [ l-l 1 ] as charged dust 
particles with sizes ranging between 10 nm and 100 pm are frequently observed in space and laboratories. The 
dust particles can behave as single particles or as a collective species. Morever, the charge on the grain surface 
can vary in response to the ambient plasma density as well as electrostatic potential perturbations. The latter 
has stimulated a number of studies recently [ 12-181. Based on the standard probe theory for the grain charging 
[ 19,201, it has been shown that the dust charge fluctuations can significantly modify the linear dispersion 
relations of the plasma waves [ 12-181. However, nonlinear interactions between electromagnetic (EM) waves 
and plasma slow motions incorporating the effects of dust charge perturbations have not been considered as yet. 

The nonlinear dielectric functions of plasmas are well known to be the origin of numerous nonlinear 
interactions, such as parametric instabilities [ 211, beam self-focusing and filamentation [ 221, as well as optical 
mixing [ 231, etc. In this Letter, we present the EM wave induced nonlinear dielectric function of a dusty 
plasma, accounting for both the dust particle dynamics and the grain charge variations. The nonlinearity is 
assumed to be originating from the ponderomotive force of the EM waves on electrons, the latter are coupled 
with the ions and the dust grains in order to drive longitudinal plasma waves. Using Vlasov equations for each 
species and the probe model for the grain charge variations, a general expression for the nonlinear dielectric 
function is obtained. Four cases with different time scales are considered and the resonance enhancements of 
the nonlinear dielectrics are investigated when the EM wave frequency differences are close to that of the 
longitudinal modes of the dusty plasma. 
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Let us consider a multi-component dusty plasma in the presence of EM fields 

E=CfEjexp[i(ujt- kj*r)] +c.c. , (1) 

where Ej, wj, and kj are the amplitude, the angular frequency, and the wavevector of the jth wave, cc. stands 
for the complex conjugate. Because of the large inertia of the ions and the dust grains, only the electrons can 
respond to the high-frequency EM fields. The total dielectric function of the plasma in response to the jth EM 
wave is 

E(Wj) =I -&/?Z,(Uj)=&O -ii~/l.Z~(lOj) , (2) 

where Q. is the total electron number density, nC(wi) = m,o;/4vre2 is the critical density of the jth wave, 
e and m, are the magnitude of the electron charge and the mass, respectively, .Q = 1 - n&/n, is the linear 
dielectric function of the plasma, 118 is the equilibrium electron number density, and fie is the electron density 
perturbation which determines the nonlinear part of the dielectric function and is associated with the longitudinal 
plasma waves driven by the ponderomotive force of the EM waves. The ponderomotive force can be written as 
Fpd = -V&t, where the ponderomotive potential is given by 

4pd = z 4WleZjWk 
Ej * E; exp(i+) i- C.C. 

Here, $ = Awjkt - Akjk * T, AWjk = Wj - wk << &j,k and Akjk = kj - kk are the frequency and the wavevector 
differences between the jth and the kth EM wave, respectively. In Eq. (3), we have neglected the terms 
containing sum frequencies, since we are considering the situation in which the EM wave frequencies are much 
higher than that of the plasma waves. 

The ponderomotive force causes the electrons to move away from the ions and the dust grains so as to induce 
longitudinal plasma oscillations. The driven longitudinal plasma perturbations are described by the linearized 
Vlasov equation 

where the subscript LY is e for the electrons, i for the ions, and d for the dust particles, 8, = 1 for the electrons 
and 6, = 0 for the ions and the dust particles, m, is the mass of the species (r, fd and fin are the equilibrium 
and perturbation distribution functions of the corresponding species, respectively, and c$ is the electrostatic 
potential perturbation associated with longitudinal plasma waves. The charge qa is -e for the electrons, e for 
the ions, and @a (the average equilibrium charge on the grain surface) for the dust particles. 

The dust grains are assumed to be charged by plasma currents collected at the grain surface. Furthermore, 
the charge is subject to fluctuations because of the plasma density and electrostatic potential perturbations. In 
general, the grains have various sizes and consist of metallic as well as dielectric materials. In the following, 
we shall assume that the the characteristic wavelengths of the longitudinal plasma modes are much larger than 
the grain diameter so that the finite-size effect can be neglected. Moreover, we shall suppose the grains to be 
sperical conductors, as this case often occurs in many laboratory plasmas. By using the standard probe theory 
[ 19,201 for the grain charging, it is shown that the grain charge fluctuation & is governed by 

where Uim = 0 and uem = ( -2eqda/&C) ‘I2 is the minimum speed an electron must have in order to arrive at 
the grain surface, and 

flad(u, qdo) = ra2( 1 - 2q&io/miC~2) (a =e,i) (6) 
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is the effective collision cross sections of an electron and ion with a dust gram of radius a [ 141, and C is the 
capacitance of the grain. The charge relaxation rate 7, originating from the variations in the effective collision 
cross section due to the charge perturbations at the grain surface as experienced by the unperturbed particles, 
can be written as [ 131 

where Te (T) is the electron (ion) temperature, and 

&o = -TU2e( 8??,/7V?I,) “2&s eXp( eqdO/c-&) , 

is the equilibrium electron-grain charging current [ 131. 
The system is closed with the help of Poisson’s equation 

(8) 

0’4 = -47T c 40 fa dv - 4mdOqd , (9) 
a=e,i,d s 

where ndO is the unperturbed dust number density, and we have assumed overall charge neutrality in equilibrium, 
i.e., enia - end + q,-Jondo = 0 (nio is the unperturbed ion number density). The last term on the right-hand-side 
of (9) arises from the contribution of the dust charge fluctuations. 

The system of equations (4), (5) and (9) is driven by the ponderomotive potential $d which consists of 
Fourier components at difference frequencies of the EM waves. Using the Fourier representation exp [ i ( A#jkf - 
Akjk . r) 1, where the component indices j and k will be dropped in the following for convenience, we readily 
obtain 

J@ = -(q,Ak/m,) (4 - &z&.d/+%,,,f&/(A@ - Akb,) 9 

where x is a coordinate along the direction of Ak. Subsituting ( 10) into (5) and (9), we obtain 

e(AW,Ak)$ = (xe + Xq&)&d/e . 

Here, 

E(Aw,A~) = 1 + C Xn + X+je f Xqdi t 
n=e,i,d 

and 

(10) 

(11) 

(12) 

&Pa 2 1 

I 

~“Jdl 

xa=(hk)2i& Ud_VxdV 
(13) 

is the linear susceptibility of the (Y species, upa = (4vq$an~/m,)‘/2 is the plasma frequency, and us = Ao/Ak 
is the phase velocity of the beat-wave. The linear susceptibility x9da. ( LY = e, i) arising from the dust charge 
fluctuations caused by the electrostatic perturbations is given by 

i nd0 &I foil 
Xq*a = -~- Ao-iqrtd s 

Luucrd do . (14) 
04 - vx 

Ivl%m 

Eq. ( 11) shows that the electrostatic potential is driven by the ponderomotive potential. We note that in the 
absence of the ponderomotive force, Eq. ( 11) reduces to the usual dispersion relation E( w, k) = 0 of a dusty 
plasma. 
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The electron density perturbation ii, = s fe dv can be obtained by substituting ( 11) into ( 10). Thus, we have 

(15) 

The electron density perturbation is responsible for a nonlinear current, which, in turn, results in a nonlinear 
dielectric function defined by 

(16) 

where Ejk can be considered as the nonlinear dielectric coefficient of the corresponding Fourier component. 
Comparing (2) and ( 16) and using (3) and ( 15), we obtain 

ejk =&~k(Ak)2&e[ 1 - (Xe + Xqde>/cI 1 (17) 

where 

0 e2 nd 

‘jk = h?l#jOkT~ tlc( W) 

is the non-resonant nonlinear dielectric coefficient, and A, = (T,/4?re2m) ‘j2 is the electron Debye length. Eq. 
( 17) is a general form of the nonlinear dielectric coefficient in a dusty plasma, which contains both the resonant 
and non-resonant cases. It is readily applicable for studying various quasilinear processes such as stimulated 
Raman and BrilIouin scatterings as well as EM wave mixing 1241 in a dusty plasma. In what follows, we shall 
examine separately the resonances with various plasma modes and the enhancement of the Ejk- 

We first consider the quasi-steady state case in which all the EM waves are of the same frequency, i.e., Aw = 0. 
This happens on a very long time scale during which all the species can reach thermal equilibrium [ 121. The 
linear suceptibilities are xp = l/(Ak)2Az, where A, = u,/oPrr is the Debye length, and U, = (T,/wz,)‘/~ is 
the thermal speed of the species (Y. The susceptibilities arising from the dust charge fluctuations are given by 
xqde = (p/v) /( Ak) 2Az and xqdi = ,yqdeTe/T, where p = ]&J/e]ndc/n& Thus, the nonlinear dielectric coefficient 
reads 

o 1+ (AkQ2 - (A/4,)2[ 1 - (Plr))G/Til 
‘jk = ‘jk 1 + (Akn)2+ (/i/&)2(/3/~)(l + T,/Z) ’ 

(18) 

where _4 = ( A;2+Ai-2+A;2) -*I2 is the effective Debye length of the dusty plasma. Since usually Ad < Ai < &, 
/I << &. ThUS, &jk % E$kr which is exactly the non-resonant case. 

When Ak = 0, the situation corresponds to a single EM wave propagating in the dusty plasma. In this case, 
the nonlinearity arises from the nonuniform field envelope of the EM wave. Thus, the nonlinear dielectric 
function can also be used to study the modulational and filamentation instabilities of the EM wave. We note 
that in the absence of the dust particles, p = 0 and the terms containing Aa2 can be omitted. Thus, we have 

which is exactly the cubic nonlinearity in a usual two-component plasma [ 251. 
Second, we consider the dust-acoustic resonance in which Aw is close to the frequency of the slow dust- 

acoustic wave [o]. On the time scale of dust dynamics, i&J < z+ << Ut,e, the electrons and ions follow the 
Boltzmann distributions, but the dust particles are inertial. In this case, xu as well as xqda are the same as 
in the previous case, except that Xd is now given by xd = -~;,/(Ao)~. Note that the dust charge relaxation 
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rate r) is comparable to the ion-acoustic wave frequency which is much higher than the slow dust-acoustic 
frequency, as ~7 > Aw. Hence, we can write the nonlinear dielectric coefficient in the form 

Ejk (19) 

(W2c:, 
(Au)* 

is a resonance factor, p = (1 + T,/T’,)p/rl can be considered as a damping factor, A = (A;* + A,:*) -‘I*, and 
c& = Or&/[ 1 + (Ak)*h*]“* M Wpdh is the dust-acoustic velocity. It is seen that the resonance occurs at the 
frequency Aw,d = Akcds/ ( 1 + ,uuh 2 /A,) * ‘I2 which is reduced relative to the dust-acoustic frequency hkc& Since 

and nd and nia are of the same order of magnitude, we have pA*/Az M n/v, which is of the order of unity. 
Thus, the frequency reduction is considerable. The resonant enhancement of the nonlinear dielectric cofficient is 
about I&jk/&ykl M (a + 77) /PAW. Since ~7 >> Aw in this case, there is a significant enhancement in the nonlinear 
dielectrics. 

Next, we consider the ion-acoustic resonance in which Aw is close to the frequency of the fast dust ion- 
acoustic wave [26]. On this time scale, ud < Ui < u& < Q, the electrons obey the Boltvnann distribution but 
the ions are inertial. The dust particles, on the other hand, can be regarded as stationary because of their large 
inertia as compared to the ions. The dust charge, because its relaxation rate is comparable with the ion-wave 
frequency, is subject to variations. Thus, xe and xqde remain unchanged, but Xd = 0. The ion susceptibility is 
given by xi = -w$/( Aw)~, where the ion Landau damping is neglected for long wavelength (in comparison 
with h) perturbations. On the other hand, xqdi can be obtained [ 181 by the kinetic integration of ( 14) in the 
limit of u$ > Ui. The result is 

Xsdi 
iP 2 Wfi GOA 

=---- , 
ho - iq 3 (Am)* nio 

where A = [ 1 + (1 - C?&c/~l)-’ 1. Substituting the expressions for the x into (17), we obtain 

Ejk=cyk [l-k (I-&)] I (20) 

where the resonance factor is denoted by 

Wd*c: 
Rjk = ’ - (Au)2 

iYi 

-m- 
Here c, M Wpi& s (niolna) ‘/2ca is the fast dust ion-acoustic velocity [26], cd = (Te/mi) *j2 is the sound 
speed in a dust-free plasma. yi = /?[ 1 - 3 A( Akca/Aw)2] is the damping rate caused by the dust grain charging. 
Thus, the resonant frequency for this case is 

Awri = Akc, 1 - ’ W? 

2 (Ak)*c; + q2 > ’ 

which shows a slight frequency down-shift at the resonance. The enhancement of the nonlinear dielectric 
coefficient is roughly [ (Ak)* + v2] /yiAkc,, which is quite large for small damping rate yi. The resonant 
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feature can be used to determine the ion-acoustic velocity in the dusty plasma, which is proportional to 
(nit/m) ‘I*. Thus, it may have applications for diagnosing the ion-to-electron number density ratio or the dust 
particle concentration. 

Finally, we consider high-frequency Langmuir wave resonance in which AU N wpe. On this fast time scale, 
the ions and dust particles cannot respond to the high-frequency perturbations and form stationary neutralizing 
backgrounds. Thus, Xi,d = 0 as well as xqdi = 0. The warm electron susceptibility is given by [27] 

2 
@Pe 

Xe = - (Am)2 
1 + 3(Ak)*$ 

(A@)* > 
- ixL , 

where 

J;; 3 

XL = ,/j(Ak)s,+z exp -5 - 2(A:)*hz > 

arises from the electron Landau damping. The dust charge fluctuation can have a significant effect on the 
Langmuir wave. In order to demonstrate this, we calculate xsde by the kinetic integration of (14) in the limit 
of U+ >> ue (the Landau effect can be neglected in the integration since wpe >> 7). The result is 

Xqde 

Hence, the nonlinear dielectric coefficient can be readily obtained as 

Ejk 
a (Ak)*uz[ 1 + 3(Ak)*@ -t ixL] 

= -‘jk (AU)* - tit - $aqG + iyew& ’ 
(21) 

where W[ = w$ + 3( Ak)*Uz is the Bohm-Gross frequency squared, ye = XL - $ (P/W&G is the damping 

coefficient, and G = 1 - eqda/2~e. The resonance occurs when (AU)* = w: + $cugG, which is exactly 
the electron plasma frequency except for a negligibly small frequency upshift arising from the dust grain 
charge fluctuation. At the resonance, the enhancement of &jk is approximately (Ak>*Az/y,, which is directly 
proportional to the square of the beat wavenumber. Thus, the nonlinearity is more pronounced for short 
wavelengths of the beat EM waves. Note that since @a < 0, we have G > 0. Thus, the damping ye is 
reduced. Hence, when the Landau damping effect is compensated by the dust charging effect, the enhancement 
becomes infinity. In this case, other dissipation processes, such as inter-particle collisions, should be taken into 
consideration and will eventually limit the enhancement. 

In conclusion, we have derived a general expression for the nonlinear dielectric function of a dusty plasma in 
the presence of EM fields, and have shown that the dust charge fluctuations can have a significant influence on 
the nonlinear dielectrics. It is found that when the frequency difference of the EM waves is close to one of the 
characteristic frequencies of the dusty plasma system, the nonlinear dielectric function is resonantly enhanced. In 
addition, it is also observed that there is a large down-shift of the resonance frequency in the slow dust-acoustic 
wave and a slight down-shift in the fast dust ion-acoustic wave, On the time scale of the electron plasma period, 
the resonant enhancement can be rather considerable when the Landau damping effect is balanced by the dust 
charging process. The present results are readily applicable for studying parametric instabilities, viz. stimulated 
Raman and Brillouin scatterings, the modulational and filamentation instabilities, etc., of electromagnetic waves 
in dusty plasmas. Finally, we mention that in the present study we have neglected Joule heating [28] and 
relativistic [ 291 nonlinearities because the frequency and scale size of the plasma slow motion are assumed to 
be much larger than the electron collision frequency and the electron skin depth, respectively. The inclusion of 
these nonlinear effects in our investigation is under consideration. 
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