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Electronic and nuclear spins of shallow donors in silicon are attractive candidates for qubits in quantum
computer proposals. Shallow donor exchange gates are frequently invoked to perform two-qubit operations in
such proposals. We study shallow donor electron properties in Si within the Kohn-Luttinger envelope function
approach, incorporating the full Bloch states of the six band edges of the Si conduction band, obtained fromab
initio calculations within the density-functional and pseudopotential frameworks. Intervalley interference be-
tween the conduction-band-edge states of Si leads to oscillatory behavior in the charge distribution of one-
electron bound states and in the exchange coupling in two-electron states. The behavior in the donor electron
charge distribution is strongly influenced by interference from the plane wave and periodic parts of the Bloch
functions. For two donors, oscillations in the exchange coupling calculated within the Heitler-London(HL)
approach are due to the plane-wave parts of the Bloch functions alone, which are pinned to the impurity sites.
The robustness of this result is assessed by relaxing the phase pinning to the donor sites. We introduce a more
general theoretical scheme, the floating-phase HL, from which the previously reported donor exchange oscil-
latory behavior is qualitatively and quantitatively confirmed. The floating-phase formalism provides a “handle”
on how to theoretically anticipate the occurrence of oscillatory behavior in electronic properties associated with
electron bound states in more general confining potentials, such as in quantum dots.

DOI: 10.1103/PhysRevB.70.115207 PACS number(s): 71.55.Cn, 03.67.Lx, 85.30.2z

I. INTRODUCTION

Doping in semiconductors has significant technological
impact. As transistors and integrated circuits decrease in size,
the physical properties of the devices are becoming sensitive
to the actual configuration of impurities.1 A striking example
is the proposal of donor-based silicon quantum computer
(QC) by Kane,2 in which the monovalent31P impurities in Si
are the fundamental quantum bits(qubits). This intriguing
proposal has created considerable recent interest in revisiting
the donor impurity problem in silicon, particularly in the
Si:31P system.

Two-qubit operations for the donor-based Si QC architec-
ture, which are required for a universal QC, involve precise
control over electron-electron exchange3,4 and electron-
nucleus hyperfine interactions. Such control can presumably
be achieved by fabrication of donor arrays with accurate po-
sitioning and surface gates whose potential can be precisely
controlled.5–8 However, we have shown9 that electron ex-
change in bulk silicon has spatial oscillations on the atomic
scale due to the valley interference arising from the particu-
lar sixfold degeneracy of the bulk Si conduction band. These
oscillations place heavy burdens on device fabrication and
coherent control, because of the very high accuracy require-
ment for placing each donor inside the Si unit cell, and/or for
controlling the external gate voltages.

The potentially severe consequences of these problems
for exchange-based Si QC architecture motivated us and

other researchers to perform further theoretical studies, going
beyond some of the simplifying approximations in the for-
malism adopted in Ref. 9, and incorporating perturbation ef-
fects due to applied strain10 or gate fields.11 Both these stud-
ies, performed within the standard Heitler-London(HL)
formalism,12 essentially reconfirm the originally reported dif-
ficulties regarding the sensitivity of the electron exchange
coupling to donor positioning, indicating that these may not
be completely overcome by applying uniform strain or elec-
tric fields. At this point it is clear that the extreme sensitivity
of the calculated exchange coupling to donor relative posi-
tion originates from interference between the plane-wave
parts of the six degenerate Bloch states associated with the Si
conduction-band minima. Theoretically, this effect is dictated
by the HL description of the two-electron singlet and triplet
states, defined as properly symmetrized combinations of
single-particle ground-state functions, where the phases of
the Bloch states are pinned at each donor site.

Our goal in the present study is to assess the robustness of
the HL approximation for the two-electron donor-pair states.
Specifically, we first examine the single donor properties in
more detail by including the complete Si conduction band
Bloch functions. The calculated single donor electron charge
density vividly illustrates the rapidly oscillatory(and non-
commensurate) nature of the donor electron properties. We
then relax the phase pinning at donor sites and allow small
phase shifts in the plane-wave part of the Bloch functions,
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which could in principle moderate, even eliminate, the oscil-
latory exchange behavior. Within this more general theoreti-
cal scheme, which we call thefloating-phaseHL approach,
our main conclusion is that, for all practical purposes, phase
shifts are energetically unfavorable for both singlet and trip-
let states. The previously adopted HL wave functions are
thus found to be robust, and the oscillatory behavior obtained
in Refs. 9–11 cannot be taken as an artifact.

The present paper is organized as follows: In the next
section we review the shallow donor problem in Si, fully
incorporating the details of the Si band structure. We present
ab initio results for the bulk Si conduction-band-edge charge
densities associated with individual Bloch states and single
donor states. In Sec. III we consider two substitutional do-
nors in bulk Si, and introduce the floating-phase HL approxi-
mation. The two-particle ground state energy is compared
with that of the standard(pinned-phase) HL states. We
present results for the donor electron exchange between P
donor pairs in Si in situations of practical interest, consistent
with the current degree of experimental control over donor
positioning5–7 for the fabrication of Si QC. We also indicate
how the floating-phase scheme may be useful for different
Si-based QC architectures. Concluding remarks are pre-
sented in Sec. IV. This work thus provides necessary theo-
retical support and pictures to anticipated experimental stud-
ies on qubit exchange coupling in a Si matrix.

II. SINGLE DONOR IN SILICON

We determine the donor electron ground state using effec-
tive mass theory. The bound donor electron Hamiltonian for
an impurity at siteR0 is written as

H0 = HSV+ HVO. s1d

The first term,HSV, is the so-called single-valley Kohn-
Luttinger Hamiltonian,13 which includes the single particle
kinetic energy, the Si periodic potential, and the screened
impurity Coulomb potential,

Vsr d = −
e2

eur − R0u
. s2d

For shallow donors in Si, we use the static dielectric constant
e=12.1. The second term of Eq.(1), HVO, includes the inter-
valley coupling effects due to the presence of the impurity
potential.14

The electron eigenfunctions are written in terms of the six
unperturbed Si band edge Bloch statesfm=umsr deik m·r ,

cR0
sr d = o

m=1

6

amFmsr − R0dfmsr ,R0d

= o
m=1

6

amFmsr − R0dumsr deik m·sr−R0d. s3d

The phases of the plane-wave part of all band edge Bloch
states are naturally chosen to be pinned atR0, and theam

expansion coefficients, also called valley populations, are
real. In this way the charge density at the donor site[where

the donor perturbation potential Eq.(2) is more attractive] is
maximum, thus minimizing the energy forcR0

sr d. In Eq. (3),
Fmsr −R0d are envelope functions centered atR0, for which
we adopt the anisotropic Kohn-Luttinger form[e.g., for m
=z, Fzsr d=exph−fsx2+y2d /a2+z2/b2g1/2j /Îpa2b]. The effec-
tive Bohr radiia andb are variational parameters chosen to
minimize ESV=kcR0

uHSVucR0
l, leading toa=25 Å, b=14 Å,

andESV,−30 meV when recently measured effective mass
values are used in the minimization.9

The HSV ground state is sixfold degenerate. This degen-
eracy is lifted by the valley-orbit interactions,14,15 which ac-
count for intervalley scattering effects and are included here
in HVO. Valley-orbit effects are conveniently represented by
two types of intervalley couplingsHVOm,n: For valleys at
perpendicular directions(e.g., m=x, n=z) we take the cou-
pling HVOx,z=−DC while for those in opposite directions
(e.g., m=z, n=−z), HVOz,−z=−DCs1+dd. Of courseHVOm,m

=0. Taking DC=2.16 meV and d=−0.3 correctly
reproduces10 the ordering and relative splittings of the lowest
energy states manifold for P donors in Si: A ground state of
A1 symmetry, followed by a triplet ofT1 symmetry and by a
doublet ofE symmetry. In unstrained Si, the nondegenerate
A1 ground state corresponds to allam=1/Î6 in (3), and its
binding energy is E0=kcR0

uH0ucR0
l=ESV−s5+ddDC,

−40 meV, to be compared to the experimental value16 of
−45 meV.17 Aiming at the ground state of the system, we
restrict our discussion to the nondegenerate(A1 symmetry)
ground state, thus allam=1/Î6 in (3) in relaxed Si. For
strained Si, also considered below, the valley populations
change according to the degree of strain.10

The periodic part of each Bloch function is pinned to the
lattice, independent of the donor site. It can be expanded
over the reciprocal lattice vectorsG:

umsr d = o
G

cG
meiG·r . s4d

We determine the coefficientscG
m for the conduction band

edge Bloch states in Eq.(4) from ab initio calculations.
Electron-electron interactions are described by density-
functional theory(DFT) within the local-density approxima-
tion (LDA ).18,19 We use the exchange-correlation potential
parametrized by Perdew and Zunger20 from Ceperley-Alder
quantum Monte Carlo results for the homogeneous electron
gas.21 The interactions between valence electrons and ions
are described by theab initio, norm-conserving pseudopo-
tentials of Troullier-Martins,22 generated by the FHI98PP
code.23 We use 290 plane waves in the expansion of Eq.(4),
up to a maximum kinetic energy of 16 Ry. Calculations are
performed by the ABINIT code.24 The key ingredients of this
code are:(i) an efficient fast Fourier transform algorithm25

for the conversion of wave functions between real and recip-
rocal space;(ii ) the use of iterative minimization techniques
to solve the Kohn-Sham eigenvalue problem, more specifi-
cally an adaptation to a fixed potential of the band-by-band
conjugate gradient method,26 and a potential-based
conjugate-gradient algorithm for the determination of the
self-consistent potential.27 Details of the methodology are
described in Ref. 26. We find the equilibrium lattice constant
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of Si at a=5.41 Å and the conduction-band minima at
0.844s2p /ad from G, in close agreement with experimental
results.16 These values are used in the calculations presented
below.

In Figs. 1(a) and 1(b) we present the electronic probability
densityrx= ufxu2 obtained from thesingle conduction-band-
edge Bloch statefx=uxsr deikx·r . Visually, our results indicate
that this state is predominantly formed byupxl atomiclike

FIG. 1. (Color) (a) and(b) Probability density
for the single Bloch staterx= ufxu2 in two differ-
ent crystal planes. Notice theupxl atomiclike sig-
nature.(c) and (d) Total probability density for
the six conduction-band minima, showing a more
symmetric structure. White dots represent Si sites
in the diamond structure and the color scheme
runs from purple (low density) to red (high
density).

FIG. 2. (Color) Frames(a) and (b) give the
electron probability densities on the(001) plane
of bulk Si for the bottom of the conduction band
eigenstate corresponding to a symmetric combi-
nation of the six degenerate Bloch states at the
conduction band edge, calculated within models
(i) and (ii ), respectively. Frames(c) and (d) give
the corresponding probabilities for the ground
state of a donor in Si within the envelope func-
tion approximation. The white dots give the in-
plane atomic sites and the color scheme runs
from purple(low density) to red (high density).
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orbitals, although somed character may also be present, con-
sistent with the higher degree of delocalization for these
states as compared to the conduction band states at theG
point.28 Of course, as for any Bloch state, the probability
density is periodic in the fcc lattice. It is also interesting to
note that, among the 290 plane-wave states included in our
basis, over 90% of the spectral weight in the plane-wave
expansion ofuxsr d in Eq. (4) comes from five reciprocal
lattice vectors:G=s0,0,0d ,s2p /ads−1, ±1, ±1d. These give
the five smallest values ofuG+kxu since kx=0.844s2p /ad
3s+1,0,0d. This same criterion for the five most relevant
coefficientscG

m applies to each of the other fivekm vectors.29

In Figs. 1(c) and 1(d) we show the total charge density
om=1,6ufmu2. Figure 1(c) shows the characteristic antibonding
signature of the conduction band state, which was also found
by Richardson and Cohen28 for the conduction-band density
at theX point in Si (thus not exactly at the band edge). The
conduction band edge state of Si has been previously studied
by Ivey and Mieher.30 Our ab initio results are in good quali-
tative agreement with this earlier empirical pseudopotential
study.

We analyze the effects of Si band structure on donor elec-
tron wave function within two models for the conduction
band edge stateshfmj of Si: (i) fm,R0

=eikm·sr−R0d; (ii ) fm,R0
=umsr deikm·sr−R0d. Model (i) corresponds to the free-electron
single-plane-wave-per-valley approximation adopted in pre-
vious studies.9,10,31In model(ii ) band structure contributions
are fully incorporated. Regarding the electron probability
density plotted in Fig. 1 for model(ii ), model(i) would have
given completely uniform distributions, consistent with tak-
ing um=1, i.e.,cG

m =dG,G for all m.
The effects of the conduction band states of Si on the

donor wave functions and charge density are well established
experimentally.32 Particularly, the single impurity charge
density is not only an interesting physical property by itself,
but also foretells the oscillatory behavior in two-donor prop-
erties such as exchange. Figures 2(a) and 2(b) give the single
electron charge densityuFsr du2 along a(001) crystal plane
for a symmetrized state at the conduction-band edge ofbulk
silicon, Fsr d=sÎ6d−1om=1

6 fm,R0
sr d, within models (i) and

(ii ), respectively. Frame(a) shows that interference from the
six plane-wave states included in model(i) leads to a peri-
odic charge pattern consistent with a simple-cubic lattice of
lattice parameter 2p /km,1.18a, with a periodicity which is
clearly different(and incommensurate) from the atomic po-
sitions in the lattice, sinceukmu is incommensurate with the
reciprocal lattice. Of course a different interference pattern
would result if the plane waves were notall pinned at site
R0. Results for model(ii ) given in (b) show that additional
interference from the Bloch functionsumsr d, which are peri-
odic in the fcc lattice, further reduce the periodicity of the
charge density.

Figures 2(c) and 2(d) give the charge densityucR0
sr du2 for

the donor state in Eq.(3), within models(i) and(ii ), respec-
tively. The impurity siteR0, corresponding to the higher
charge density, is at the center of each frame. It is interesting
(and somewhat counterintuitive) that, except for this central
site, regions of high charge concentration and atomic sites do
not necessarily coincide, because the charge distribution pe-

riodicity imposed by the plane-wave part of the Bloch func-
tions is 2p /km, incommensurate with the lattice perioda.

III. DONOR PAIR

A. Exchange coupling within the Heitler-London approach

Within the HL approximation, the lowest energy singlet
and triplet wave functions for two electrons bound to a donor
pair at sitesRA andRB are written as properly symmetrized
combinations ofcRA

and cRB
, which are in turn defined in

Eq. (3),

Ct
ssr 1,r 2d =

1
Î2s1 ± S2d

fcRA
sr 1dcRB

sr 2d ± cRB
sr 1dcRA

sr 2dg,

s5d

whereS is the overlap integral and the upper(lower) sign
corresponds to the singlet(triplet) state. The energy expecta-
tion values for these states are

Et
s = kCt

suHuCt
sl = 2E0 +

H0 ± H1

1 ± S2 , s6d

whereE0 is the isolated impurity binding energy andH0 and
H1 are usually referred to as Coulomb and exchange
integrals.10,12 The energy differenceJ=Et−Es gives the ex-
change splitting. We have previously derived the expression
for the donor electron exchange splitting in Ref. 10, which
we reproduce here

JsRd = o
m,n

uamu2uanu2JmnsRdcosskm − knd ·R, s7d

wheream are the valley populations defined in Eq.(3), and
JmnsRd are kernels determined by the envelopes. These are
slowly varying functions ofR (explicit expressions are given
in Ref. 10), monotonically decaying with distance since only
the exponential envelopes centered at each donor, but not the
Bloch functions, contribute to them. Below we make a few
observations before we attempt to go beyond the HL ap-
proximation.

Equation(7) does not involve any contribution from the
periodic part of the Bloch functions(4) [in terms of addi-
tional oscillatory behavior inJsRd or additional contribution
to the magnitude ofJsRd], which therefore may essentially
be taken asumsr d=1. This fact has been pointed out by
Wellard et al.,11 and is a consequence of the pinning of the
umsr d functions to the lattice, independent of the donor site,
and of their fast oscillating nature. These authors calculated
some HL integrals withG different from theG point, which
were originally neglected in Refs. 9, 10, and 31, and con-
firmed numerically that all approximations adopted here(and
in Ref. 10) are excellent. We therefore conclude that models
(i) and(ii ), though giving quite different electron probability
densities as illustrated in panels(c) and (d) of Fig. 2, effec-
tively lead to the same results for the exchange coupling
within the HL approximation.

Although the exchange coupling given in Eq.(7) should
be applicable to any relative position vectorR, including the
effect of small perturbations in the donor sites into off-lattice
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positions,9 it has been pointed out by Altarelli and
co-workers33,34 that interstitial donors in Si may acquire a
deep-center character, invalidating the envelope-function
treatment adopted here. We therefore focus our study on sub-
stitutional (thus shallow) donors in Si.

Figure 3 illustrates a case of practical concern involving
unintentional donor displacements into nearest-neighbor
sites, when donor pairs belong to different fcc sublattices.35

The open squares in Fig. 3(a) give JsRd for substitutional
donors along the[100] axis, while the open triangles illus-
trate the different-sublattice positioning situation, namelyR
=R0+dWNN with R0 along the[100] axis anddWNN ranging over

the four nearest neighbors of eachR0 sdNN= udWNNu=aÎ3/4
,2.34 Åd. The lower panel of the figure presents the same
data on a logarithmic scale, showing that nearest-neighbor
displacements lead to an exchange coupling reduction by one
order of magnitude when compared toJsR0d.

Our previous studies10 show that the extreme sensitivity
of JsRd to interdonor positioning is eliminated for on-lattice
substitutional impurities in uniaxially strained Si(e.g., along
the z axis) commensurately grown over Si1−xGex alloys if R
remains parallel to the interface x-y plane. The strain is
accommodated in the Si layer by increasing the bond-length
components parallel to the interface and decreasing those
alongz, breaking the cubic symmetry of the lattice and low-
ering the sixfold degeneracy of the conduction band mini-

mum to twofold. In this case, the valley populationsam in
the donor electron ground state wave function(3) are deter-
mined from a scalar valley strain parameterx, which quan-
tifies the amount of strain. Figure 3(b) givesJsRd in uniaxi-
ally strained(along z direction) Si for x=−20 for the same
relative positioning of the donor pairs as in Fig. 3(a). Notice
that the exchange coupling is enhanced by about a factor of
2 with respect to the relaxed Si host, but the order-of-
magnitude reduction inJ caused by displacements of ampli-

tudedNN into nearest-neighbor sites still persists asdWNN is not
parallel to thex-y plane.

B. Floating-phase Heitler-London approach

1. Formalism

In Refs. 9 and 10, as in the standard HL formalism pre-
sented above, it is implicitly assumed that the phasese−ikm·R0

in Eq. (3) remain pinned to the respective donor sitesR0
=RA and RB, as we adopt single donor wave functions to
build the two-electron wave function. Although phase pin-
ning to the donor substitutional site is required for the
ground state of an isolated donor(A1 symmetry) in order to
minimize single electron energy, this is not the case for the
lower-symmetry problem of the donor pair. In order to mini-
mize the energy of the two-donor system, here we allow the
phases to shift by an amountdR along the direction of the
interdonor vectorR=RB−RA, so that the single-particle
wave functions in Eq.(5) become

cRA
sr d =

1
Î6

o
m=1

6

Fmsr − RAdumsr deik m·sr−RA+dRd s8d

and

cRB
sr d =

1
Î6

o
m=1

6

Fmsr − RBdumsr deik m·sr−RB−dRd. s9d

All terms appearing in Eq.(6) are now functions ofdR,
which we take as a variational parameter here, chosen inde-
pendently asdRs anddRt to minimizeEs andEt (since sin-
glet and triplet states are orthogonalized through the spin part
of the wave function). A similar ansatz, the so-called floating
functions approach, was suggested by Hurley36 as an im-
provement over HL for the H2 molecule, with the atomic
orbitals symmetrically shifted towards each other. When the
amplitude of the shift is taken as a variational parameter,
energy reduction thus obtained leads to a significantly better
agreement with experiment for the hydrogen molecule total
energy.36 Since the phases in Eq.(3) are responsible for the
oscillatory behavior of the exchange coupling between donor
electrons in Si, this more general variational treatment might
lead to changes in the previously reported9–11behavior of the
two-donor exchange splittingJ=Et−Es.

2. One- and two-center contributions

Adopting the floating-phase forms given in Eqs.(8) and
(9) in the HL expression(5) leads to a modified expression
for the expectation value of the energy in Eq.(6) for the

FIG. 3. (Color online) Calculated exchange coupling for a donor
pair versus interdonor distance in(a) unstrained and(b) uniaxially
strained(alongz) Si. The open squares correspond to substitutional
donors placed exactly along the[100] axis, the lines give the cal-
culated values for continuously varied interdonor distance along
this axis, assuming the envelopes do not change. The open triangles
give the exchange for a substitutional pairalmostalong [100], but
with one of the donors displaced bydNN,2.3 Å into a nearest-
neighbor site. The lower frames give the same data in a logarithmic
scale. When the floating-phase HL approach is adopted, the results
change negligibly; the filled symbols on the lower left frame give
examples of calculated corrections(see text).
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singlet and triplet states. The term 2E0 on the right-hand side
of Eq. (6) gives the single-particle single-center contribu-
tions from both(isolated) impurities, which should be taken
here asEA+EB=2EA. For the present model Hamiltonian,
within the floating phase HL approximation, we get

EAsdRd = kcRA
uHAucRA

l

= ESV−
DC

3
f2scosfx + cosfy + cosfzd2

+ dscos 2fx + cos 2fy + cos 2fzd − 3g, s10d

wherefm=−f−m=km ·dR. The parametersDC andd are de-
fined in Sec. II, where their numerical values are also given.
As expected, fordR=0 the above expression leads to
EAs0d=E0=ESV−s5+ddDC, while dRÞ0 leads to

EAsdRd = E0 +
D0

2
ù E0. s11d

The correctionD0 is positive definite by construction, since
the one-particle functions in standard HLsdR=0d are taken
as the ground-state wave function of the isolated impurity
problem.

The expectation value for the energy of the donor pair is
given by

Et
ssR,dRd = Et

ssR,0d + D0sdRd + Dt
ssR,dRd, s12d

where Et
ssR ,0d is the pinned-phase result from the regular

HL calculation. The first correction term,D0sdRd, is the en-
ergy shift due to the single-particle single-center contribu-
tions, derived above, andDt

ssR ,dRd are the singlet and triplet
state corrections coming from the two-center contributions
H0, H1, and S. The latter are integrals involving the elec-
tronic wave functions(8) and(9), and are calculated here as
described in Ref. 10, Eqs.(A2), (A3), and (A5), with the
proper phase shifts included in the plane-wave part of the
Bloch functions.

In Fig. 4 we give the calculated values of the individual
correctionsD0sdRd andDt

ssR ,dRd for a geometry where the
impurities are 16 lattice constants aparts,87 Åd, with R
along the[100] crystal direction. The energy correctionD0
raises sharply for nonzerodR, and is of course independent
of the relative position vectorR, while the energy variations
Dt

s oscillate and decrease with increasing relative distanceR,
and may be positive or negative according todR (for dR
<0 in the case illustrated in Fig. 4,Ds decreases for negative
shifts dR, while Dt decreases for positive shifts). SinceD0 is
always positive, independent ofR and very sensitive todR,
we conclude that the effect of phase shifts aiming at mini-
mizing two-donor energy is negligible and may be safely
ignored forR@a,b, wherea and b are the donor effective
Bohr radii. For example, minimization of the total energy in
Eq. (12) for the particular geometry considered in Fig. 4
leads todRs=−7 mÅ, with the singlet energy decrease of
270 neV, anddRt= +7 mÅ, with the triplet energy decrease
of 6 neV. This results in an increase inJ by s264d neV,
given by the solid square in the lower left-hand-side frame of
Fig. 3. The floating phases variational scheme leads to a

reduction in both singlet and triplet states energy, therefore
the net variation inJ is positive(negative) if the triplet en-
ergy reduction is smaller(larger) than the singlet. The solid
triangle in Fig. 3 corresponds to a case of negative variation,
obtained when one of the donors in the above geometry is
displaced into a nearest-neighbor site. Note that the correc-
tions are more than three orders of magnitude smaller than
the calculatedJ assumingdRs=dRt=0. In other words, for
all practical purposes the fixed-phase standard HL approxi-
mation is entirely adequate for the range of interdonor dis-
tances of interest for QC applications.

This conclusion is not in contradiction with Hurley’s re-
sult for the hydrogen molecule,36 where significant energy
reduction is obtained around the equilibrium nuclear separa-
tion, R,1.5a0 (a0=0.53 Å is the free hydrogen atom Bohr
radius). For R of the order of the Bohr radius,Ds becomes
comparable toD0, resulting in an improved variational esti-
mate for the ground state energy of the H2 molecule when
small shifts are allowed in the single-particle hydrogenic or-
bitals.

Since the current calculation has taken into account the
full band structure of the host Si material, and modifying the
standard HL approximation has proved to have minimal ef-
fect on the results, further improvement in a perfect crystal
environment(that is, relaxed bulk Si) can only be achieved
by including the higher energy orbitals.4,37 However, we do
not anticipate significant moderation of the fast oscillatory
behavior of exchange coupling as all the orbitals share the
same conduction band valleys, though quantitative shifts
might be expected in a larger scale molecular orbital calcu-
lation. In the present study, we keep the two donors relatively
far apart so that the HL approximation is applicable. This is
also the situation of interest to practical QC fabrication con-
siderations(which requires the donors to be at least 100 Å
apart).

Another improvement over our current calculation may
come from including the effect of lattice distortions. The

FIG. 4. (Color online) Calculated corrections to the total energy
for a P donor pair in Si. The donors are 87 Å apart, along the[100]
direction. The parameterdR is the amplitude of the individual phase
shifts from the donor sites, ±dR, along the interdonor line. The
solid line givesD0, the single-center contribution, while the dotted
(dashed) line givesDs sDtd, the two-center singlet and triplet con-
tributions, respectively.
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Coulomb interaction between the additional protons on the
lattice sites and the two electrons for the donor pair creates a
strain field on the underlying crystal lattice. Such a field
affects the electronic structure in the same way as the
uniaxial strain discussed above, though it is along the inter-
donor axis. Since the interdonor separation in the present
situation is much larger than the effective Bohr radius
s,30 Åd, the interdonor interaction is strongly screened,
therefore lowering the strength of the strain. Furthermore, if
a uniaxial strain is already applied along thez direction, so
that the donor ground state only consists of thez and −z
valleys,10 the additional strain due to the presence of another
donor(e.g., along thex direction) will not further reduce the
number of valleys involved—the nondegenerate ground state
will still consist of an equally weighted superposition of
these two valleys(instead of just one of them), so that oscil-
lations in exchange due to valley interference cannot be
removed.10 Nevertheless, a quantitative analysis is needed to
assess the significance of this effect.

3. Coupled quantum dots

Shallow donors in semiconductors may be viewed as the
simplest, naturally occurring quantum dot. Compared to the
gated quantum dots, a relevant difference is the presence of a
well defined and sharp pinning center at the substitutional
donor site. Previous proposals of quantum dots as quantum
registers in a Si or Ge matrix38,39were based on estimates for
the exchange coupling within anempty envelope function
description. It is clear that, for these materials, the plane-
wave parts of the Bloch functions may also have an impor-
tant effect in the exchange coupling.

The floating-phase HL approach should be applicable to
coupled quantum dots, leading to an expression equivalent to
Eq. (12). The absence of a sharp pinning center associated
with each quantum dot implies thatD0 is not as sensitive to
the phase shifts in a floating-phase variational scheme as
obtained here for the donor case. It is possible that variations
in the two-center contributionsDt

s dominate energetically and
determine the singlet and triplet ground state energies, whose
difference should give a reliable estimate forJ.

Of course the valley-orbit effects described byHVO in
Sec. II, which are quantitatively well established for P donors
in Si, would have to be estimated for the quantum dot con-
fining potential, including other perturbations which break
the translational symmetry of the host potential, such as the
presence of nearby interfaces and strain.10 As in the present
case,HVO should lift the sixfold degeneracy of the isolated
quantum dot ground state. An investigation of valley-orbit
effects in Si quantum wells was performed recently by
Boykin et al.40

A similar scheme may also be useful for spin cluster
qubits41 embedded in Si or Ge, where exchange gates are
also invoked for intercluster interactions. Demonstration that
the exchange oscillatory behavior is circumvented for spin
clusters would further require the formalism to be general-
ized to include multielectron states42 in each cluster, as was
explored in Ref. 43.

IV. CONCLUDING REMARKS

We have included and assessed full band structure effects
in the single donor wave functions and charge distributions

in Si. We find interesting oscillatory patterns resulting from
interference between the different plane-wave components of
the Bloch functions. Regarding the well-separated donor pair
problem, we introduced a generalized scheme—the floating-
phase HL approach, which reconfirmed the reliability of
standard HL for this range of donor separations.

One perceived advantage2 of Si-based spin quantum com-
putation (over, for example, the corresponding GaAs quan-
tum dot based quantum computation) is the universal nature
of each qubit in Si, i.e., the fact that the P donor electronic
state in Si is always exactly the same, making each qubit
identical(without any need for additional characterization of
individual qubits which will surely be needed for GaAs
quantum dot quantum computers since electrostatically con-
fined electronic spin states in GaAs quantum dots would ob-
viously have a fair amount of qubit to qubit variations as no
two quantum dots can really be identical). Our finding of
exchange oscillations in Si donor states demonstrates that
this perceived advantage of Si comes with a price, where the
exchange coupling between qubits may vary depending on
the precise positioning of the P atoms within the Si unit cells.
We believe that, in spite of this problem, the QC scheme
with donors in Si still has its appeal in terms of uniform
qubits. Obviously some characterization of the exchange
coupling in Si becomes necessary in view of the oscillatory
exchange behavior. We have discussed elsewhere44 how
some precise local information about donor state exchange
coupling in Si can be obtained by using the powerful tool of
the micro-Raman scattering spectroscopy. In addition, vari-
ous band engineering procedures,10 using strain effects
and/or Si-Ge quantum dots, could be utilized to reduce the
exchange oscillation effects, although its complete elimina-
tion may not be easy.

From the perspective of current QC fabrication efforts,
,1 nm accuracy in single P atom positioning has been re-
cently demonstrated,6 representing a major step towards the
goal of obtaining a regular donor array embedded in Si. As
expected,6 electronic calculations45 have confirmed that this
degree of control is entirely compatible with the operations
involving the so-called A-gates in the Kane qubit
architecture.2 On the other hand, the present calculations
have confirmed that deviations in the relative positioning of
donor pairs with respect to perfectly aligned substitutional
sites along[100] lead to order-of-magnitude changes in the
exchange coupling. Severe limitations in controllingJ would
come from “hops” into different fcc sublattices, in particular
among nearest-neighbor substitutional sites. Therefore, pre-
cisely controlling exchange gates in Si remains an open chal-
lenge.

Note added in proof. An ab initio Green’s function calcu-
lation for a single shallow donor in Si was recently reported
in Ref. 46, in which a perturbation region of 5 neighboring
shells(i.e., less than one effective Bohr radius) was adopted.
It is clear from this reference that wavefunctions based on
the Kohn-Luttinger approach, such as those adopted here, are
the best currently accessible “compromise” betweenab initio
and effective-mass methods for the reported exchange calcu-
lations: A completeab initio calculation including the long-
range tail of the Coulomb potential is currently out of the
question due to excessive computational demands.
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