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1. Phys.: Condens. Matter 7 (1995) 9819-9831. Printed in the UK 

The interaction of electrons with optical phonons in 
embedded circular and elliptical GaAs quantum wires 

C R Bennett, N C Constantinou, M Babiker and B K Ridley 
Department of Physics. University of Essex, Colchester CO4 3SQ,,UK 

Received 12 May 1995 

AbstracL We consider electronic inmubband rransitions involving the confined and interface 
optical phonons of circular and elliptical G A S  quantum wires. Detailed treatments are given far 
a GaAs wire embedded in AlAs where the electrons are confined via an infinite potential barrier. 
The optical phonons are described using the dielectric continuum (DC) model, which for the 
GaAdAIAs system compam favourably with more sophisticated macroscopic models and ab 
initio microscopic caleulalions in its prediction for the lord swnering rates. The DC model has 
been applied previously to the circular ease, but here we evaluate the rates analytically. It is 
shown that the behaviour of the electrons and phonons in elliptical wires is both quantitatively 
and qualitatively different from that in circular wires, especially as regards angular properties. 

1. Introduction 

The interaction of electrons with the polar optical modes is of prime importance both in bulk 
materials and in low-dimensional semiconductor systems. Whilst the boundary conditions 
on the electronic wavefunctions are well established for the GaAs/AIAs system [I], those 
appropriate for the optical phonons have been the subject of much discussion over the 
past few years. Continuum models which incorporate both electrostatic and mechanical 
boundary conditions 121 and microscopic lattice dynamic models [3,4] both predict that the 
rota[ elechon-optical phonon scattering rates are close to those evaluated by the dielectric 
continuum @C) model (see, e.g. [5,6]) in the GaAs/AIAs and GaAdAIGaAs systems, 
although the spectrum for the phonon modes is in reality more complicated than those of 
the DC model. Since our main concern in this paper is with the GaAslAlAs system we 
take advantage of the relative simplicity of this model and employ it in the calculation of 
total scattering rates. The phonon spectrum in the DC model consists of an infinite set of 
confined modes which have vanishing electrostatic potentials at the interfaces and oscillate. at 
the bulk LO frequency of GaAs, together with a set of modes which have potential maxima 
at the interfaces (the interface modes). These interface modes have frequencies within the 
resistrahl bands of GaAs and AlAs and, in the quasi-two-dimensional (Q2D) systems, it 
is found both theoretically [3,6,7] and experimentally [&9] that the AlAs interface modes 
dominate the interaction under certain circumstances. 

In this paper we report results of the interaction of electrons with the DC phonons 
of a GaAs wire of elliptical cross-section (henceforth elliptical wire) embedded in MAS. 
Investigations of the scattering rates for embedded wires using bulk phonons [10-14], the 
DC model [15-181, and the hydrodynamic (HD) model [19] have already been reported, 
although the latter model is now regarded as inappropriate for the evaluation of scattering 
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rates in the G W A I A s  system 12-41, In 1191, however, the HD model was applied to the 
free-standing system and in this system the potentials derived by the HD model are just 
those of the DC model. Microscopic calculations appropriate for rectangular wires have 
also becn reported recently [ZOJ. 

The plan of this paper is as follows. Section 2 describes the confined and interface 
modes of a GaAs wire or circular cross-section (henceforth circular wire) and intrasubband 
scattering rates are obtained in analytical form for the first time. Section 3 describes the 
electronic states of an elliptical wire and section 4 the confined and interface modes of 
an elliptical wire. In section 5 numerical results of the intrasubband scattering rates are 
presented in detail for the elliptical wire and a comparison is made with the results of the 
circular wire. Section 6 contains our conclusions. 

In what follows all the relevant material parameters used are those tabulated in the 
review article by Adachi [21]. 

C R Bennett et a1 

2. Analytical scattering rates for a circular wire 

We consider a GaAs (material 1) circular wire of radius R embedded in AlAs (material 2). 
The confined modes within the wire have vanishing Coulomb potentials at the boundary 
and oscillate at the zone-centre LO-phonon frequency of GaAs. The quantized potential 
operator for the confined modes is 

$(R) = C C { Q , m n q ( R ) a m n ( q )  + Q,&(R)&(q)] (1) 
9 mn 

where a,,,,(q) are Boson operators. 

m = O , f l , & 2 ,  .... (2 )  iqz eim4 
Q , m n q ( W  = AmnJm(&") e 

In the above A,, is the normalization factor, q the axial wavevector and Gmn is the 
confinement wavevector which is related to e,,,., the nth zero of the Bessel function J(x) ,  
via 4," = e,,/R. The explicit form of the normalization factor is 

, ,  , ,, , ,  ,, , , ,  , , ,., ,, , ,. 

Am, J [ ~ W L I / [ 2 E O V J ~ + i ( f f m n ) ( q 2  + GL)]](l/&l - 1/Gl) (3) 

where z-1 (.yl) is the high- (IOW-) frequency dielectric constant for GaAs and V is the volume 
of the wire. The DC confined modes of a cylinder are now quantized and our expressions 
for the corresponding potentials agree with those of [15]. 

We now tun to the description of the interface modes of the circular wire. The dispersion 
relation has been known for a long time (see e.g. [22]) and has been recently observed [23]. 
The dispersion relation is derived as follows. The potential for the interface modes is written 
as 

where I m ( x )  and K,(x) are modified Bessel functions. The amplitudes Cmq and Bm9 
are obtained from the normalization condition together with the dispersion relations. The 
dispersion relation for the interface modes of the cylinder is obtained from the electrostatic 
boundary conditions at r = R (namely continuity of Q, and E a@/ar) and is given by 

EI ( u m q ) / & 2 ( o m q )  I m  (4 R)KA (qR)/G(qR)Km(qR) (5) 
where the primes indicate differentiation with respect to the argument of the Bessel functions. 
We follow the procedure of Knipp and Reinecke [24] and display the interface mode 
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dispersion by plotting the quantity P which is independent of the material parameters and 
is given by 

~ ( 6 )  
From equation (6) it is seen that P is unity when wmq corresponds to the zonecentre GaAs 
TO- and AlAs LO-phonon frequency, and P = -1 when amy corresponds to the zone- 
centre GaAs LO- and AlAs TO-phonon frequency. In other words P spans the resrsrrahl 
bands of the two materials. The vanishing of P corresponds to the frequency of the two 
surface modes on a planar GaAdAIAs interface or the single GaAshacuum surface mode 
for the free-standing wire. The density of interface modes is highest near P = 0.  the^ 
variation of P with the axial wavevector is depicted in figure 1. 

P = [ E i ( O m q )  + E 2 [ O m q ) ] / I E i ( O m q )  -'Ez(Omq)] - 1 < p < 1. 

1 .o 

0.8 

0.6 
a 

0.4 

0.2 

0.0 
0.01 0.10 1 .oo 10.00 

qR 
Figure 1. P as a function of yR (equation (6)) for a circular wire (from top to bottom we have 
Iml = 0, 1, 2, 3, 4, 5). 

It is straightforward to quantize the potential associated with the interface modes and 
we find 

Bmq = d f i E ~ ( @ m q )  R/qEoVIm ( q R ) K ( q R ) D  (UT) 

Cmq = [L ( q R ) / L ( q W ] B m q .  (7) 
It should be noted that only the results for m = 0 are quoted in [I51 and these are in 
agreement with the above results. In (7) the factor D(o,,) is given by 

D ( W m q )  =~ (Ez(O)aEi(O)/aO - E I ( W ) ~ E Z ( O ) / ~ O ) ~ ~ ~ ~ .  (8) 

The quantized potential operator for the interface modes has now been determined. We are 
now in a position to evaluate theelectronic intrasubband rates. 

The effective mass Schrodinger equation for an electron confined via hard walls to a 
circular wire is exactly solvable in terms of Bessel functions [lo]. ' Unfortunately, these 
do not yield analytical results for the form factors. Since we are only interested in 
intrasubband scattering within the lowest subband, we may employ the approximate ground 
state wavefunction proposed by Gold and Ghazali [25] 

V o k ( R )  = m(1 - r 2 / R  )e Lkz Eo = 6fi2/2m* R2. (9) 
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The above approximation wavefunction has been recently employed to calculate analytical 
rates for scattering with bulk phonons by Masale and Constantinou 1261 and properties of 
plasmons in cylindrical wires by Wendler and Grigoryan [U].  

The intrasubband scattering rate, W ,  for scattering within the first subband via emission 
of confined modes is obtained via Fermi’s golden rule and we find 

C R Bennen et a1 

where i& = EkjhwLl. The quantities Q+ and E. are given by 

Q+ = ( 2 m * w ~ l / h ) l ’ ~ R , [ f i f & ]  

8. = (48 /a&)J3(~0 , ) .  

WO = ( e 2 / 4 x ~ o ~ ) ( ~ m * w ~ 1 / ~ ) 1 ‘ 2 ( 1 / ~ , 1  - 1/cSl) 

The quantity WO is defined by 

and for EaAs WO is approximately 8.7 x 10” s-I. The scattering rate gi. 
(13) 

pation (10) 
is essentially that obt&ed by Constantinou and Ridley [19], the only difference being that 
the modes were dispersive in [19]. 

The intrasubband scattering rate for coupling to the cylindrical interface modes is given 
by 

where qo is a zero of 
q2 - 2kq + 2mXo,,,,jil = 0 

and 

with ug(=awmq0/aq) the group velocity of the interface mode at q = qo. In equation (14) 
8, is the analogue of (12) for the interface modes and is given by 

= ( 4 8 / ( q R ) ’ ) h k R )  (17) 
and we note that 8, -+ 1 as q R  -+ 0. 

The scattering rate for a GaAs quantum wire of radius 70.7 8, embedded in AlAs is 
displayed in figure 2 as a function of the axial energy. The discontinuities in the rates arise 
from the singularity in the onedimensional density of states, and this type of behaviour 
by the scattering rate in quasi-one-dimensional systems is well known. The discontinuities 
may, if necessary, be smoothed out phenomenologically by an ad hoc broadening of the 
density of states [28] which will arise in practice due to various mechanisms such as the 
fluctuations in the wire boundary. It should be noted that the contribution of the GaAs 
interface modes in this system is marginal. The main contribution originates from the 
confined GaAs modes, and, for energies above approximately 48 meV, the AlAs interface 
mode as well. Also plotted in figure 2 are the rates using bulk three-dimensional GaAs 
and AlAs phonons (in calculating the scattering rate via bulk AlAs LO modes we take the 
GaAs effective mass, all other parameters being the AlAs ones). Note that this often-made 
assumption of bulk phonons does not completely reproduce the complex behavior of the 
scattering rates, although away from the singularities the assumption of bulk GaAs phonons 
is not too bad an approximation to the overall rate. 
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Figure 2. The scattering rate as a function of axial energy for an R = 70.7 8, GaAs circular 
wire embedded in AIAs. The solid CUNC represents the total scattering rate from all the allowed 
modes. The dashed curve is the contribution from the GaAs (m = 0) confined modes; the dot- 
dashed curve which makes the smallest contribution represents the rate from them = 0 GaAs 
interface mode and the other dot-dashed curve which makes a more significant contribution is 
that due to the m = 0 AlAs interface mode. The dashed m e  labelled 1 is the scattering rate 
assuming b u k  GaAs phonons whilst that labelled 2 is the m e  assuming AlAs bulk phonons. 

3. The electronic states of an elliptical quantum wire 

We consider an elliptical GaAs wire with semimajor axis a and semiminor axis b. We 
assume that the electrons are confined in GaAs by an infinite banier. In elliptical co- 
ordinates R = (U, U, z) with U the 'radial' co-ordinate, U the 'angular' co-ordinate and 
z the axial co-ordinate, Schrodinger's equation (as is Laplace's) is separable with the 
wavefunction given by 

Y ( R )  = Ae"'U(u)V(u) (18) 

where k is the axial wavevector. The radial ( U )  and angular (V) components of the 
wavefunction satisfy the equations 

(19) 
(20) 

which are the equations of Mathieu [29]. The angular functions are periodic (V(u + 2n) = 
V(u)) which implies that the separation constants ,9 (denoted ,9,) are quantized and labelled 
by the azimuthal quantum number m. The solutions to the above equations which are regular 
at the origin are 

d2U(u)/du2 - (,9 - 2Acosh(Zu))U(u) = 0 
d2V(u)/du2 + (,9 - 2Acos(2u))V(u) = 0 

and our notation for all of the Mathien functions employed in this work is standard [29]. 
In (21) A,, is given by 

(22) - 2-2 
- 4 f kmn 
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with f the semifocal distance (= ae with e the eccenuicity); is the confinement 
wavevector of the electron in the n-y plane. The labels odd and even refer to the parity 
of the angular functions with respect to U. The Mathieu functions with index m even have 
periodicity x whilst those with m odd have periodicity 2ir. The requirement that the above 
wavefunction vanishes at ug which is given by 

C R Bennett et a1 

ug = cosh-'(l/e) (23) 

yields the quantum number n. The nth root of the radial component is labelled A,". The 
normalization factor A,. is given by 

A;: = L z i &  r U i ( u ,  A,.)Vi(u, A,,)f2(sinh2(u)+sin2(u))dudu (24) 

where L, is the length of the elliptical wire which, as for the circular wire, is assumed to 
be effectively infinite. The total energy of the state (m, n, k) is given by 

~ , , k  = (fi*/zm*) pin + P].  (25) 

Figure 3 illustrates the confinement energy as a function of a/b  for fixed b = 50 A. It is 
noted that both the cylindrical (e = 0) and the slab (e -+ 1) limits are obtainable, with 
the degeneracy in the cylindrical states lifted by the elliptical asymmetry. The number of 
electronic states within the energy interval shown in figure 3 increases dramatically as e 
approaches unity, and we only show a few of  the states in this regime. 

1 10 100 
? / b  

Figure 3. The subband energies of an elliptical wire with b = 50 A as a function of ajb. The 
solid curves correspond to even states with pm'od x. the doited curves are even states wiul 
period 2z, the dashed curves are odd states with period x and the dashed-dot curves are odd 
states with period 2n. 

We pause here to mention that as the eccentricity increases the ground state wavefunction 
tends to be localized near the region of lowest curvature, in other words towards the centre of 
the ellipse. This, as we demonstrate in the following section, is in contrast to the behaviour 
of the elliptical interface mode. A more detailed explanation of this behaviour is given 
elsewhere [30]. 
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Our next task is to consider the optical phonons. Fortunately, as demonstrated below, 
the above formalism for the electrons also describes the form of the potentials for the various 
optical modes via a redefinition of A. 

4. The confined and interface optical phonons of an ellipticd quantum wire 

The potential associated with the confined modes can be shown, by direct analogy with the 
electron calculation outlined above, to have the form (we follow closely the derivation of 
~ 4 1 )  

(26) 
ce,(u, A,,)ce,(u, 1,;) even 1 L,)Se,(u.  Ln) odd 

@,,&) = B,, ehz 

with q the phonon axial wavevector; B,, are normalization constants and 

(27) 
with imn the phonon confinement wavevector in the x-y plane. Because of the boundary 
conditions, the potentials for the confined modes are completely analogous to the electron 
wavefunctions and have exactly the same form. 

The potentials associated with the interface modes satisfy equations (19) aid (20) with 

(28) 

- i  2-2 
Amn - q f  qmn 

A = - q f  1 2 2  q 

amq(R) = c,e'9z U,(U)V,(U) (2% 

and have the form 

where C, is the normalization constant, and the radial and angular functions are given by 

In equations (30) and (31) the relevant Mathieu functions are those which are finite at the 
origin and vanish at infinity. 

The dispersion relation for the interface modes~is obtained from the usual electrostatic 
boundary conditions and may be expressed in the following way: 

dispersion by We follow the procedure of section 2 and display the interface mc Ntting 
the quantity P-(equation (6)). The variation bf b with the axial wavevector is dep' :d in 
figure 4. The density of interface modes is again highest near P = 0. It is noted that the 
degeneracy of the m + 0 interface modes of the circular wire is lifted by the asymmetry of 
the ellipse, in analogy to the splitting of the electronic subbands in figure 3. 

Figure 5 shows the behaviour of the first-order interface mode potential for varying 
eccentricities. The sfxiking behaviour that the potentials tend to localize near the region 



9826 C R Bennett et a1 

-0.5 1 J 
0.01 0.10 1 .oo -10.00 

qb 
Figure 4. P as a function of axial wavevector yb for an ellipse with LI = 2b. The curves are 
labelled in the m e  manner as figure 3 for the symmevy of the varjous modes shown. 

of higher curvature is already apparent for an ellipse with a = Zb, and for a = 10b 
this behaviour is even more apparent. This is in contrast to the trend for the electron 
wavefunction and the potential of the confined modes which tend to move away from the 
areas of higher curvature as a increases. This difference in behaviour can be explained 
by considering the angular equation (20) as a Schrdinger equation [U] with ‘potential’ 
21hlcos(2v). This ‘potential’ is illustrated in figure 6 for an ellipse with a = 2b. The 
electrons and confined photons have h z 0 and in the language of the analogous Schriidinger 
equation behave like ‘electrons’ and hence tend to be found at ‘potential’ minima which 
in this case means cos(2u) = -1 (hence U = a12 and 3x12) i.e. the region of minimum 
curvature (as shown in the diagram). The interface phonons, in contrast, have A. negative, 
hence they are the analogues of holes, and therefore are to be found at ‘potential’ maxima, 
which corresponds to cos(2u) = 1 (hence U = 0 and x) i.e. the regions of maximum 
curvature. In fact this maximum in the ‘potential’ occurs at the foci of the ellipse. Although 
we have concentrated here on the lowest-order modes, the analogy also holds’for modes with 
higher quantum numbers. For these higher-order modes B and 1 become more comparable 
and the modes can spread out from the lowest-curvature region (in the electron and confined 
phonon case) or the highest-curvature regions (for the interface modes). We therefore expect 
that for intrasubband scattering the higher-order interface modes will couple more efficiently 
to the ground state electrons compared with the coupling of the lowest-order interface mode 
as the eccentricity of the wire increases. This is due to their larger overlap with the electronic 
wavefunction at the centre of the ellipse. 

5. The electron-phonon scattering rates 

It is straightforward to quantize the pokntials associated with the confined and interface 
modes of the elliptical wire following the methods employed in section 2 for the circular 
wire. The integrals involved cannot be case in closed analytical form in this case, and 
the expressions are as a consequence rather cumbersome. For this reason the details are 
not presented here. Once the phonons are. quantized we can evaluate the scattering rate W 
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Figure 5. The elliptic interface mode potential for (a) 
Q = b, (b) a = Zb and (c) Q = lob. 

Figure 6. The effective angular ‘potential‘ for an ellipse 
with a = 26. 

using Fermi’s golden d e .  In this section we, therefore, go beyond the work of Knipp and 
Reinecke [24] by coupling the optical phonons of an elliptical wire to the electrons. 

Figure 7 displays the scattering rate as a function of the axial electron energy for 
an elliptical GaAs wire (b = 50 A, a = 2b) embedded in AlAs (note that the area of 
this ellipse corresponds to a circular wire of radius 70.7 A). The results illustrated in 
figure 7 are qualitatively similar to those predicted for a rectangular wire using a rather 
more sophisticated numerical procedure in order to correctly deal with the sharp corners 
[311. 

In figure 8, we display the scattering rates versus a / b  for a fixed axial energy of 
60 meV and b = 50 A in the GaAsIAIAs structure. The total rate lies between that obtained 
by bulk GaAs and bulk AlAs phonons and confirms the sum rule for electron-phonon 
interaction [3,6]. What is evident from this figure is the importance in the rates of the 
higher-order interface modes as the eccentricity of the elliptical wire increases accompanied 
by a corresponding decrease in the rates of lower-order modes. This is in accord with the 
‘potential’ analogue of the previous section in which the higher-order interface modes are 
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F w r e  7. The scattering rate for an embedded elliptical wire fo rb  = 50 A and a = 2b. The 
solid curve corresponds to the total tale. The dqhed cqve  is, the tale due to the confined 
modes of the ellipse allowed via the selection rules. The dot-dashed curve that begins around 
34 meV is the contribution from the GaAs interface modes which are allowed to contribute 
by the selection rules. The other dot-dashed c w e  corresponds to the contribution from the 
allowed AlAs interface modes. The dotted c w e  labelled 1 corresponds to scattering via bulk 
GaAs phonons and the dotted curye labelled 2 to that by bulk AlAs phonons. 

1 2  3 4 5 6 7 8 9 10 
o / b  

Figure 8. The scattering rate for a CaAdAIAs elliptical quantum wire with b = 50 A as a 
function of a/b for fixed EX = 60 meV. The solid curve is the total rate whilst the dashed curve 
is the contribotion from the dowed confined GaAs modes. The dot-dashed cuwes represent 
the conhibution from the allowed AlAs interface modes. It is noted that as aJb increases the 
higher-order AlAs interface modes contribute more significantly. The contribution from thc 
allowed GaAs interface modes is small and not depicted in the diagram for clarity although their 
conhibution is included in the total me. 

known to overlap more strongly with the electronic states as the eccentricity of the wire 
increases. 

Finally, as the eccentricity of the ellipse increases it is possible to go from the results 
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0 i 
1 3 5 7 9 1 1  13 15 17 19 

a / b  
Figure 9. The total emission rate via confined modes as a function of n l b  (b = 75 A) for an 
electron with an initial axial energy of 44 meV in the lowest subband. The doned line is the 
2D result. 

of the cylinder to those of a slab. To obtain the intrasubband scattering rates of a quantum 
well, all possible intersubband and intrasubband transitions need to be taken into account 
and summed over. We illustrate this ID to 2D transition for scattering via the emission of 
confined modes in figure 9. The electron is assumed to have a fixed axial energy of 44 meV 
within the lowest subband. As a / b  is increased (b is fixed at 75 A), infinities in the total 
rate occur whenever scattering into a new subband becomes permissible. These infinities 
are again due to the divergent nature of the 1D density of states; and the results are similar 
to those obtained by Bockelmann [281. 

6. Conclusions 

In this paper we have considered in detail the intrasubband scattering rates of embedded 
circular and elliptical GaAs quantum wires for electrons interacting with optical phonons 
calculated using the DC model. The choice of an elliptical geometry leads to analytically 
well behaved solutions of the Schrodinger and Laplace equations. Quantitative differences 
are exhibited between the cylindrical and the elliptical wires, in particular the non-trivial 
angular behaviour of the electrons and phonons which was shown to lead to an effective 
angular ‘potential’ that confines the lower-order electrons and confined phonons along the 
minor axis of the elliptical wire and the interface phononsto the regions of higher curvature, 
the ‘corners’ of the wire. 

The assumption of an infinite confining potential for the electrons is of course only 
an approximation which, nevertheless, should give a reasonable estimate of the scattering 
rates and has been often employed for Q2D and QID calculations. Comparisons of the 
rates obtained via this approximation for a circular wire have been made [IO, 131 with the 
conclusion that the intrasubband rates are reduced if a realistic finite potential is made. 
The inclusion of a finite confining potential in the case of an elliptical wire is much more 
complicated as compared to the circular case. This is due to the dependence of the angular 
electronic wavefunction functions on the wavevector on either side of the interface. The 
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reader is directed to the work of Nag and Gangopadhyay 1321 for further details where a 
comparison of the subband energies in an elliptical wire using a infinite and a finite confining 
potential is made. 

As has already been pointed out in the introduction, the DC model gives a good 
agreement for the total scattering rate in the GaAs/AIAs system compared with results 
emerging from microscopic calculations and from the more sophisticated hybrid model for 
the optical phonons [2,33-381. Despite its success in predicting the total scattering rate, the 
DC model suffers from shortcomings as regards Raman and micro-Raman measurements. It 
is therefore of considerable interest to investigate the behaviour of the more realistic hybrid 
phonons in such wires, as such a description is required in order to properly understand 
Raman measurements from such novel structures. The use of these more sophisticated 
continuum models which include bulk dispersion are crucial in a proper understanding of 
the observed Raman frequencies in the analogous QZD systems [39]. It is anticipated that 
such Raman measurements will be c a n i d  out in the near future on quantum wires with 
cross-sectional areas small enough to observe confined phonon effects. Narrow freestanding 
wires [40] are possible candidates for such an investigation. 

C R Bennen et a1 

Acknowledgments 

We thank Dr N Postagioglu for useful discussions at the early stages of this work. CRB 
thanks the EPSRC for a studentship. This work is supported by the EPSRC under grant 
number GWJ80269. 

References 

111 1x0s M 1989 Physics m d  Awiications ofSemiconducror Microstructures (Oxford Clarendon) 
[2j Conserntino" N C and RidleyB K 1994jhys. Rev. B 49 17065 
[3] Rucker H. Molinari E and LuEli P 1991 Phys. Rev. B 44 3463; 1992 Phys.~Rev. B 45 6747 
[4] Bhatt A R. Kim K W. Stroscio M A and H i g m  I M 1993 Phys. Rev. B 48 14671 
[5] Wendler L 1985 Phys. Status Solidi b 129 513 
161 Mori N and Ando T 1989 Phys. Rev. B 40 6175 
[7] AI-Dossary 0. Babiker M and Constantinou N C 1992 Semieond Sei. Techol. B 7 91 
[XI Tsen K T. Wald K R, RufT, Yu P Y and Morkoc H 1991 Phys. Rev. Len 67 2557 
191 Ozturk E, Constantinou N C. Straw A. Balkan N, Ridley B K, Ritchie D A, Linlield E H ,  Churchill A C and 

[IO] Constantinou N C and Ridley B K 1989 1. Phys.: Condenr. Matter 12283 
[Ill Ahn D 1991 J. AppL Phys. 69 3596~ ~ ~ 

[I21 Campos V B and Das Sxma S 1992 Phys. Rev. B 45 3898 
[I31 Lea0 S A, Hipolito 0 and Peeters F M 1993 Superiatc Micromuet. 13 37 
[14] Shadrin V D, Kistenev F E and Senhenco F L 1994 J. AppL Phys. 75 985 
[IS] Wang X F and Lei X L 1994 Phys. Rev. B 49 4780 
[16] Campos V B. Das Sarma S and Stroscio M A 1992 Phys, Rev. B 46 3849 
I171 Selbmann P E and Enderlein R 1992 Superinti. Microstmet. 12 219 
I181 Stroscio MA. Kim K Wand Rudin S 1991 Sopdaft Micmsrruct. 10 55 
(191 Constantinou N C and Ridley B K 1990 Phys. Rev. B 41 10622, 10627 
I201 Rossi F, Bungaro C, Rota L, Lugli P and Molinari E 1994 SolidState Electron. 37 761 
1211 Adachi S 1985 J.  Appl. Phys. 58 R1 
[22] Ruppin R and Engleman R 1970 Rep. Pmg. Phys. 33 149 
[U] Watt M, Sottomayor-Torres C M, h o t  H E  G and Beaumont S P 1990 Sem'cond. Sri. Techoi. 5 285 
[24] Knipp P A and Reinecke T L 1992 Pkys. Rev. B 45 9091 
[25] Gold A and Ghazali A 1990 Phys. Rev. B 41 7626 
[XI Masale M and Constantinou N C 1993 Phys. Rev. B 48 11  128 
[27] Wendlcr L and Grigaryan V G 1994 Phys. Status Solidi b 181 133 

Jones G A C 1994 Semicond. Sci. Techol. 9 782 



Interaction of electrons with optical phonons 9831 

1281 Bockelmann U 1994 Semicond Sei. Technol. 9 865 and references therein 
[29] ~ McLachlan N W 1947 Theoq and Applications of Mathieu Functions (Oxford Clmendon) 

[30] Bennen C R unpublished 
[31] Knipp P A and Reinecke T L 1994 Solid Slate Electron. 37 1105 
[32] Nag B R and Gangapadhyay S 1993 P h p .  Status Solidi B 179 463 
1331 Nash K J 1992 Phvs. Rev. B 46 7723 

Abramowitz M and Stegun I A 1970 Handbook of Mnthematlcol Functions (New~York Dover) 

i34j Ridley B K 1593 ,&. R ~ V .  B 47,4592 
1351 Constantinou N C. AI-Dossw 0 and Ridlev B K 1993 Solid Slate Comwz. 86 191: 1993 Solid State . .  

C o n "  87 1087 
[36] Chamberlain M P, Cardona M and Ridley B K 1993 Phys. Rev. B 48 14356 
[371 Constantinou N C 1993 Phonom in Semiconductor Nanostrucfrrres (NATO AS1 Series B 236) ed J P Leburton, 

[38] Comas F. Trallero-Giner C and Canwrero A 1993 Phys. Rev. B 47 7602 
[39] Shields A I, Cardona M and Eberl K 1994 Phys. Rev. Lett. 72 412 
[40] VIswanath A K, Hirum K and Katsuyama T 1993 Superlatt. Microstruet. 14 105 

Hiruma K. Yazawa M, Haraguchi K and Ogawa K 1993 J. Appl. Phys. 74 3162 

J Pascud and C Sonomayor-Toms p 113 


