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The diffraction of spherical waves(S waves) interacting with a periodic scattering length distribution pro-
duces characteristic intensity patterns known as Kossel and Kikuchi lines(collectively calledK lines). The
K-line signal can be inverted to give the three-dimensional structure of the coherent scattering length distri-
bution surrounding the source ofS waves—a process known as “Gabor holography” or, simply, “holography.”
This paper outlines a kinematical formulation for the diffraction pattern of monochromatic plane waves scat-
tering from a mixed incoherent and coherentS-wave scattering length distribution. The formulation demon-
strates that the diffraction pattern of plane waves incident on a sample with a uniformly random distribution of
incoherent scatterers is the same as that from a sample with a single incoherent scatterer per unit cell. In
practice, one can therefore reconstruct the holographic data from samples with numerous incoherentS-wave
scatterers per unit cell. Thus atomic resolution thermal neutron holography is possible for materials naturally
rich in incoherent thermal neutron scatterers, such as hydrogen(e.g., biological and polymeric materials).
Additionally, holographic inversions from single-wavelength data have suffered from the so-called conjugate
or twin-image problem. The formulation presented for holographic inversion—different from those used pre-
viously [e.g., T. Goget al., Phys. Rev. Lett.76, 3132(1996)]—eliminates the twin-image problem for single-
wavelength data.
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I. INTRODUCTION

In the Born approximation, the interaction of single-
frequency plane waves with a three-dimensional(3D) peri-
odic scattering length distribution produces diffraction
maxima in discrete directions(i.e., Bragg peaks). Similarly,
single-frequency spherical waves(S waves) interacting with
a periodic 3D scattering length distribution(e.g., atoms on a
lattice) give rise to sharp intensity variations in conical di-
rections; the conic sections are referred to asK lines.1 K lines
resulting fromS waves created by electronic deexcitations
(e.g., photoemission or fluorescence) of atoms inside the
crystal sample are commonly referred to as Kossel lines,2,3

while those generated by dynamical effects(e.g., inelastic or
multiple scattering) are typically called Kikuchi lines.4 The
line structure of Kossel lines was predicted in 1922 by Clark
and Duane2 and experimentally observed using x rays and a
single crystal of copper by Kossel, Loeck, and Voges3 in
1934. Kikuchi lines were first observed in electron scattering
studies of varying thickness mica plates.4

The K-line intensity pattern depends on the relative posi-
tion of the periodic scatterers with respect to the spherical
wave source—i.e., the crystallographic phase of the scatter-
ing structure function. ThusK lines provide the signal for
direct three-dimensional, atomic resolution imaging tech-
niques(holography) for single crystals via the so-called “in-
side source”5,6 or “inside detector” concept.7 In the case of
inside source holography, the detected interference pattern
(hologram) is viewed as being formed bySwaves emitted by
atoms inside the sample, while in the case of inside detector
holography the integrated diffraction intensity is interpreted
as atoms inside the sample detecting the interference field. In

either case, anS-wave atomic resolution hologram is the re-
sult of a uniform spherical reference wave interfering with a
nonuniform object wave.

Unlike electrons and x rays, neutrons scatter from atomic
nuclei which for thermal neutron waves act as point or pure
S-wave scatterers.K lines are a fundamental feature of
monochromaticS-wave diffraction by a periodic scattering
length distribution. Until recently,K lines had never been
identified in experimental thermal neutron scattering data al-
though their presence had been predicted theoretically, for
both incoherent elastic scattering8 and dynamical scattering.9

The first observation ofK lines using thermal neutrons was
made by Suret al.1 using a single crystal of potassium dihy-
drogen phosphate(KDP), a sample containing strong inco-
herent scatterers. This experimental observation suggests that
thermal neutron atomic structure holography is feasible.

The beginnings of atomic resolution holography can be
traced to Bragg’s x-ray work10 and Gabor’s electron interfer-
ence microscope.11 Although Gabor’s lensless microscope
was not realized in his lifetime, over the past decade or so
there has been an increasing number of publications on
atomic resolution holography using either electrons12–15 or
hard x rays.7,16–19More recently, Suret al. demonstrated ex-
perimentally the feasibility of atomic resolution thermal neu-
tron holography using a single crystal containing oneS-wave
incoherent scatterer(H atom) per unit cell.20 In that experi-
ment neutron holography was demonstrated via the inside
source concept. Subsequently, neutron holography using the
inside detector concept was carried out by recording the ho-
logram of lead nuclei in a Pb(Cd) single crystal.21

Although the above-mentioned studies employed single-
crystal samples this is not necessary. For atomic structure
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holography the only requirement is that the sample possess
orientational order, translational order is not a necessary con-
dition. A good source of neutronS waves is hydrogen atoms
which possess a large incoherent neutron scattering cross
section:si =80 b. Because biomimetic and polymeric mate-
rials are typically rich in hydrogen, contain other low-Z at-
oms, and often possess only orientational order, they are ex-
pected to be particularly well suited to thermal neutron
holography.

Until now the mathematical formulations for atomic
structure holography have been limited to samples with one
S-wave source per unit cell. Starting from this point(Sec. II),
we develop formulations for the diffraction pattern of ex-
tended coherent and incoherentS-wave sources(Sec. III).
This leads to a second-order kinematical formulation of
plane-wave scattering from a mixed coherent and incoherent
S-wave scattering length distribution(Sec. IV), from which it
becomes evident that one can reconstruct the atomic struc-
ture of samples with a uniformly random distribution of
incoherent scatterers. In practice, for thermal neutron holog-
raphy, this condition can be achieved by samples with a large
number of hydrogen atoms per unit cell. Finally, we give a
formulation for holographic reconstruction that eliminates
the twin-image problem from single-wavelength data
(Sec. V).

II. DIFFRACTION PATTERN OF S WAVES FROM
A SINGLE-POINT SOURCE

Consider a point source at the origin, producing spherical
waves with wave numberk and amplitudea. Omitting the
time dependence, the unperturbed or reference wave dis-
placement at positionr is given by

Crefsr d = a
eikur u

ur u
. s1d

If the source is surrounded by a distribution of weak, point,
or pureS-wave elastic scatterers, characterized by a scatter-
ing length densitybsr d, then in the Born approximation the
scattered or object wave is

Cobjsr d = aE
r 0

bsr 0deiksur 0u+ur−r 0ud

ur 0uur − r 0u
dr 0. s2d

The total wave amplitude for a detector at a distanceR is
equal toCrefsRd+CobjsRd. The detected intensityI1ssRd can
then be written asfCref

* Cref+2 ResCref
* Cobjd+Cobj

* Cobjg. In
the far fieldR@ r and defining the outgoing wave vector in

the direction of the detector askout;kR̂, we can write the
detected intensity as

I1sskoutd >
a * a

R2 f1 + 2Refxskoutdg + uxskoutdu2g, s3d

where the intensity modulation function is

xskoutd =E bsr 0deiskr0−kout·r 0d

r0
dr 0, s4d

as derived in Appendix A.

In Eq. (3), the first term is the unperturbed constant
reference-wave intensity due to the source. The object causes
a modulation of this reference intensity as described by the
second and third terms in Eq.(3). Holographic imaging of
the object scattering length distribution via the inside source
concept is essentially the Fourier inversion of the intensity
modulation.

By defining a Fourier transform

Bsqd =
1

Îs2pd3 E bsr de−iq·rdr , s5d

the modulation function in reciprocal space is

xskoutd =
4p

Îs2pd3 E Bsqd
uqu2 − 2kout ·q

dq. s6d

A periodic three-dimensional scattering length distribu-
tion is completely described by the magnitude and phase of
its structure functionFhkl at discrete points in reciprocal
space. The reciprocal-lattice points are given bythkl=hb1
+kb2+ lb3 whereb1, b2, and b3 are three reciprocal-lattice
basis vectors. Equation(5) can thus be written as a series—
i.e.,

Bsqd = o
hkl

Fhkldsq − thkld. s7d

Thus, for a periodic scattering length distribution Eq.(6)
becomes a sum over allhkl—namely,

xskoutd =
4p

Îs2pd3o
hkl

Fhkl

uthklu2 − 2kout · thkl
. s8d

For every pair of discrete points, ±thkl located within a
sphere of radius 2k, the zeros in the denominator of Eq.(8)
cause the modulation to go to infinity inkout directions
whose locus is a cone with axis along ±thkl and full opening
angle 2u satisfying the relation 2k cosu=thkl. The intersec-
tion of the cone with a surface is aK line. The intensity
modulation due to the second term in Eq.(3) changes sign on
crossing theK line. In comparison, the third term in Eq.(3)
is always positive, relatively narrow, and just sufficient to
ensure that the total modulation never becomes negative(un-
physical). The derivations in this section are valid only for a
single source of monochromaticS waves located inside an
object.

III. DIFFRACTION OF S WAVES FROM EXTENDED
SOURCES

We consider two cases of an extended source: a continu-
ous or coherent source and a distribution of independent or
incoherent sources. The formulation in Sec. II can be ex-
tended to the case of multiple sources by describing a con-
tinuous or coherent source in real space as a complex ampli-
tude densityasr d [Asqd in reciprocal space]. As shown in
Appendix B, the intensity detected in the far field
fCref

* Cref+2 ResCref
* Cobjd+Cobj

* Cobjg can be expressed as
follows:
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Insskoutd >
1

R2fA * A + 2 ResA * B̃d + uB̃u2g, s9d

where

B̃skoutd = 4pE Askout − qdBsqd
uqu2 − 2kout ·q

dq. s10d

A comparison of Eqs.(9) and (10) with Eqs. (3)–(8)
readily shows that ifbsr d is periodic, one would again expect
to seeK lines for an extended coherent source. TheK-line
modulation for the case of an extended coherent source[Eq.
(10)] depends on both the structure of the source and of the
object.

Similarly, the formulation in Sec. II can be extended to a
distribution of independent or incoherent sources. A distribu-
tion of point S-wave sources uncorrelated in time implies
that the phase(but not necessarily the magnitude) of asr d is
uniformly random as a function ofr . For this case, by defin-
ing A2sqd as the Fourier transform ofuasr du2, the three terms
for the intensity detected in the far field, as shown in Appen-
dix C, are

cref
* skoutdcrefskoutd = A2s0d, s11d

cref
* skoutdcobjskoutd + c.c. = 2 ReFE 4pA2s− qdBsqd

uqu2 − 2kout ·q
dqG ,

s12d

cobj
* skoutdcobjskoutd = A2s0dUE 4pBsqd

uqu2 − 2kout ·q
dqU2

.

s13d

The first termA2s0d is the uniform, total(incoherent) un-
perturbed intensity due to the source distribution. The third
term gives a positiveK-line modulation that depends only on
the magnitude and not the phase of the scattering length
distribution. For a source and scattering length distribution
with the same periodicity(inside source), the interference
between the reference and object waves—i.e., Eq.(12)—
gives aK-line modulation similar to Eq.(8), which depends
on the relative position—i.e., the phase of the scatterers with
respect to the sources. For a single fixed point source per
period or for a uniformly random(spatially incoherent or
perfectly diffuse) source,A2sqd=A2sthkld=A2s0d, and the dis-
tributed independent sourceK-line expressions [Eqs.
(11)–(13)] reduce exactly to the single-point-source case
[Eqs. (3)–(8)]. The observed diffraction pattern(i.e., holo-
gram) for both these cases can be inverted to give the scat-
tering length distribution(i.e., atomic structure) of the object.
Atomic structure holography with a uniformly random
source distribution is analogous to the commonly used dif-
fuser in optical holography.

IV. DIFFRACTION OF PLANE WAVES BY A MIXED
COHERENT AND INCOHERENT SCATTERING

LENGTH DISTRIBUTION

For plane waves interacting with a periodic scattering
length distribution, the Born(single scattering) approxima-

tion does not give rise toK lines. Consider, however, the
elastic scattering diffraction pattern in the far field due to the
interference between the first scattered wave,CI, and a sub-
sequent second scattered wave,CII, as depicted in Fig. 1.
The detected intensity(evaluated for incident and detected
wave vectorsk in andkout) is given by the expression,

Isk in,koutd = CI
*CI + 2 ResCI

*CIId + CII
* CII . s14d

Consideration of the second-order scattering process leads
to a complete stationary solution to the wave equation, which
is a second-order partial differential equation. Consider the
scattering length distribution as the sum of a time-invariant,
perfectly periodic, coherent componentbcsr d [Bcsqd in recip-
rocal space] and a uniformly random, incoherent component
with squared-magnitudeubisr du2 [Bi

2sqd in reciprocal space].
As shown in detail in Appendix D, the detected intensity[Eq.
(14)] separates into two contributions. One is from purely
coherent scattering, while the other is from the interaction
between coherent and incoherent scattering. The purely co-
herent contribution is given by

Icohsk in,koutd >
1

R2sBc
*Bc + 2 ResBc

*B̃cd + uB̃cu2d. s15d

In Eq. (15), Bc is evaluated atk=kout−k in and

B̃csk in,koutd = 4pE Bcsk − qdBcsqd
uqu2 − 2kout ·q

dq. s16d

The first term in Eq.(15) is the Born approximation and
leads to Bragg maxima atk=thkl. For the case of elastic
scattering, the second and third terms in Eq.(15) are implic-
itly symmetrical in kout and −k in. These terms lead to a

FIG. 1. Schematic depiction of second-order plane-wave scat-
tering. The incident neutron plane waveCinc interacts with an atom
at r 1 producing a primary spherical waveC1. This primaryS wave
interacts with a second atom atr 2, producing a secondaryS wave
CII. The interference between the primary and secondaryS waves
leads to an intensity modulation detected atR.
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modulation of the Bragg peak intensity of a particularthkl,
when scanned as a function ofkout and −k in (e.g., Pendellö-
sung fringes).

The detected intensity from the interaction of the incoher-
ent and coherent scattering naturally separates into contribu-
tions depending separately onkout and −k in. It is shown in
Appendix D that these two contribution can each be cast in
the same form as Eqs.(11)–(13).

Monochromatic plane-wave incoherent scattering thus
gives the sameK-line pattern as a distribution of monochro-
matic, independent sources for scans in both the sample-to-
detector and beam-to-sample directions. So-called inside
source data are obtained by scanningkout directions only,
while inside detector data are obtained by scanningk in direc-
tions only. The hologram has ak dependence when the in-
coherent scattering distribution is nonuniform.

TheK-line intensity profile, as predicted by the kinemati-
cal formulation of internal source and of plane-wave inco-
herent elastic scattering from a periodic scattering length dis-
tribution, is broadened by both the experimental arrangement
and the scattering length distribution. Examples of factors
leading toK-line broadening are the following.

(i) Finite sample shape leads to a convolution of the
modulationxskd with a shape function.

(ii ) Dynamics or “internal structure” or higher-order
partial-wave scattering in the periodic coherent scatterers
bcsr d causes broadening of the structure functionBcsthkld at
each reciprocal lattice point.

(iii ) Motion of the scatterers leads to a nonuniform refer-
ence wave intensityBi

2skd.
(iv) Finite Dl /l of the incident beam wavelength results

in the convolution ofxskd with the wavelength spread func-
tion.

(v) Angular spread of the incident beam and finite detec-
tor angular resolution leads to a convolutionxskd with the
angular resolution function.

We have calculated an analytical solution for the shape of
K lines when the “ideal” modulation function is convoluted
with a generic Gaussian spread function. The derivation, in
its entirety, and the solution to this problem are presented in
Appendix E.

V. RECONSTRUCTION OF THE COHERENT
SCATTERING LENGTH DISTRIBUTION FROM

THE S-WAVE DIFFRACTION PATTERN

The above considerations show that the diffraction pattern
of single-frequency spherical waves produced by incoherent
scattering contains both amplitude and phase information for
all of reciprocal space within a radius of 2k, wherek is the
wave-vector magnitude. Holographic reconstruction is pos-
sible because for a distribution of weak scatterers the diffrac-
tion pattern is dominated by a linear rather than a quadratic
dependence on the coherent scattering length distribution. As
well, it was shown in Sec. III that the diffraction pattern of
waves from a single-point spherical wave source has the
same form as that from a uniformly random source distribu-
tion. This equivalence is commonly exploited in optical ho-
lography with a diffuse source. In the case of neutron scat-

tering, both these conditions(i.e., relatively strong and
uniformly random incoherent scatterers) are readily satisfied
by biological or polymeric materials which typically contain
many hydrogen atoms, a relatively strong incoherent scat-
terer.

As per Eqs.(3) and (4) and Eqs.(11)–(13), the experi-
mentally observed hologram modulation functionHskd pro-
duced by the interaction of a weakS-wave coherent scatter-
ing length distributionbsr d with either a single incoherent
point scatterer or with a uniform distribution of incoherent
scatterers is given, aside from constants, by

Hskd , E ReFbsr d
r

efiskr−k·r dgGdr + Osb2d. s17d

The conditions for pureS-wave, weak scattering are par-
ticularly well satisfied for unpolarized thermal neutron scat-
tering from nuclei. Additionally, for most nuclei, the thermal
neutron coherent scattering lengths are almost purely real
and have the same sign. The real part of the coherent scat-
tering length distribution can be directly reconstructed from
the measured hologram modulation function using the fol-
lowing relations:

b̃evensr d =
brealsr d + breals− r d

kr
cosskrd

~ E
constantuk u

Hskdcossk · r ddk s18d

and

b̃oddsr d =
brealsr d − breals− r d

kr
sinskrd

~ E
constantuk u

Hskdsinsk · r ddk . s19d

Strictly speaking, for a single wavelength or constantk,
the even and odd parts are reconstructed at nonoverlapping
points in space(i.e., the zeros of the even part reconstruct at
turning points of the odd part and vice versa). As such, it is
possible to eliminate the conjugate imagebreals−r d from the
reconstruction of a single-hologram data set by a suitable

combination of b̃oddsr d and b̃evensr d. For instance,

b̃oddsr dsinskrd and b̃evensr dcosskrd can be summed with a
moving box average of dimensionsl /2 to givebsr d. A con-
sequence of this procedure is that the resolution of the recon-
structed image is broadened byl /2. Alternatively, the qual-
ity of the reconstructed image can be improved by
combining holograms obtained at several different wave-
lengths.

For a single-point incoherent scatterer per unit cell, the
above formulation will reconstruct the coherent scattering
length with the incoherent scatterer located at the origin. For
a uniformly random distribution of point incoherent scatter-
ers, the reconstruction origin will be the “center of
illumination”—i.e., theoretically the center of theuasr du2
distribution—which by definition occupies exactly the same
volume as the sample.
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VI. CONCLUSIONS

It has long been realized that the diffraction pattern from
a monochromatic spherical-wave source can be inverted to
give the three-dimensional structure of the scattering length
distribution surrounding the source—a process known as
“holography” or “Gabor holography.” However, the math-
ematical formulations for atomic-resolution holography have
been limited to samples with oneS-wave source per unit cell.
In this paper we have developed a kinematical formulation
for the diffraction pattern of monochromatic plane waves
from a distribution of coherent and incoherent scatterers.
From this it is evident that one can reconstruct the atomic
structure of samples with a uniformly random distribution of
incoherent scatterers. We have also presented a formulation
for holographic reconstruction that eliminates the twin-image
problem from single-wavelength data.

Of consequence is that the present result demonstrates
that the plane-wave diffraction pattern caused by random
(and/or incoherent) elastic scatterers embedded within a pe-
riodic elastic scattering length distribution is analogous to
that of spontaneous sources of isotropic radiation or spheri-
cal waves. This allows the reconstruction, to atomic resolu-
tion, of neutron holograms from materials rich in incoherent
scatterers, such as hydrogen(e.g., biological or polymeric
materials). This is possible as long as the total incoherent
neutron scattering, predominantly arising from hydrogen at-
oms, is larger than the total coherent neutron scattering.
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APPENDIX A: DIFFRACTION PATTERN OF
A SINGLE-POINT SOURCE

Consider a single-point source of monochromatic spheri-
cal waves, with displacement length amplitudea located at
the origin of the real-space coordinate system. Suppressing
the time dependence, the unperturbed source or reference-
wave displacement at a detector, located atR is thus

crefsRd = a
eikuRu

uRu
. sA1d

This expression for the reference wave is independent of the

direction of the detector,R̂.
The scattered or object wave at the detector, resulting

from the source wave interacting with an object scattering
length density,bsr 0d, can be written as

cobjsRd =E crefsr 0dbsr 0d
eiksuR−r 0ud

uR − r 0u
dr 0

= aeikuRu E bsr 0deiksur 0u+uR−r 0u−uRud

ur 0uuR − r 0u
dr 0. sA2d

For a detector in the far fielduRu@ r 0, the wave vector in the

direction of the detector is defined askout=kR̂. In this case,
the path lengths in the above expressions can be approxi-
mated asuR−r 0u>uRu, andksuR−r 0u− uRud>−kout·r 0. Thus,
in the far field, the expression for the object wave at the
detector becomes

cobjsRd > a
eikR

R
E bsr 0deiskr0−kout·r 0d

ur 0u
dr 0 ; cobjskoutd.

sA3d

By substituting a reciprocal relationship for the object scat-
tering length density, defined by

bsr 0d =
1

Îs2pd3 E Bsqdeiq·r 0dq, sA4d

the object wave at the detector can be expressed as

cobjskoutd = a
eikR

R

1
Îs2pd3 E E Bsqdeifkr0−skout−qd·r 0g

ur 0u
dr 0dq

= a
eikR

R

4p

Îs2pd3 E Bsqd
uqu2 − 2kout ·q

dq ; a
eikR

R
xskoutd.

sA5d

As defined above,xskoutd is a multiplicative factor which
expresses the directional modulation of the source wave,
caused by the object.

The three terms in the expression for the detected inten-
sity can be written as follows: The intensity of the unper-
turbed source or reference wave is given by

IRskoutd ; cref
* sRdcrefsRd >

a * a

R2 . sA6d

The intensity from the interference between the reference
and object waves,

IHskoutd ; cref
* sRdcobjsRd + c.c.

>
a * a

R2 E bsr 0deiskr0−kout·r 0d

ur 0u
dr 0 + c.c.

; IRskoutd2 Refxskoutdg. sA7d

The object self-interference intensity

IOskoutd ; cobj
* sRdcobjsRd >

a * a

R2 UE bsr 0deiskr0−kout·r 0d

ur 0u
dr 0U2

; IRskoutd 3 uxskoutdu2. sA8d

The three terms are combined and written in terms of the
experimentally observable directional modulation factor
xskoutd in Eqs.(3) and (4).

APPENDIX B: DIFFRACTION PATTERN OF
A CONTINUOUS SOURCE DISTRIBUTION

An extended source in real space can be described by the
continuous complex amplitude densityasr sd. By writing the
phase as a continuous function, it is implied that the phases
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of the source displacement at different real-space points have
a common origin in time; in other words, such a source is a
“coherent” source. In this case, the reference wave at the
detector location,R, is

crefsRd =E asr sdeikuR−r su

uR − r su
dr s >

eikR

R
E asr sde−ikout·r sdr s

; crefskoutd, sB1d

where the second half of the above expression is an approxi-
mation for a detector in the far field. Again, in the far field,

the outgoing wave vectorkout=kR̂. The object wave at the
detector in the far field becomes

cobjsRd >
eikR

R
E E asr sdbsr 0deikur 0−r su

ur 0 − r su
e−ik·r 0dr 0dr s

; cobjskoutd. sB2d

By defining a reciprocal-space relationship forasr sd, simi-
lar to the one already defined forbsr 0d, namely,

asr sd =
1

Îs2pd3 E Asqdeiq·r sdq, sB3d

it is straightforward to derive

cobjskoutd =
eikR

R

4p

Îs2pd3 E Askout − qdBsqd
uqu2 − 2kout ·q

dq. sB4d

Equations(9) and (10) follow by evaluating the three
terms,cref

* cref, scref
* cobj+c.c.d, andcobj

* cobj, using the above
expressions.

APPENDIX C: DIFFRACTION PATTERN OF A SET OF
INDEPENDENT SOURCES

Appendix A gives expressions of the diffraction pattern
for a single-point source, and Appendix B generalizes the
expressions to the case of an extended, continuous, or coher-

ent source. This appendix tackles the problem of generalized
“independent” sources. Here “independent” or “incoherent”
sources are represented by a set of identical sources, which
are uncorrelated in time—i.e., whose relative phases do not
have a common origin in time—and are therefore random.
This necessitates the expression of intensities by an “en-
semble average” of the waves from the set of independent,
uncorrelated sources.

The notation in this appendix follows the notation devel-
oped earlier. The source- or reference-wave displacement for
a detector located atR, in the far field, for a member of the
set of uncorrelated or incoherent sources is expressed as

crefInsRd > crefInskoutd =
eikR

R
E asr sde−iskout·r s+fnddr s.

sC1d

Here, the ensemble is the set of source waves whose mem-
bers are denoted by the indexn, with random relative phases,
fn. In the context of a kinematical theory, the role of the
phasefn is to provide a random spatial displacement for
every member of the source-wave ensemble. With this un-
derstanding and with a view to making the notation concise,
the explicit reference tofn can be dropped by explicitly
writing a real-space variabler sn for each member of the en-
semble with indexn. The source wave for ensemble member
n is rewritten as

crefInskoutd =
eikR

R
E asr snde−ikout·r sndr sn, sC2d

and the object wave from this representative member is ex-
pressed as

cobjInskoutd =
eikR

R
E E asr sndbsr 0deikur 0−r snu

ur 0 − r snu
e−ikout·r 0dr 0dr sn.

sC3d

The reference-wave intensity is

IRskoutd = kcref
* skoutdcrefskoutdlensemble=KE E a * sr s1dasr s2d

R2 e−ikout·sr s2−r s1ddr s1dr s2L
=KE E

r s1Þr s2

a * sr s1dasr s2d
R2 e−ikout·sr s2−r s1ddr s1dr s2L +KE E a * sr s1dasr s2d

R2 e−ikout·sr s2−r s1ddsr s1 − r s2ddr s1dr s2L
=

1

R2 E uasr sdu2dr s. sC4d

In the above derivation, the ensemble average is subdi-
vided into two terms: one containing the product of displace-
ments of any two different members of the ensemble—i.e.,
the product of displacements of a typical member at different

space points and the other containing the product of displace-
ments at the same space point. The first term averages to zero
under the stated assumption that the set of sources is com-
pletely uncorrelated. The second term is the squared magni-
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tude of the displacement for a representative source.
Using the same argument, the interference between source

and object wave gives a detected intensity

IHskoutd = kcref
* skoutdcobjskoutd + c.c.lensemble

=
1

R2 E uasr sdu2HE bsr 0deikur 0−r su

ur 0 − r su
e−ikout·r 0dr 0J

3eikout·r sdr s + c.c. sC5d

and the self-interference of the object wave produces the
detected intensity

IOskoutd = kcobj
* skoutdcobjskoutdlensemble

=
1

R2 E uasr sdu2UE bsr 0deikur 0−r su

ur 0 − r su
e−ikout·r 0dr 0U2

dr s.

sC6d

Equations(11)–(13) follow in a straightforward fashion
by defining a reciprocal-space relationship for the squared
magnitude of the source density:

A2sqd ;
1

Îs2pd3 E uasr sdu2e−iq·r sdr s. sC7d

APPENDIX D: DIFFRACTION PATTERN FROM
COHERENT AND INCOHERENT SCATTERERS

Expressions for the diffraction patterns from spontaneous
coherent and incoherent sources of monochromatic spherical
waves are given in Appendixes A–C. For atomic structure
holography using electromagnetic radiation, it is possible to
approximate spontaneous monochromatic spherical-wave
sources inside an atomic structure—e.g., by atoms undergo-
ing x-ray fluorescence or photoelectron emission. For ther-
mal neutrons, there are no known cases of spontaneous
atomic sources emitting monochromatic thermal neutrons. In
a thermal neutron scattering experiment, monochromatic
plane waves are typically obtained by a Bragg reflection of a
“white beam” from a known set of planes of a crystal placed
far from the sample. These neutron plane waves are incident
on a sample, or object, inside which they are scattered pri-
marily by atomic nuclei and detected by a scattered-wave
detector(or, simply, “detector”). The scattering from the ob-
ject can be separated into coherent and incoherent compo-
nents. In the kinematical context—i.e., when purely elastic
scattering from the entire object is assumed—an atomic
structure that is invariant under translation—an atomic
lattice—gives “coherent” scattering. Any random irregularity
in the translational order of the object atomic structure gives
rise to “incoherent” scattering. Effects that give rise to inco-
herent thermal neutron scattering include random variations
of scattering lengths at lattice sites because of nuclear spin
(spin incoherence), random variations of scattering length at
lattice sites because of isotopic substitutions(isotope inco-
herence), or in general, any random translational disorder
such as solute atoms in random interstitial sites or oriented
grains or crystallites at random relative locations. Although

such incoherent scattering is not associated with individual
atomic sites or “sources,” one can nevertheless, in a collec-
tive sense, differentiate between the “coherent”(associated
with perfect translational order) and the “incoherent”(asso-
ciated with randomness) scattering lengths at space points.
Turning points in the coherent scattering length distribution
are then identified as lattice sites which contain atoms.

This appendix develops a second-order kinematical theory
of plane-wave scattering from a distribution of spherical-
wave scatterers whose structure includes coherent and inco-
herent components. Results and notations developed in Ap-
pendixes A–C are used. In particular, the device of
“ensemble averages,” as introduced in Appendix C, is used
to evaluate detected intensities. Individual members of the
ensemble are conceptually identified by random differences
in the scattering length distribution. These random differ-
ences produce incoherent scattering. The coherent scattering
length distribution is conceptually the same for all members
of the ensemble. The object scattering-length density is writ-
ten as a sum of coherent(subscriptc) and incoherent(sub-
script i) components:

bsr 0d = bcsr 0d + bisr 0d, sD1d

where it is understood that the incoherent componentbisr 0d
will be treated in the same manneras the incoherent source
distribution of Appendix C.

Consider a monochromatic plane wave with wave number
k and wave vectork in incident on the object. The displace-
ment from this incident wave, at any point,r , in the object
coordinate system is

cincsr d = Ceik in·r . sD2d

The incident wave does not interact directly with the
scattered-wave detector. The squared amplitude of the inci-
dent wave,uCu2, is usually estimated by ancillary detectors
and used for normalization of the scattered-wave detected
intensity.

The scattered-wave detector located atR is in the far field
of the object with the corresponding outgoing wave vector,

kout;kR̂. The first-order scattered wavecI is caused by the
direct interaction of the incident plane wave with the object
scattering length distribution. The first-order scattered wave
at the detector is

cIsRd =E cincsr 0d
bsr 0deikuR−r 0u

uR − r 0u
dr 0

> C
eikR

R
E bsr 0de−iskout−k ind·r 0dr 0 ; cIsk in,koutd.

sD3d

The first-order scattered wave(produced at pointr 01) res-
catters inside the object(at point r 02) to produce a second-
order scattered wave. Thus, the second-order scattered wave
at the detector can be written as
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cIIsRd =E cIsr 02d
bsr 02deikuR−r 02u

uR − r 02u
dr 02 > C

eikR

R
E E

r 01Þr 02

bsr 01dbsr 02d
eikur 02−r 01u

ur 02 − r 01u
e−iskout·r 02−k in·r 01ddr 01dr 02 ; cIIsk in,koutd.

sD4d

Note that to avoid double counting, pointsr 01 and r 02 are not allowed to coincide.
The total intensity at the detector is given bykcI

*cI +2 RescI
*cIId+cII

* cIIlensemble. These three terms are evaluated below.
The detected intensity from first-order scattering(Born approximation) is

I Isk in,koutd = kcI
*sk in,koutdcIsk in,koutdl =KC2

R2 E E b*sr 01dbsr 02de−iskout−k ind·sr 02−r 01ddr 01dr 02L . sD5d

To take the ensemble average, the product of scattering
length densities is explicitly expanded into products of the
coherent and incoherent components. Using the abbreviated
notationbsr 01d=bcsr 01d+bisr 01d;c1+i1, etc., wherec1 and
i1 are the coherent and incoherent components, respectively,
of bsr d at point r 01,

b*sr 01dbsr 02d = sc1 + i1d*sc2 + i2d = hc1*c2 + i1* i2 + i1*c2

+ c1* i2j. sD6d

Note that products of coherent terms such asc1*c2 can be

integrated and averaged over all space; the integrals of prod-
ucts of coherent and incoherent terms such asc1* i2 average
to zero because there is no spatial correlation between the
coherent and incoherent distributions; and terms containing
products of incoherent terms such asi1* i2 have to be inte-
grated with an implicitdsr 01−r 02d, because they are not cor-
related at different space points. The line of reasoning is
similar to that taken for evaluating ensemble averages from
incoherent sources in Appendix C. This results in

I Isk in,koutd =
C2

R2SE E bc
*sr 01dbcsr 02de−iskout−k ind·sr 02−r 01ddr 01dr 02 +E E bi

*sr 01dbisr 02de−iskout−k ind·sr 02−r 01ddsr 01 − r 02ddr 01dr 02D
=

C2

R2SUE bcsr de−iskout−k ind·rdrU2

+E ubisr du2e−iskout−k ind·rdrD , sD7d

where thed has been used to integrate over one of the two
variables in the expression for the incoherent intensity.

The first-order scattered-wave-detected intensity thus con-
tains two terms—the first term is caused entirely by the co-
herent scattering length distribution, while the second term is
the intensity from the incoherent scattering length distribu-
tion. If the incoherent scattering length distribution is uni-
formly random over all space, then the second term is a
constant, independent of direction.

To put this concisely, we define a change in wave vector,
k=kout−k in, and reciprocal-space relationships for the coher-
ent scattering length density and squared magnitude of the
incoherent scattering length density:

Bcsqd =
1

Îs2pd3 E bcsr 0de−iq·r 0dr 0 sD8d

and

Bi
2sqd =

1
Îs2pd3 E ubisr 0du2e−iq·r 0dr 0. sD9d

By appropriate normalization to the incident-wave intensity,
the detected intensity from first-order scattering is readily
seen to be proportional to

I Isk in,koutd =
1

R2fBc
*skdBcskd + Bi

2skdg. sD10d

This is the usual expression for plane-wave scattering in
the Born approximation. If the coherent scattering length
density is perfectly periodic in all three spatial dimensions,
then it can be specified completely by a complex function at
discrete points in reciprocal space. Intensity maxima(Bragg
peaks) are observed when the changes in wave vector created
by the experimental conditions coincide with the locations of
these discrete points in reciprocal space. For experimentally
accessible changes in wave vector that do not correspond to
the periodic lattice of reciprocal-space points, one observes a
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continuous intensity given by the incoherent scattering term.
In the kinematical context, this term will be a constant for a
uniformly random distribution of scatterers. Usually, a varia-
tion in this intensity as a function of change in wave vector is
associated with dynamical effects—i.e., movement of the

“scatterers”—and generally classified as the Debye-Waller
factor. In the kinematical context, any nonuniformly random
component of scattering length will cause such a variation.

The detected intensity of the interference between the
first- and second-order scattered waves is

IHsk in,koutd = kcI
*sk in,koutdcIIsk in,koutdl + c.c.

=KC2

R2E
r 01

E E
r 02Þr 03

b*sr 01dbsr 02dbsr 03d
eikur 03−r 02u

ur 03 − r 02u
e−ihkout·sr 03−r 01d−k in·sr 02−r 01djdr 01dr 02dr 03L + c.c. sD11d

Once again, the ensemble average of the triple integral is evaluated by expanding the product of scattering length densities
into products of coherent and incoherent components. Using the abbreviated notation defined previously, the terms in the
product are

b*sr 01dbsr 02dbsr 03d = sc1 + i1d*sc2 + i2dsc3 + i3d = c1*c2c3 + i1* i2c3 + i1*c2i3 + i1*c2c3 + c1* i2c3 + c1*c2i3 + c1* i2i3

+ i1* i2i3. sD12d

Only the first three terms above survive in the ensemble av-
erage of the triple integral. The remaining terms contain ei-
ther an odd power of incoherent terms—which average to
zero—or else contain products of incoherent terms at space
points r 02 and r 03—which, as previously noted, are not al-
lowed to coincide. Thus the ensemble average of these re-
maining terms becomes zero. The three surviving interfer-
ence intensity terms are written out separately below.

The first of the three terms,c1*c2c3, is readily identified
as the intensity modulation of the first-order coherently scat-
tered wavesc1*d by the second-order wave produced by suc-
cessive scattering from any two coherent scatterers(c2 and
c3). By using the reciprocal-space expression for the coher-
ent scattering length density to evaluate the triple integral,
this intensity term is conveniently represented by the follow-
ing expression(after normalization to the incident wave in-
tensity uCu2):

IHIcohsk in,koutd = 2 ReF4p

R2 Bc
*skd E BcsqdBcsk − qd

uqu2 − 2kout ·q
dqG

;
1

R22 RefBc
*skdB̃cskdg. sD13d

The second termi1* i2c3 is identified as the intensity
modulation of a first-order incoherently scattered reference
wave si1*d by a wave which is first scattered incoherently
si2d and then coherentlysc3d. It is thus analogous to the
hologram modulation caused by “a distribution of indepen-
dent inside sources” as expressed in Appendix C and in Eqs.
(11)–(13). This intensity modulation term is a function of
kout only. It can be observed by fixing the incident beam
direction in the object frame and measuring the scattered
intensity in different directions with respect to the object.
This mode of observation is often called “inside-source ho-
lography.” Again, by using the reciprocal-space expressions

for the coherent scattering length density and the squared
magnitude of the incoherent scattering length distribution,
this term is conveniently represented by

IHIoutskoutd = 2 ReF4p

R2 E Bi
2s− qdBcsqd

uqu2 − 2kout ·q
dqG . sD14d

The third termi1* i2i3 is identified as the intensity modu-
lation of a first-order incoherently scattered reference wave
si1*d by a wave which is first scattered coherentlysc2d and
then incoherentlysi3d. This is the optically reciprocal case of
the second term described above. This intensity modulation
term is a function ofk in only. It can be observed by fixing the
direction of the scattered-wave detector in the object frame
and measuring the scattered intensity when a plane wave is
incident on the object from different directions. This mode of
observation is often called “inside-detector holography” be-
cause conceptually the coherent scattering occurs before the
wave reaches the incoherent scatterer; hence, the incoherent
scatterer acts as a detector. Using the reciprocal-space ex-
pressions for the coherent scattering length density and the
squared magnitude of the incoherent scattering length distri-
bution, this term is conveniently represented by

IHIinsk ind = 2 ReF4p

R2 E Bi
2s− qdBcsqd

uqu2 − 2s− k ind ·q
dqG .

sD15d

The terms for the intensity from the self-interference of the
second-order scattered wave,kcII

* cIIlensemble, can be evaluated
by procedures similar to those outlined above.

It is now seen that the terms in all the expressions for
detected intensity fall into two categories: ones that depend
only on the coherent scattering length distribution[these are
collected in Eqs.(15) and(16)] and ones that arise from the
interaction of the incoherent and coherent scattering lengths
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in the object. The “hologram intensity” terms[Eqs. (D14)
and (D15)] from the interaction between incoherent and co-
herent scattering can be inverted, in certain situations, to give
the coherent scattering length distribution. These situations
are where it is possible to make simplifying assumptions
about, or to infer, the incoherent scattering length distribu-
tion (i.e., where the incoherent scattering length distribution
can be “deconvoluted” from the observations). The simplest
two such cases are that(i) there is conceptually only one
incoherent scatterer per period or “unit cell” of the object
coherent scattering length density and(ii ) there is a uni-
formly random distribution of incoherent scatterers in the
object. It is possible, in a practical sense, to approximate the
second situation with a large number of incoherent scatterers
per unit cell.

APPENDIX E: ANALYTICAL SOLUTION TO K-LINE
SHAPE

Here we present the detailed analytical solution for the
shape ofK lines when the “ideal” modulation function is
convoluted with a generic Gaussian spread function. The in-
tensity modulation for a point source diffraction pattern,
given by Eq.(3), has two components. One component has a
symmetric or quadratic dependence onbsr d—namely,
uxskdu2—and thus contains no phase information. The other
component is asymmetric or has a linear dependence on
bsr d—namely, 2Refxskdg—and contains the phase informa-
tion from which the scattering length distribution can be re-
constructed. Convoluting a symmetric spread function with
the above-mentioned functions results in the asymmetric
component having a much reduced amplitude, much more so
than the amplitude of the symmetric component. This is be-
cause near the center of the pattern, the two halves of the
asymmetric pattern cancel each other out. The issue then is
one of practicality—how broad a convolution function can
one afford to employ before the phase information is, for all
practical purposes, lost. It turns out that a numerical evalua-
tion of this effect is difficult because of the cancellation of
large numbers leading to significant truncation errors.

The “ideal” K-line modulation function due to a point at
q0 in reciprocal space is given by substituting a delta func-
tion bcfdsq−q0dg /Vcell, whereb is the scattering length,c is
the complex nondimensional amplitude factor, andVcell is the
volume of the primitive cell, forBsqd in Eq. (6). For a peri-
odic scattering length distribution, as given in Eq.(7), each
term in Eq. (8) would be treated in the same manner as a
point atq0=thkl.

For a nonideal case,Bsqd can be considered as some av-
eraging function. Here consider a Gaussian where

Bsqd =
bc

Vcell
Sm

p
D3/2

es−muq − q0u2d. sE1d

Equation(6) is evaluated at all values ofm and can be re-
written as

xskd =
bc

Vcell
E Bsqd

uqu2 − 2k ·q
d3q =

bc

Vcell
E Bsqd

uq − k u2 − uk u2
d3q.

sE2d

Equation (E2) is rewritten using the change of variableu
=q0−k, t =q−k as follows:

xskd =
bc

Vcell
Sm

p
D3/2E es−mut − uu2d

ut u2 − uk u2
d3t . sE3d

Rewriting Eq.(E3) in polar coordinates we get

xskd =
bc

uVcell
Sm

p
D1/2E

0

`

dtE
0

p

sinu du
ef−mst2−2ut cosu+u2dg

t2 − k2 t2.

sE4d

Changing the angular variableu to x=cosu and integrat-
ing overx we rewrite Eq.(E4) as follows:

xskd =
bc

uVcell
Sm

p
D1/2E

0

` ef−mst − ud2g − ef−mst + ud2g

t2 − k2 t dt,

sE5d

resulting in

xskd =
bc

uVcell
Sm

p
D1/2E

−`

` tef−mst − ud2g

t2 − k2 dt. sE6d

It should be noted that all integrals shown above are de-
fined in terms of principal value. Expressing the fractional
part of Eq.(E6) in terms of

t

t2 − k2 =
1

2
S 1

t − k
+

1

t + k
D , sE7d

the integral forxskd can then be expressed as a sum of two
terms. The first term is written as

x1skd =
bc

2uVcell
Sm

p
D1/2E

−`

` tef−mst − ud2g

t − k
dt, sE8d

while the second term is expressed as

x2skd =
bc

2uVcell
Sm

p
D1/2E

−`

` tef−mst − ud2g

t + k
dt. sE9d

The two terms of thexskd integral are analogous. Chang-
ing the variablest−u=z andz* = m1/2z, we then get

x1skd =
bc

2uVcell
Sm

p
D1/2E

−`

` e−mz2

z+ u − k
dz

=
bc

2uVcell
Sm

p
D1/2E

−`

` e−z2

z+ m1/2su − kd
dz sE10d

and
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x2skd =
bc

2uVcell
Sm

p
D1/2E

−`

` e−mz2

z+ u + k
dz

=
bc

2uVcell
Sm

p
D1/2E

−`

` e−z2

z+ m1/2su + kd
dz. sE11d

These two integrals[Eqs.(E10) and (E11)] are computed in
terms of the principal value and are particular cases of the
following principal value integral

fsad =E
−`

` e−z2

a − z
dz, sE12d

wherea is real.
Figure 2 schematically shows the evaluation of Eq.(E12).

Referring to Fig. 2 and integrating in the upper part of the
complex plane yields

−
p

i
wsad = −

p

i
e−a2S1 +

2i
Îp
E

0

a

et2dtD . sE13d

The two parts at ±̀ give rise to a value of 0, while the lower
dashed arrow yieldsfsad. The semicircle around pointA cor-

responds to a value of −ipe−a2
.

From the real part of the zero we then obtain the expres-
sion

fsad =E
−`

` e−z2

a − z
dz= 2Îpe−a2E

0

a

ey2
dy. sE14d

We then get

xskd =
bc

2uVcell

Îm

p
2ÎpFe−msu − kd2E

0

Îmsu−kd
ey2

dy

+ e−msu + kd2E
0

Îmsu+kd
ey2

dyG , sE15d

which then simplifies to the following:

xskd =
bc

uVcell

ÎmFe−msu − kd2E
0

Îmsu−kd
ey2

dy

+ e−msu + kd2E
0

Îmsu+kd
ey2

dyG . sE16d

The above expression[Eq. (E16)] is the exact solution to
K-line shapes. The solution is expressed in terms of the Daw-
son integral which we derive below in order to facilitate its
numerical evaluation.

A sample calculation of theK-line profile for a range of
assumed Gaussian widths is shown in Fig. 3. A practical
limit for experimental observation is given by

q0

2
Îm ù 1;

that is, the maxima of the Dawson integral for eachq does
not fall on the minima of successiveq.

FIG. 2. Schematic representation of the integral in Eq.(E12) in
the complex planez=x+ iy.

FIG. 3. Calculation of the
modulation function x, for
k=2p /1.3 Å, q0=2s2p /5d Å and
m1/2 from 0 to 30. The factor
bc/Vcell is not included.
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APPENDIX F: CALCULATION OF THE DAWSON
INTEGRAL

The Dawson integral can be written as follows:

e−y2E
0

y

et2dt. sF1d

For small values ofy we can carry out a serial expansion of
the integral and obtain the following:

ye−y2o
k=0

`
y2k

s2k + 1dk!
. sF2d

The above form of the integral works well for values of
y,4. For larger values ofy we can rewrite the integral as
follows:

e−y2E
0

y

ex2
dx=E

0

y

esx2−y2ddx. sF3d

Letting t=y−x we can rewrite Eq.(F3) as follows:

E
0

y

es−2ty+t2ddt. sF4d

To perform the expansion of Eq.(F4) we let s=2ty and ob-
tain the following:

1

2y
E

0

2y2

e−ses2/4y2
ds. sF5d

When 2y2 is large(,30 wheny.4) we can use a Gauss-
Laguerre numerical integration with three points to compute
the integral given by Eq.(F5). The limit between largey and
small y was empirically established to bey=4.
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