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Solution of the Schrödinger equation for the time-dependent linear potential
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~Received 14 September 2000; published 12 February 2001!

In this paper I have drawn out the steps to be followed in order to derive the exact Schro¨dinger wave
function for a particle in a general one-dimensional time-dependent linear potential. To this end I have used the
so-called Lewis and Riesenfeld invariant method, which is based on finding an exact quantum-mechanical
invariant in whose eigenstates the exact quantum states are found. In particular, I have obtained the wave
functions of a particle in the linear potential well, driven by a monochromatic electric field.
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It is well known that both time-independent and tim
dependent harmonic oscillator potential models have ex
sively been used to study problems belonging to differ
areas of physics such as molecular physics, quantum ch
istry, quantum optics, solid state physics and quantum fi
theory, among others. Most of the problems modeled b
time-independent harmonic oscillator potential can be ea
found in standard undergraduate and graduate textbooks@1#,
while those modeled by a time-dependent harmonic osc
tor potential are still more commonly found published
scientific reviews@2#.

Besides the harmonic oscillator potential model, the lin
potential model has also been largely employed to study
eral problems in physics. For instance, Schweiter, Tilch,
Ebeling @3# have investigated the motion of Brownian pa
ticles in a piecewise linear potential. Mankin, Ainsaar, a
Reiter @4# have employed a piecewise linear potential
study current reversals in ratchets driven by trichotom
noise. Chunget al. @5# have used the Airy functions to ca
culate numerically the transmission coefficient for terna
alloys of AlxGa12xN as a function of concentration (x). The
time-independent linear potential has experimentally b
used to provide the realization of a miniaturized magne
guide for neutral atoms@6#.

The most investigated kind of time-dependent linear
tential is the one describing the motion of a particle driv
by a monochromatic electric field. For this system t
Hamiltonian is given by

H~ t !5
p2

2m
1qeox1qex cosvt, ~1!

wherem andq are the mass and electric charge of the p
ticle, respectively.e0 is the strength of the constant electr
field that constitutes the confining well, ande is the strength
of the time-dependent electric field that drives the syst
with frequencyv. According to Pustylnikov@7# a simple
classical interpretation of Eq.~1! is a massive ball vibrating
on a periodically vibrating platform, under the influence
gravity. This system in both classical or quantum version
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of conceptual interest in studying chaos@8# and is of experi-
mental relevance in modeling realistic systems@9#. A stan-
dard approach used to find the wave functions for this sys
is to calculate semiclassically the Floquet operator in
basis of the eigenstates for the unperturbed (e50) system
@9#. Recently, Cocke and Reichl@10# have employed a
slightly different Hamiltonian to study the high-harmon
generation in a driven triangular potential well. In that ca
the Hamiltonian was given by

H~ t !5
p2

2m
1qeox1qex cosvt1VL~x!, ~2!

whereVL(x)50 for x,L and VL(x)5` for x.L and the
other symbols and letters have their usual meaning. To c
pute the spectrum of the emitted radiation they first cal
lated the acceleration and induced dipole moment of the
turbed system (eÞ0) by integrating numerically the
Schrödinger equation in the unperturbed energy basis. Th
they computed the time series of the expectation value of
acceleration and took the modulus squared of its Fou
transform.

To the best of my knowledge there is no publication
porting the solution of the Schro¨dinger equation for the sys
tem described by either Eq.~1! or Eq. ~2! without consider-
ing approximate and/or numerical calculations. Furthemo
it seems that no one had reported the solution of the Sc¨-
dinger equation for a particle in a general time-depend
linear potential,V(x,t)5 f (t)x. The main purpose of this
work is to obtain, through the Lewis and Riesenfeld invaria
method @11#, an analytical expression to the Schro¨dinger
wave function for a particle in a general time-dependent
ear potential. As a particular case, I calculate the wave fu
tion for a particle in a linear potential driven by a monochr
matic electric field.

Although the Lewis and Riesenfeld invariant method
discussed in Ref.@11#, here I will present, for the sake o
completeness, the basic features of it. LetC be the solution
of the Schro¨dinger equation of a given system described
the time-dependent Hamiltonian,H(t), i.e.,

i\
]

]t
C5H~ t !C. ~3!
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Now let us suppose that there exists a quantum-mecha
invariant,I (t), for this system that satisfies the equation

d

dt
I ~ t !52

i

\
@ I ~ t !,H~ t !#1

]I

]t
50. ~4!

By applying Eq.~4! on C and after some minor algebra, w
get

i\
]

]t
~ IC!5H~ t !~ IC! ~5!

which implies that the action of the invariant operator on
Schrödinger wave function produces another solution of
Schrödinger equation. This result is valid for any invariant
the latter involves the operation of time differentiation. De
ing with a time-dependent harmonic oscillator it is more co
venient to considerI (t) given by the quadratic form@2#

I ~ t !5a~ t !p21b~ t !x21g~ t !~px1xp!, ~6!

once the Hamiltonian is itself quadratic inp and x. In the
present case, the Hamiltonian is given by

H~x,p,t !5
p2

2m
1 f ~ t !x, ~7!

which is linear inx. So, I consider the linear invariant

I ~ t !5A~ t !p1B~ t !x1C~ t !, ~8!

which must satisfy Eq.~4!. In Eq. ~8! A(t), B(t), andC(t)
are real functions. The substitution of Eq.~8! into Eq. ~4!
gives

S Ȧ1
1

m
BD p1Ḃx1@Ċ2 f ~ t !A~ t !#50. ~9!

A solution of the above relation is obtained by

Ȧ52
B

m
, ~10a!

Ḃ50, ~10b!

Ċ5 f ~ t !A~ t !. ~10c!

By consideringB50, we get from Eqs.~10a! and ~10c! the
following solutions

A~ t !5a5const, ~11a!

C~ t !5aE t

f ~ t8!dt8. ~11b!

Hence, after findingA(t), B(t), andC(t), the linear in-
variant reads

I ~ t !5aS p1E t

f ~ t8!dt8 D . ~12!
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From Eq. ~5! one can see that ifC is a solution of the
time-dependent Schro¨dinger equation, any function define
by f5IC will also be. In particular, one can chooseC as
being the eigenfunction ofI (t). Therefore, since the eigen
function of the invariant given by Eq.~12! is of the form
C}exp@h(t)x#, this suggests that the solution of the tim
dependent Schro¨dinger equation for the system consider
has the form of the trial function

C~x,t !5Ne[h(t)x1m(t)] , ~13!

whereN is a normalization constant andh(t) andm(t) are
arbitrary time-dependent functions. The substitution of E
~13! into the time-dependent Schro¨dinger equation gives

i\@ḣx1ṁ#52
\2

2m
h2~ t !1 f ~ t !x ~14!

yielding

i\ḣ~ t !5 f ~ t !, ~15a!

i\ṁ~ t !52
\2

2m
h2~ t ! ~15b!

The formal solution of Eq.~15a! is

h~ t !52
i

\E
t

f ~ t8!dt8. ~16!

Then, for f (t) specified, one can easily solve Eqs.~15!
and obtain the wave function for the system described by
~7!. For the case wheref (t)5qe01qe cosvt, the solutions
of Eqs.~15! are

h~ t !52
iq

v\
~eovt1e sinvt !, ~17a!

m~ t !52
iq2

2m\v3 Feo~vt !3

3
12eoe~sinvt2vt cosvt !

1e2S 1

2
vt2

1

4
sin 2vt D G , ~17b!

and the wave function for a particle in a linear potent
driven by a monochromatic electric field reads

C~x,t !5N expF2
iq

v\
~eovt1e sinvt !x

2
iq2

2m\v3 H eo~vt !3

3
12eoe~sinvt2vt cosvt !

1e2S 1

2
vt2

1

4
sin 2vt D J G . ~18!

Summing up, in this work the Lewis and Riesenfeld i
variant method has been used for obtaining the Schro¨dinger
2-2
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wave function of a particle in a general time-dependent
ear potential. This result was employed to derive the ana
cal expression for the wave function describing a particle
a linear potential driven by a monochromatic electric fie
From the point of view of the mathematical procedure p
formed here, there seems not to be any problem in evalua
the wave function for particles with time-dependent mass
r,
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