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The diffraction of spherical waves waveg interacting with a periodic scattering length distribution pro-
duces characteristic intensity patterns known as Kossel and Kikuchi (aodisctively calledK lines). The
K-line signal can be inverted to give the three-dimensional structure of the coherent scattering length distri-
bution surrounding the source 8fwaves—a process known as “Gabor holography” or, simply, “holography.”
This paper outlines a kinematical formulation for the diffraction pattern of monochromatic plane waves scat-
tering from a mixed incoherent and coher&atvave scattering length distribution. The formulation demon-
strates that the diffraction pattern of plane waves incident on a sample with a uniformly random distribution of
incoherent scatterers is the same as that from a sample with a single incoherent scatterer per unit cell. In
practice, one can therefore reconstruct the holographic data from samples with numerous incdhenent
scatterers per unit cell. Thus atomic resolution thermal neutron holography is possible for materials naturally
rich in incoherent thermal neutron scatterers, such as hydrégen biological and polymeric materials
Additionally, holographic inversions from single-wavelength data have suffered from the so-called conjugate
or twin-image problem. The formulation presented for holographic inversion—different from those used pre-
viously [e.g., T. Goget al, Phys. Rev. Lett.76, 3132(1996]—eliminates the twin-image problem for single-
wavelength data.
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[. INTRODUCTION either case, as-wave atomic resolution hologram is the re-
sult of a uniform spherical reference wave interfering with a
In the Born approximation, the interaction of single- nonuniform object wave.
frequency plane waves with a three-dimensiof3) peri- Unlike electrons and x rays, neutrons scatter from atomic
odic scattering length distribution produces diffraction nuclei which for thermal neutron waves act as point or pure
maxima in discrete direction@.e., Bragg peaks Similarly, = Swave scatterersK lines are a fundamental feature of
single-frequency spherical wavéS waveg interacting with  monochromaticS-wave diffraction by a periodic scattering
a periodic 3D scattering length distributi¢e.g., atoms on a length distribution. Until recentlyK lines had never been
lattice) give rise to sharp intensity variations in conical di- identified in experimental thermal neutron scattering data al-
rections; the conic sections are referred t&kdmes! K lines  though their presence had been predicted theoretically, for
resulting fromS waves created by electronic deexcitationsboth incoherent elastic scatterfngnd dynamical scatterirfy.
(e.g., photoemission or fluorescenoaf atoms inside the The first observation oK lines using thermal neutrons was
crystal sample are commonly referred to as Kossel Rrfes, made by Suet al! using a single crystal of potassium dihy-
while those generated by dynamical effe@sy., inelastic or drogen phosphatéKDP), a sample containing strong inco-
multiple scatteriny are typically called Kikuchi line§. The  herent scatterers. This experimental observation suggests that
line structure of Kossel lines was predicted in 1922 by Clarkthermal neutron atomic structure holography is feasible.
and Duanéand experimentally observed using x rays and a The beginnings of atomic resolution holography can be
single crystal of copper by Kossel, Loeck, and Voges traced to Bragg's x-ray wotR and Gabor’s electron interfer-
1934. Kikuchi lines were first observed in electron scatteringence microscop&. Although Gabor’s lensless microscope
studies of varying thickness mica plafes. was not realized in his lifetime, over the past decade or so
The K-line intensity pattern depends on the relative posi-there has been an increasing number of publications on
tion of the periodic scatterers with respect to the sphericahtomic resolution holography using either electfén'$ or
wave source—i.e., the crystallographic phase of the scattehard x rays:16-°More recently, Suet al. demonstrated ex-
ing structure function. ThuX lines provide the signal for perimentally the feasibility of atomic resolution thermal neu-
direct three-dimensional, atomic resolution imaging tech-ron holography using a single crystal containing @&wave
niques(holography for single crystals via the so-called “in- incoherent scattergH atom) per unit cell?® In that experi-
side source®® or “inside detector” conceptln the case of ment neutron holography was demonstrated via the inside
inside source holography, the detected interference pattesource concept. Subsequently, neutron holography using the
(hologram) is viewed as being formed fywaves emitted by inside detector concept was carried out by recording the ho-
atoms inside the sample, while in the case of inside detectdogram of lead nuclei in a REd) single crystaf!
holography the integrated diffraction intensity is interpreted Although the above-mentioned studies employed single-
as atoms inside the sample detecting the interference field. lerystal samples this is not necessary. For atomic structure
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holography the only requirement is that the sample possess In Eq. (3), the first term is the unperturbed constant
orientational order, translational order is not a necessary conmeference-wave intensity due to the source. The object causes
dition. A good source of neutro waves is hydrogen atoms a modulation of this reference intensity as described by the
which possess a large incoherent neutron scattering crosgcond and third terms in E¢3). Holographic imaging of
section:o;=80 b. Because biomimetic and polymeric mate-the object scattering length distribution via the inside source
rials are typically rich in hydrogen, contain other I@&wvat-  concept is essentially the Fourier inversion of the intensity
oms, and often possess only orientational order, they are exaodulation.
pected to be particularly well suited to thermal neutron By defining a Fourier transform
holography.

Until now the mathematical formulations for atomic B(q) =
structure holography have been limited to samples with one
Swave source per unit cell. Starting from this paiSec. I)),
we develop formulations for the diffraction pattern of ex- the modulation function in reciprocal space is
tended coherent and incohere®tvave sourcegSec. ).
This leads to a second-order kinematical formulation of kou) = Amw f B(q) da. ©)
plane-wave scattering from a mixed coherent and incoherent T Vemd ) 1alP - 2kew g
Swave scattering length distributig®ec. I\V), from which it

becomes evident that one can reconstruct the atomic struc- A Periodic three-dimensional scattering length distribu-
ture of samples with a uniformly random distribution of 10N iS completely described by the magnitude and phase of

incoherent scatterers. In practice, for thermal neutron hologlfS Structure functionFy,, at discrete points in reciprocal

raphy, this condition can be achieved by samples with a larggPace- The reciprocal-lattice points are given 4y=hb,
number of hydrogen atoms per unit cell. Finally, we give atKo2+1bs whereb,, by, andb; are three reciprocal-lattice
formulation for holographic reconstruction that eliminatesP2sis vectors. Equatiafb) can thus be written as a series—
the twin-image problem from single-wavelength data'€"

(Sec. V.
B(a) = > Frd(d = Ti)- (7)
Il. DIFFRACTION PATTERN OF S WAVES FROM K
A SINGLE-POINT SOURCE Thus, for a periodic scattering length distribution E)
Consider a point source at the origin, producing sphericapecomes a sum over diki—namely,
waves with wave numbek and amplitudea. Omitting the A =
. . _ hkl
time dependence, the unperturbed or reference wave dis- X(Kou) = 5 2ok . (8)
placement at position is given by V@2m)* i [ 7l = 2Kout Thia
k| For every pair of discrete points,m, located within a
W of(r) = aW. (1)  sphere of radiusk the zeros in the denominator of E®)

cause the modulation to go to infinity ik, directions

If the source is surrounded by a distribution of weak, pointwhose locus is a cone with axis along and full opening
or pureSwave elastic scatterers, characterized by a scatte@ngle 2 satisfying the relation Rcos 6= . The intersec-

ing length densityb(r), then in the Born approximation the tion of the cone with a surface is & line. The intensity
scattered or object wave is modulation due to the second term in E8) changes sign on

. crossing theK line. In comparison, the third term in E(B)
" -(r):af b(r o) Iral*Ir=ro) ; 2 is always positive, relatively narrow, and just sufficient to
obj . Irollr =1yl 0 ensure that the total modulation never becomes negative
0 physica). The derivations in this section are valid only for a

The total wave amplitude for a detector at a distaRcés  single source of monochromatis waves located inside an
equal to‘lf,ef(R)HIfobi(R). The detected intensityi(R) can  object.
then be written agW W er+2 REW W) + W Wyl In
the far fieldR>r and defining the outAgomg wave vector in IIl. DIFFRACTION OF S WAVES FROM EXTENDED
the direction of the detector ds,,=kR, we can write the SOURCES

detected intensity as _ _
We consider two cases of an extended source: a continu-

) ous or coherent source and a dist.ribu.tion of independent or
incoherent sources. The formulation in Sec. Il can be ex-
tended to the case of multiple sources by describing a con-
tinuous or coherent source in real space as a complex ampli-

bi(r o) & <T0kautT0 tude densitya(r) [A(q) in reciprocal spade As shown in
XKou) = f = ———dr,
0

*

(ou) = " 1+ 2Rex(Kou] + [x(Kou 2,

where the intensity modulation function is

(4) Appendix B, the intensity detected in the far field
[V e Viert2 REW (Wo,) + W, W]l can be expressed as
as derived in Appendix A. follows:
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1 ~ o~
IndKou) = —[A* A+2 R&A* B) + B[], 9 . Henl HRn|
ndKou) Rz[ & ) | | ] ) em"r'b(l'l)e xb rz/e
|r,—r,| |R—r,|
where
=TU(R)

ik,

B(Koy) = 47 %mdq. (10) r%——l—“)—\—‘r\ \ \ \ \

A comparison of Eqgs(9) and (10) with Egs. (3)8) _ MuTip )e
readily shows that ib(r) is periodic, one would again expect =R ¥, ) & e, —r|
to seeK lines for an extended coherent source. Kuine + \
modulation for the case of an extended coherent sojige r ""'H—H* \ \ \

(10)] depends on both the structure of the source and of the ! \PJ(R)=ikIR— |
object. i, ) "

Similarly, the formulation in Sec. 1l can be extended to a el R-r
distribution of independent or incoherent sources. A distribu- -
tion of point Swave sources uncorrelated in time implies \Pm(l‘n)=e "2
that the phasébut not necessarily the magnitydef a(r) is
uniformly random as a function of For this case, by defin- FIG. 1. Schematic depiction of second-order plane-wave scat-

i 2 i 2
ing A%(q) as the Fourier transform ¢&(r)|*, the three terms iering The incident neutron plane wati,, interacts with an atom
fqr the intensity detected in the far field, as shown in Appen-at 1, producing a primary spherical wav,. This primaryS wave
dix C, are interacts with a second atom &, producing a secondar$ wave

* — A2 V,. The interference between the primary and secon8amaves
Yrer(Kou rer(kow) = A%0), (19) leads to an intensity modulation detectedRat

4nA’(- Q)B(Q) ]

> tion does not give rise t& lines. Consider, however, the
|q| = Koyt g

elastic scattering diffraction pattern in the far field due to the
(12 interference between the first scattered wakg,and a sub-
sequent second scattered wa¥g,, as depicted in Fig. 1.
2 The detected intensityevaluated for incident and detected
wave vectork;, andk,,) is given by the expression,

'r//:ef(kout) ‘/fobj(kout) +c.c.=2 R%

. 47B
lpObj(kout) ‘pobj(kout) = AZ(O) ‘ f sz%

(13 |(Kin Koud = W, W, + 2 REW W) + W\ Wy (14)
The first termA%(0) is the uniform, totalincoherent un-

perturbed intensity due to the source distribution. The thirc{0
term gives a positivi-line modulation that depends only on
the magnitude and not the phase of the scattering lengt
distribution. For a source and scattering length distributio
with the same periodicityinside sourcg the interference
between the reference and object waves—i.e., (#8)—
gives aK-line modulation similar to Eq(8), which depends
on the relative position—i.e., the phase of the scatterers wit
respect to the sources. For a single fixed point source p
period or for a uniformly randongspatially incoherent or
perfectly diffus@ source A%(q) =A?(7,) =A%(0), and the dis-
tributed independent source&K-line expressions [Egs.
(11)«13)] reduce exactly to the single-point-source case 1
[Egs. (3)«8)]. The observed diffraction patterte., holo- _ = (R 5 B |2
gram for both these cases can be inverted to give the scat- eor(kinKou) RZ(B°B°+ 2ReBBo) *[Bf). (19
tering length distributioni.e., atomic structuneof the object.
Atomic structure holography with a uniformly random In Eq. (15), B; is evaluated ake=Kk,,—Ki, and
source distribution is analogous to the commonly used dif-
fuser in optical holography.

Consideration of the second-order scattering process leads
a complete stationary solution to the wave equation, which
is a second-order partial differential equation. Consider the
cattering length distribution as the sum of a time-invariant,
rberfectly periodic, coherent compondn(r) [B.(q) in recip-
rocal spackand a uniformly random, incoherent component
with squared-magnitudf;(r)|? [BX(q) in reciprocal spade

s shown in detail in Appendix D, the detected inten§ky.

I;L4)] separates into two contributions. One is from purely
coherent scattering, while the other is from the interaction
between coherent and incoherent scattering. The purely co-
herent contribution is given by

B.(x—q)B(q)

dg. 16
|q|2_2kout'q a ( )

Be(Kin, Kou) = 477[
IV. DIFFRACTION OF PLANE WAVES BY A MIXED

COHERENT AND INCOHERENT SCATTERING The first term in Eq(15) is the Born approximation and
LENGTH DISTRIBUTION leads to Bragg maxima at=r,, For the case of elastic

For plane waves interacting with a periodic scatteringscattering, the second and third terms in Edp) are implic-
length distribution, the Borrgsingle scatteringapproxima- ity symmetrical in ko, and —k;,. These terms lead to a
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modulation of the Bragg peak intensity of a particuta,  tering, both these conditiong.e., relatively strong and

when scanned as a function lof,; and k;, (e.g., Pendell6- uniformly random incoherent scattergese readily satisfied

sung fringes by biological or polymeric materials which typically contain
The detected intensity from the interaction of the incoher-many hydrogen atoms, a relatively strong incoherent scat-

ent and coherent scattering naturally separates into contribterer.

tions depending separately ¢, and K;,. It is shown in As per Egs.(3) and (4) and Egs.(11)—13), the experi-

Appendix D that these two contribution can each be cast imentally observed hologram modulation functidik) pro-

the same form as Eqél1)—<13). duced by the interaction of a we&wave coherent scatter-
Monochromatic plane-wave incoherent scattering thusng length distributionb(r) with either a single incoherent

gives the sam&-line pattern as a distribution of monochro- point scatterer or with a uniform distribution of incoherent

matic, independent sources for scans in both the sample-tgcatterers is given, aside from constants, by

detector and beam-to-sample directions. So-called inside b(r)

source data are obtained by scannlng; directions only, _ B ke 2

while inside detector data are obtained by scankipglirec- H(k) f Re{ r ¢ }dr +OmY. (7

tions only. The hologram has @ dependence when the in-

coherent scattering distribution is nonuniform. The conditions for pur&wave, weak scattering are par-

The K-line intensity profile, as predicted by the kinemati- ticularly well satisfied for unpolarized thermal neutron scat-
cal formulation of internal source and of plane-wave inco-tering from nuclei. Additionally, for most nuclei, the thermal

herent elastic scattering from a periodic scattering length digheutron coherent scqttermg lengths are almost purely real
tribution, is broadened by both the experimental arrangeme nq have the Same sign. The rea_l part of the coherent scat-
and the scattering length distribution. Examples of factord®rng length distribution can be d_|rectly re_constr_ucted from
leading toK-line broadening are the following. the.measur.ed hologram modulation function using the fol-
(i) Finite sample shape leads to a convolution of thelOWing relations:
modulationy(k) with a shape function. - Brealr) + Dreai(— )
(i) Dynamics or “internal structure” or higher-order Deyen(r) = K cogkr)
partial-wave scattering in the periodic coherent scatterers
b.(r) causes broadening of the structure functi®s,,) at
each reciprocal lattice point. * f H(k)codk -r)dk
(iii) Motion of the scatterers leads to a nonuniform refer- constantl
ence wave intensit?(). and
(iv) Finite AN/\ of the incident beam wavelength results B Bron(F) = Bronf(~ 1)
in the convolution ofy(k) with the wavelength spread func- Boud(r) = —22 - real sin(kr)
tion.
(v) Angular spread of the incident beam and finite detec-
tor angular resolution leads to a convolutigtk) with the ocf H(k)sin(k - r)dk. (19
angular resolution function. constant/k|
We have calculated an analytical solution for the shape of gyrictly speaking, for a single wavelength or constint
K lines when the “ideal” modulation function is convoluted the even and odd parts are reconstructed at nonoverlapping
with a generic Gaussian spread function. The derivation, ihoints in spacéi.e., the zeros of the even part reconstruct at
its entirety, and the solution to this problem are presented i'@urning points of the odd part and vice versas such, it is

(18)

Appendix E. possible to eliminate the conjugate imagg,(—r) from the
reconstruction of a single-hologram data set by a suitable
V. RECONSTRUCTION OF THE COHERENT combination of byy(r) and bgeqr). For instance,

SCATTERING LENGTH DISTRIBUTION FROM

THE SWAVE DIFFRACTION PATTERN bogdr)sin(kr) and bg,e(r)cogkr) can be summed with a

moving box average of dimensiong?2 to giveb(r). A con-

The above considerations show that the diffraction patterisequence of this procedure is that the resolution of the recon-
of single-frequency spherical waves produced by incohererstructed image is broadened ky2. Alternatively, the qual-
scattering contains both amplitude and phase information foity of the reconstructed image can be improved by
all of reciprocal space within a radius ok,2wherek is the ~ combining holograms obtained at several different wave-
wave-vector magnitude. Holographic reconstruction is postengths.
sible because for a distribution of weak scatterers the diffrac- For a single-point incoherent scatterer per unit cell, the
tion pattern is dominated by a linear rather than a quadratiabove formulation will reconstruct the coherent scattering
dependence on the coherent scattering length distribution. Aength with the incoherent scatterer located at the origin. For
well, it was shown in Sec. Il that the diffraction pattern of a uniformly random distribution of point incoherent scatter-
waves from a single-point spherical wave source has thers, the reconstruction origin will be the “center of
same form as that from a uniformly random source distribudllumination"—i.e., theoretically the center of th&(r)?
tion. This equivalence is commonly exploited in optical ho-distribution—which by definition occupies exactly the same
lography with a diffuse source. In the case of neutron scatvolume as the sample.
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VI. CONCLUSIONS direction of the detector is defined h@ut:kﬁ. In this case,
It has long been realized that the diffraction pattern fromth€ path lengths in the above expressions can be approxi-
a monochromatic spherical-wave source can be inverted tg'ated as{R_—ro|=|R|, and k(|R_r0|_|R|)=_!<out'r0- Thus,
give the three-dimensional structure of the scattering lengti the far field, the expression for the object wave at the
distribution surrounding the source—a process known agetector becomes
“holo_graphy” or “_Gabor holography.” prever, the math- &R [ o(r o) Kiokouro)
ematical formulations for atomic-resolution holography have  y;,,(R) =a— = dro= YiopiKoud-
L. R . R |I’ | ]
been limited to samples with or&wave source per unit cell. 0
In this paper we have developed a kinematical formulation (A3)
for the diffraction pattern of monochromatic plane waves o ) ) ) )
from a distribution of coherent and incoherent scatterersBY Substituting a reciprocal relationship for the object scat-
From this it is evident that one can reconstruct the atomid€'ng length density, defined by

structure of samples with a uniformly random distribution of 1 _

incoherent scatterers. We have also presented a formulation b(ro) = == J B(qg)e'9"odq, (A4)
for holographic reconstruction that eliminates the twin-image V(2m)

problem from single-wavelength data. the object wave at the detector can be expressed as

Of consequence is that the present result demonstrates
that the plane-wave diffraction pattern caused by random R o1 B(q)e/lkro~(koura) ol
(and/or incoherentelastic scatterers embedded within a pe-%bj(k"“') "R V(@2m)? J J 1ol
riodic elastic scattering length distribution is analogous to , ‘
that of spontaneous sources of isotropic radiation or spheri- _ ikR 4w B(q) dg = e'_kR K
cal waves. This allows the reconstruction, to atomic resolu- -a R J(2m)? 9> = 2Koue- g q=a R X(Kow)-
tion, of neutron holograms from materials rich in incoherent
scatterers, such as hydrogésg., biological or polymeric (AS)
materialg. This is possible as long as the total incoherentas defined abovey(k,,) is a multiplicative factor which
neutron scattering, predominantly arising from hydrogen atexpresses the directional modulation of the source wave,
oms, is larger than the total coherent neutron scattering. ¢caysed by the object.

The three terms in the expression for the detected inten-
sity can be written as follows: The intensity of the unper-
turbed source or reference wave is given by
The authors would like to thank Thad Harroun for his

drdq
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The intensity from the interference between the reference
APPENDIX A: DIFFRACTION PATTERN OF and object waves,
A SINGLE-POINT SOURCE *
IH(kout) = '/’ref(R)‘//obj(R) +C.C.
Consider a single-point source of monochromatic spheri- a*a [ b(rg)e o kouro

cal waves, with displacement length amplitualéocated at =— f 0 dro+c.c.
the origin of the real-space coordinate system. Suppressing R vl
the time dependence, the unperturbed source or reference- = I5(Kou)2 Re x (Ko - (A7)

wave displacement at a detector, locate®Ras thus ) ) ) )
The object self-interference intensity

Yref(R) =@ (A1) . a*a| [ b(rge®okouro |2
N R lo(Kouw) = $op(R) oni(R) = — f . dro
. ) . R Irol
This expression for the reference wave is independent of the )
= Ig(Kou) X |X(kout)| . (A8)

direction of the detectoR.
The scattered or object wave at the detector, resultinghe three terms are combined and written in terms of the
from the source wave interacting with an object scatteringexperimentally observable directional modulation factor

KIR|

length densityb(ro), can be written as X(Kouw) in Egs.(3) and(4).
k(IR-rq))
Yovi(R) = l//ref(fo)b(ro)—|R Y dro APPENDIX B: DIFFRACTION PATTERN OF
b(ro) ik(Iro[+{R—r IR} A CONTINUOUS SOURCE DISTRIBUTION
' ro)e™ i ori=ror
= ae'ka 0|r IR=rq dro.  (A2) An extended source in real space can be described by the
0 0

continuous complex amplitude densdyr ). By writing the
For a detector in the far fiel®R|>r, the wave vector in the phase as a continuous function, it is implied that the phases

014105-5



SURet al. PHYSICAL REVIEW B 71, 014105(2005

of the source displacement at different real-space points hawnt source. This appendix tackles the problem of generalized
a common origin in time; in other words, such a source is dindependent” sources. Here “independent” or “incoherent”
“coherent” source. In this case, the reference wave at theources are represented by a set of identical sources, which

detector locationR, is are uncorrelated in time—i.e., whose relative phases do not
iKIR-r ‘ iR have a common origin in time—and are therefore random.
rof(R) = Ja(rs)e s a(r & kourrslr This necessitates the expression of intensities by an “en-
e IR - fs= s semble average” of the waves from the set of independent,
= Yrei(Kow) (B1) uncorrelated sources.
= Wref\Rout/

The notation in this appendix follows the notation devel-
where the second half of the above expression is an approxdped earlier. The source- or reference-wave displacement for
mation for a detector in the far field. Again, in the far field, a detector located &, in the far field, for a member of the

the outgoing wave vectdc,=kR. The object wave at the Set of uncorrelated or incoherent sources is expressed as

detector in the far field becomes kR _
‘/’ref_n(R) = ’pref_n(kouJ = F f a(rs)e_l(komlr;r(ﬁn)drs

|kR I’S)b(l' )elk\ro ry —ik-r
‘ﬂob](R) JJ _rs| Odrodrs (Cl)

= Yonj(Koup - (B2)  Here, the ensemble is the set of source waves whose mem-
bers are denoted by the indexwith random relative phases,

¢, In the context of a kinematical theory, the role of the
phased, is to provide a random spatial displacement for

By defining a reciprocal-space relationship &bry), simi-
lar to the one already defined fbfry), namely,

1 ) every member of the source-wave ensemble. With this un-
alry =—r— f A(q)€"sdq, (B3)  derstanding and with a view to making the notation concise,
V(2m) the explicit reference tap, can be dropped by explicitly
it is straightforward to derive writing a real-space variable,, for each member of the en-

semble with indexn. The source wave for ensemble member

ekR 47 A(Kou— 9)B(q) n is rewritten as

Yovj(Kou) = —- dg. (B4)
oner V(27T)3 |Q|2 - 2I(out' q kR
- —iKoutTs

Equations(9) and (10) follow by evaluating the three et n(Kou) = R f a(r e outsndr gy, (€2
terms, freethiess (Yreribobit C-C), aNd fopibon;, Using the above . _ _ _
expressions. and the object wave from this representative member is ex-

pressed as
APPENDIX C: DIFFRACTION PATTERN OF A SET OF gkR a(rsn)b(ro)eikho—rsn\ )
INDEPENDENT SOURCES opjn(Kow) = —= Jf P e koutTodr odr g,
0~ Psn
Appendix A gives expressions of the diffraction pattern (3

for a single-point source, and Appendix B generalizes the
expressions to the case of an extended, continuous, or cohérhe reference-wave intensity is

Ir(Kouw) = <¢:ef(kout) ret(Koud Yensemble™ <f f %e‘ikour(rg‘fsﬂdrSldr32>

<fj = (rsl)a(rsz) g Kour(lo” rﬂ)drsldrsz>+<ff = (r51)a(r52) _Ikour(rsz_rﬂ)g(rsl_rsz)drsldr32>
r

1 2
== f Ja(rg)[?dre. (€4

1772

In the above derivation, the ensemble average is subdspace points and the other containing the product of displace-
vided into two terms: one containing the product of displace-ments at the same space point. The first term averages to zero
ments of any two different members of the ensemble—i.e.under the stated assumption that the set of sources is com-
the product of displacements of a typical member at differenpletely uncorrelated. The second term is the squared magni-
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tude of the displacement for a representative source. such incoherent scattering is not associated with individual
Using the same argument, the interference between soure@tomic sites or “sources,” one can nevertheless, in a collec-
and object wave gives a detected intensity tive sense, differentiate between the “coherg@tSsociated
. with perfect translational ordgand the “incoherent{asso-
I(Koud) = (Yrer(Koud Yobj(Kou) + C-Clensemble ciated with randomnesscattering lengths at space points.
1 ) b(r o)eklrord e Turning points in the coherent scattering length distribution
= EJ la(r )| f We outodlr o are then identified as lattice sites which contain atoms.
S

This appendix develops a second-order kinematical theory
x ekout'sdr S+ c.cC. (Ch) of plane-wave scattering from a distribution of spherical-
wave scatterers whose structure includes coherent and inco-
fierent components. Results and notations developed in Ap-
pendixes A-C are used. In particular, the device of
lo(Kou) :<¢;bj(kom)%bj(kom))ensemble “‘ensemble averages,” as introduced in Appendix C, is used
to evaluate detected intensities. Individual members of the

and the self-interference of the object wave produces th
detected intensity

_ 1 lar g2 b(r o)gklro™"s e koutTogir 2dr ensemble are conceptually identified by random differences
R? Iro-r4g o) 7 in the scattering length distribution. These random differ-
(CH) ences produce incoherent scattering. The coherent scattering

length distribution is conceptually the same for all members
Equations(11)—<(13) follow in a straightforward fashion of the ensemble. The object scattering-length density is writ-
by defining a reciprocal-space relationship for the squareten as a sum of coherefgubscriptc) and incoherengsub-

magnitude of the source density: scripti) components:
1 .
A (q) = Jla(rs)lze"q'rsdrs- (C7) b(ro) = be(ro) +bi(ro), (DY)
V(2m)®

where it is understood that the incoherent comporgint)

will be treated in the same mannas the incoherent source
APPENDIX D: DIFFRACTION PATTERN FROM distribution of Appendix C.
COHERENT AND INCOHERENT SCATTERERS Consider a monochromatic plane wave with wave number

Expressions for the diffraction patterns from spontaneoug and wave qutoki” incident on the ObeECt'.The dlsplace—
gient from this incident wave, at any poimt, in the object

coherent and incoherent sources of monochromatic spheric . :
waves are given in Appendixes A—C. For atomic structurecoordm‘""te system Is
holography using electromagnetic radiation, it is possible to _

approximate spontaneous monochromatic spherical-wave Yine(r) = Ckin | (D2)
sources inside an atomic structure—e.g., by atoms undergo-

ing x-ray fluorescence or photoelectron emission. For therthe incident wave does not interact directly with the
mal neutrons, there are no known cases of spontaneougattered-wave detector. The squared amplitude of the inci-
atomic sources emitting monochromatic thermal neutrons. lijent wave,[C[?, is usually estimated by ancillary detectors
a thermal neutron scattering experiment, monochromatignq ysed for normalization of the scattered-wave detected
plane waves are typically obtained by a Bragg reflection of 3ntensity.

“white beam” from a known set of planes of a crystal placed  The scattered-wave detector locatedras in the far field

far from the sample. These neutron plane waves are incide@tf the object with the corresponding outgoing wave vector,

on a sample, or object, inside which they are scattered prip _ ~ . .
marily by atomic nuclei and detected by a scattered-wavé(f’“‘_ kR. The first-order scattered wavi is caused by the

detector(or, simply, “detector}. The scattering from the ob- direct interaction of the incident plane wave with the object

ject can be separated into coherent and incoherent Compggatterlng length distribution. The first-order scattered wave

nents. In the kinematical context—i.e., when purely elasticat the detector is

scattering from the entire object is assumed—an atomic
structure that is invariant under translation—an atomic b(ro)e‘k‘R‘r0|

lattice—gives “coherent” scattering. Any random irregularity '//'(R):f'r/’inc(ro) IR=ry| 0
in the translational order of the object atomic structure gives
rise to “incoherent” scattering. Effects that give rise to inco-
herent thermal neutron scattering include random variations

ikR
= C? b(ro)e"(kout_kin)'rodro = ‘r//l(kinakout)'

of scattering lengths at lattice sites because of nuclear spin (D3)
(spin incoherence random variations of scattering length at
lattice sites because of isotopic substitutigisotope inco- The first-order scattered wayproduced at pointg,) res-

herencg or in general, any random translational disordercatters inside the objec¢at pointrg,) to produce a second-
such as solute atoms in random interstitial sites or orientedrder scattered wave. Thus, the second-order scattered wave
grains or crystallites at random relative locations. Althoughat the detector can be written as
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b(r 5,) 4R o2 gkR iklrop—roal o
(R) :f wl(rOZ)OZ)—drOZE C? f f b(r g)b(r ) € KouTozkinToddir o1dlr oy = 4y (Kip, Kou) -
r

IR-ro 01# 02 Fo2= o
(D4)

Note that to avoid double counting, pointg andr, are not allowed to coincide.
The total intensity at the detector is given 0¥ ¢ +2 Ry, 1) + ¥ i) ensemble ThESE three terms are evaluated below.
The detected intensity from first-order scatter{iBprn approximatiopis

2
Il(kinvkout) = <¢T(kinakout) ‘pl(kinvkour» = <% f f b*(rOl)b(rOz)e_i(kourkin).(roz_rm)dr Oldr 02>- (DS)

To take the ensemble average, the product of scatterinigptegrated and averaged over all space; the integrals of prod-
length densities is explicitly expanded into products of theucts of coherent and incoherent terms sucltla&2 average
coherent and incoherent components. Using the abbreviated zero because there is no spatial correlation between the
notationb(r o) =b.(rqy) +bj(ro) =cl+il, etc., whereel and  coherent and incoherent distributions; and terms containing
i1 are the coherent and incoherent components, respectivelytoducts of incoherent terms such idsi2 have to be inte-
of b(r) at pointr g, grated with an implicits(r o;—r o,), because they are not cor-

b (ropb(rop) = (CL +i1)"(c2 +i2) = {c1'c2 +i1'i2 +i1'c2 rglqted at different space poin'ts. The line of reasoning is
X similar to that taken for evaluating ensemble averages from
+clii2}. (D6) incoherent sources in Appendix C. This results in

Note that products of coherent terms suchcas2 can be

C2 * : * .
||(kin,kout)=@(ffbc(r01)bc(roz)e_'(k"“‘_ki”)'(r02_r°1)dr01dr02"'ffbi (r01)bi(roz)e_'(k"“‘_ki”)'(roz_rm)5("01‘roz)drmdroz)

CZ

2
fbc(r)e“("out"‘in)'rdr +J|bi(r)|Ze'i(k°ut"‘in)'rdr), (D7)

where thed has been used to integrate over one of the two 5 1 4
variables in the expression for the incoherent intensity. Bi(q) = /=3f [bi(r o)™ 4 odr . (D9)
The first-order scattered-wave-detected intensity thus con- V(2m)
tains two terms—the first term is caused entirely by the co- . L o ) .
herent scattering length distribution, while the second term i8Y aPpropriate normalization to the incident-wave intensity,
the intensity from the incoherent scattering length distribufn€ detected intensity from first-order scattering is readily
tion. If the incoherent scattering length distribution is uni- S€€N to be proportional to
formly random over all space, then the second term is a
constant, independent of direction.
To put this concisely, we define a change in wave vector,
k=Kou—Kin, and reciprocal-space relationships for the coher-

ent scattering length density and squared magnitude of the This is the usual expression for plane-wave scattering in
incoherent scattering length density: the Born approximation. If the coherent scattering length

density is perfectly periodic in all three spatial dimensions,
then it can be specified completely by a complex function at
discrete points in reciprocal space. Intensity maxiBeagg

f be(ro)e9 odr o (D8)  peaks are observed when the changes in wave vector created
by the experimental conditions coincide with the locations of
these discrete points in reciprocal space. For experimentally
accessible changes in wave vector that do not correspond to

and the periodic lattice of reciprocal-space points, one observes a

Kk = 25[BL(Bls) + BT, (D10)

BC(Q) = \;‘”(277)3
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continuous intensity given by the incoherent scattering termscatterers”—and generally classified as the Debye-Waller
In the kinematical context, this term will be a constant for afactor. In the kinematical context, any nonuniformly random
uniformly random distribution of scatterers. Usually, a varia-component of scattering length will cause such a variation.
tion in this intensity as a function of change in wave vectoris The detected intensity of the interference between the
associated with dynamical effects—i.e., movement of thdirst- and second-order scattered waves is

IH(kinvkout) = <¢T(kinakour) ‘//Il(kin,kom» +C.C.
C? e|k|ro ~Tod
EJ‘ f J b (r01)b(r02)b(r03)| | I{kout-(FOS_f01)_kin-(f02—l'01)}dr Oldr OZdr 03 +cC.C. (Dll)
r 027703 o2

Once again, the ensemble average of the triple integral is evaluated by expanding the product of scattering length densities
into products of coherent and incoherent components. Using the abbreviated notation defined previously, the terms in the
product are

b (ro)b(ror)b(rgs) = (c1+i1)"(c2 +i2)(c3 +i3) = c1'c2c3 +i1'i2c3 +i1"¢c2i3 +il1'c2c3 +¢1'i2c3 +¢1'c2i3 +¢1'i2i3
+i1i2i3. (D12)

Only the first three terms above survive in the ensemble avfor the coherent scattering length density and the squared
erage of the triple integral. The remaining terms contain eifmagnitude of the incoherent scattering length distribution,
ther an odd power of incoherent terms—which average tdhis term is conveniently represented by

zero—or else contain products of incoherent terms at space )

pointsr g, and rgz—which, as previously noted, are not al- ly oulKow) =2 R 4w [ B (—9)B:(q) (D14)
lowed to coincide. Thus the ensemble average of these re- H.outou a2 = 2kou-

maining terms becomes zero. The three surviving interfer- . ke - . .
9 9 The third termi1’i2i3 is identified as the intensity modu-

ence intensity terms are written out separately below. . ) ;
lation of a first-order incoherently scattered reference wave

The first of the three termsg]1"c2c3, is readily identified <" L
as the intensity modulation of the first-order coherently scat—(|1 ) _by a wave Wh'Ch IS f,'rSt scattgred cohgrer(klﬁ) and
tered wave(cl’) by the second-order wave produced by suc-then incoherentlyi3). This is the optically reciprocal case of

cessive scattering from any two coherent scattefe2sand the second term described above. This intensity modulation
c3). By using the reciprocal-space expression for the coherl€'M iS a function ok;, only. It can be observed by fixing the
ent scattering length density to evaluate the triple Integra|d|rect|on of the scattered-wave detector in the object frame

this intensity term is conveniently represented by the follow- and measuring the scattered intensity when a plane wave is
ing expressionafter normalization to the incident wave in- incident on the object from different directions. This mode of

tensity |C[?): observation is often called “inside-detector holography” be-
cause conceptually the coherent scattering occurs before the
. B(q)B(r— Q) q) wave reaches the incoherent scatterer; hence, the incoherent
Iy cor(KinKoud =2 R B o )J TR scatterer acts as a detector. Using the reciprocal-space ex-
. lal* = 2Kou- q pressions for the coherent scattering length density and the
1 .~ squared magnitude of the incoherent scattering length distri-
= 22 Re B, (k)B(#)]. (D13)  pution, this term is conveniently represented by
The second terni1’i2c3 is identified as the intensity Iy (k) =2 R 4w B?(— q)B.(Q) dq
modulation of a first-order incoherently scattered reference HLn N la>-2(- ki) -
wave (i1") by a wave which is first scattered incoherently (D15)

(i2) and then coherentlyc3). It is thus analogous to the

hologram modulation caused by “a distribution of indepen-The terms for the intensity from the self-interference of the
dent inside sources” as expressed in Appendix C and in Eqsecond-order scattered wavye, ¢, Yensembie CAN be evaluated
(11)—(13). This intensity modulation term is a function of by procedures similar to those outlined above.

Kout ONly. It can be observed by fixing the incident beam It is now seen that the terms in all the expressions for
direction in the object frame and measuring the scatteredetected intensity fall into two categories: ones that depend
intensity in different directions with respect to the object.only on the coherent scattering length distribut[tmese are
This mode of observation is often called “inside-source ho-<ollected in Eqs(15) and(16)] and ones that arise from the
lography.” Again, by using the reciprocal-space expressioniteraction of the incoherent and coherent scattering lengths
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in the object. The “.hologra.m intensity” Fern{Eqs.(D14) _ bc B(q) 5. _ bc B(q) 5
and(D15)] from the interaction between incoherent and co- x(k) = Vv —|q|2— K -qd q= v —|q K- |k|2d .
herent scattering can be inverted, in certain situations, to give cell cell

the coherent scattering length distribution. These situations (E2)

are where it is possible to make simplifying assumptions . . . . .
about, or to infer, the incoherent scattering length distribu-ﬁquaﬂonEEz) kls re]:/vlrlltten.usmg the change of variable
tion (i.e., where the incoherent scattering length distribution” 9o~ K, t=0~k as follows:
can be “deconvoluted” from the observatipnshe simplest T

. . bC 3/2 e( /-th Ul )
two such cases are théf there is conceptually only one y(k) = _<E> J—d3t. (E3)
incoherent scatterer per period or “unit cell” of the object Veen\ 7 |t]2-|k|?
coherent scattering length density a¢d there is a uni- - . :
formly random distribution of incoherent scatterers in the Rewriting Eq.(E3) in polar coordinates we get

object. It is possible, in a practical sense, to approximate the b 12 o W o -#l-2ut cos +)]
second situation with a large number of incoherent scattererg((k) — _C<E> f dtf sing de 2.
per unit cell. Ween\ 7/ Jo Jo S
(E4)
APPENDIX E: ANALYTICAL SOLUTION TO  K-LINE Changing the angular variabteto x=cos# and integrat-
SHAPE ing overx we rewrite Eq.(E4) as follows:
Here we present the detailed analytical solution for the be [ p\¥2 [ dult-wi - dout+u?]
shape ofK lines when the “ideal” modulation function is X(k):F pu f 212 tdt,
convoluted with a generic Gaussian spread function. The in- cel 0
tensity modulation for a point source diffraction pattern, (ES)
given by Eq.(3), has two components. One component has a .
symmetric or quadratic dependence dir)—namely, resulting in
|x(k)|>—and thus contains no phase information. The other V2 (o fealt- 02
component is asymmetric or has a linear dependence on x(k) = bc (E) f e~ dt. (E6)
b(r)—namely, 2REy(k)]—and contains the phase informa- UV \ 77 I

tion from which the scattering length distribution can be re- ,
constructed. Convoluting a symmetric spread function with, 't Should be noted that all integrals shown above are de-
the above-mentioned functions results in the asymmetri@€d in terms of principal value. Expressing the fractional
component having a much reduced amplitude, much more gt ©f EQ.(E6) in terms of

than the amplitude of the symmetric component. This is be-

cause near the center of the pattern, the two halves of the t_ E(L + i) (E7)
asymmetric pattern cancel each other out. The issue then is tP-k* 2\t-k t+k/’

one of practicality—how broad a convolution function can )

one afford to employ before the phase information is, for allthe integral fory(k) can then be expressed as a sum of two
practical purposes, lost. It turns out that a numerical evaluate’ms. The first term is written as

tion of this effect is difficult because of the cancellation of )
large numbers leading to significant truncation errors. bc (M)llzfm telwlt -

The “ideal” K-line modulation function due to a point at x1(k) = AWy . (E8)

o in reciprocal space is given by substituting a delta func-

tion bd 8(q—0o)]/ Ve, Whereb is the scattering lengtit is  while the second term is expressed as
the complex nondimensional amplitude factor, &g is the

T

—00

volume of the primitive cell, foB(q) in Eq. (6). For a peri- be (p\Y2(* td (- w2

odic scattering length distribution, as given in Ed), each x2(K) = oy (‘) f t+—kdt (E9)
term in Eq.(8) would be treated in the same manner as a cell A T -

point atgo= 7h. The two terms of thee(k) integral are analogous. Chang-

qu a nonigieal cas®(q) can be consid'ered as SOme av-jng the variables—u=z andz* = u%'?z, we then get
eraging function. Here consider a Gaussian where
be [u 1/2 [ e—ﬂzz
xa(k) = (‘) dz

bc 312 2uVg \ 7 _»Ztu-k
B(q) = _<E) g-ula - do) (E1) cell

T 1/2 [ -7
bc €
= —<E) j — —..dz (E10
2uVeey \ 7 w2+t um U=k

cell

Equation(6) is evaluated at all values gf and can be re-
written as and
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y From the real part of the zero we then obtain the expres-
sion

0 —22 a
e [~ a2 2
‘ m f(a) = f_m o Zdz- 2\ me J e’ dy. (E19

- pd +oo 0
a X
We then get
FIG. 2. Schematic representation of the integral in &2 in _ bc Ko = -2 ZCRNS
the complex plang=x+iy. x(k) = 2UVog ;2\’” CE o e’dy
be (u\¥2[* e+ gntario? [ e dy (E15
x2(K) = — dz '
2uV g\ 7 . Z+u+k 0
be [ w\Y2(* e? which then simplifies to the following:
2uVee\ ™ — ZF pr(u+K) bc ~ V(u=k)
: j x(k) = === | ek’ f edy
These two integral§Egs.(E10) and(E11)] are computed in UVeel 0
terms of the principal value and are particular cases of the (k)
following principal value integral 4+ g uu+t k)zf evzdy} } (E16)
f(a):f_m a_zdz, (E12) The above expressiofEq. (E16)] is the exact solution to
K-line shapes. The solution is expressed in terms of the Daw-
wherea is real. son integral which we derive below in order to facilitate its

Figure 2 schematically shows the evaluation of E&iL2). numerical evaluation.
Referring to Fig. 2 and integrating in the upper part of the A sample calculation of th&-line profile for a range of
complex plane yields assumed Gaussian widths is shown in Fig. 3. A practical
o limit for experimental observation is given by

T T _2 2i 2
-—w@=-—e?(1l+—=| edt]. (E13

2
The two parts at & give rise to a value of 0, while the lower

dashed arrow yield§(a). The semicircle around poidt cor-  that is, the maxima of the Dawson integral for eaptoes
responds to a value ofime™@ . not fall on the minima of successivg

FIG. 3. Calculation of the
modulation  function y, for
k=27/1.3 A, qp=2(27/5) A and
w2 from 0 to 30. The factor
bc/ Vg is not included.

Angle (degrees)
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APPENDIX F: CALCULATION OF THE DAWSON
INTEGRAL

The Dawson integral can be written as follows:

y
eV’ J e’dt. (F1)
0

PHYSICAL REVIEW B 71, 014105(2005

y y
eV’ f edx= f ¥y, (F3)
0 0
Letting t=y—x we can rewrite Eq(F3) as follows:
y 2
f ey g, (F4)
0

For small values off we can carry out a serial expansion of 10 perform the expansion of E¢F4) we lets=2ty and ob-

the integral and obtain the following:

y2k

(2k+ k!

yer’>,

k=0

(F2)

tain the following:

2y2 5
eSS (s,
2yJo

When 2/ is large(~30 wheny > 4) we can use a Gauss-

1

(F5

The above form of the integral works well for values of Laguerre numerical integration with three points to compute
y<4. For larger values o§ we can rewrite the integral as the integral given by EqF5). The limit between largg and

follows:

smally was empirically established to lye=4.
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