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The interaction of electrons with optical phonons in
embedded circular and elliptical GaAs quantum wires

C R Bennett, N C Constantinou, M Babiker and B K Ridley
Department of Physics, University of Essex, Colchester CO4 38Q, UK

Received 12 May 1993

Abstract. 'We consider electronic intrasubband transitions invelving the confined and interface
optical phonons of circular and elliptical GaAs quantum wires. Detailed treatments are given for
a GaAs wire embedded in AlAs where the electrons are confined via an infinite potential barrier.
The optical phonons are described using the diglectric continuum (DC) model, which for the
GaAs/AlAs systemn compares favourably with more sophisticated macroscopic models and ab
- initio microscopic calenlations in its prediction for the foral scatiering rates. The DC model has
been applied previously to the circular case, but here we evalvate the rates analytically. It is
shown that the behaviour of the electrons and phonons in elliptical wires is boih quantitatively
and qualitatively different from that in circular wires, especially as regards angular properties.

1. Introduction

The interaction of electrons with the polar optical modes is of prime importance both in bulk
materials and in low-dimensional semiconductor systemns. Whilst the boundary conditions
on the electronic wavefunctions are well established for the GaAs/AlAs system {1], those
appropriate for the optical phonons have been the subject of much discussion over the
past few years. Contintum models which incorporate both electrostatic and mechanical
boundary conditions [2] and microscopic lattice dynamic models [3, 4] both predict that the
total electron-optical phonon scattering rates are close to those evaluated by the dielectric
continuum (DC) model (see, e.g. [5,6]) in the GaAs/AlAs and GaAs/AlGaAs systems,
although the spectrum for the phonon modes is in reality more complicated than those of
the DC model. Since our main concern in this paper is with the GaAs/AlAs system we
take advantage of the relative simplicity of this model and employ it in the calculation of
total scattering rates. The phonon spectrum in the DC model consists of an infinite set of
confined modes which have vanishing electrostatic potentials at the interfaces and oscillate at
the bulk LO frequency of GaAs, together with a set of modes which have potential maxima
at the interfaces (the interface modes). These interface modes have frequencies within the
reststrahl bands of GaAs and AlAs and, in the quasi-two-dimensional (Q2D) systems, it
is found both theoretically [3,6,7] and experimentally [8,9] that the AlAs interface modes
dominate the interaction under certain circumstances.

In this paper we report results of the interaction of electrons with the DC phonons
of a GaAs wire of elliptical cross-section (henceforth elliptical wire) embedded in AlAs.
Investigations of the scattering rates for embedded wires using bulk phonons [10-14], the
DC meodel [15-18], and the hydrodynamic (HD) model [19] have already been reported,
although the latter model is now regarded as inappropriate for the evaluation of scattering
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rates in the GaAs/AlAs system [2-4]. In [19], however, the HD model was applied to the
free-standing system and in this system the potentials derived by the HD model are just
those of the DC model. Microscopic calculations appropriate for rectangular wires have
also been reported recently [20].

The plan of this paper is as follows. Section 2 describes the confined and interface
modes of a GaAs wire or circular cross-section (henceforth circular wire) and intrasubband
scattering rates are obtained in analytical form for the first time. Section 3 describes the
electronic states of an elliptical wire and section 4 the confined and interface modes of
an elliptical wire. In section 5 numerical results of the intrasubband scattering rates are
presented in detail for the elliptical wire and a comparison is made with the results of the
circular wire. Section 6 contains our conclusions.

In what follows all the relevant material parameters used are those tabulated in the
review article by Adachi [21].

2. Analytical scattering rates for a circular wire

We consider a GaAs (material 1) circular wire of radius R embedded in AlAs (material 2).
The confined modes within the wire have vanishing Coulomb potentials at the boundary
and oscillate at the zone-centre LO-phonon frequency of GaAs. The quantized potential
operator for the confined modes is

SRy =3 Y {Prng(R)amn(g) + g (R)al,, (@)} 1)

g mn

where a,,(g) are Boson operators.
Dring(R) = ApnTm(Gmnr) €92 €™ m=0, £1, £2, .... 2)

In the above A,, is the normalization factor, g the axial wavevector and 7., is the
confinement wavevector which is related to @, the nth zero of the Bessel function J(x),
via g, = &mn/R. The explicit form of the normalization factor is

T

Amrz = \/[thi/[ZSOVJ,%.*.l (amn)(qz + gﬁu)]](l/aml - 1/351) o (3:)' |

where £q01 (s1) is the high- (low-) frequency dielectric constant for GaAs and V is the volume
of the wire. The DC confined modes of a cylinder are now quantized and our expressions
for the corresponding potentials agree with those of [13].

We now turn to the description of the interface modes of the circular wire. The dispersion
relation has been known for a long time (see e.g. [22]) and has been recenily observed {23].
The dispersion relation is derived as follows. The potential for the interface modes is written
as

qulm(qr)eiqz gimé r<R
CrgBnlgr)e®e™  r> R
where I,(x) and K, (x) are modified Bessel functions. The amplitudes C,, and B,
are obtained from the normalization condition together with the dispersion relations. The

dispersion relation for the interface modes of the cylinder is obtained from the electrostatic
boundary conditions at r = R (namely continuity of @ and £ §$/3r) and is given by

El(wmq)/az(wmq) = Im(qR)K:n (QR)/I;(QR)Km(qR) %)

where the primes indicate differentiation with respect to the argument of the Bessel functions.
We follow the procedure of Knipp and Reinecke [24] and display the interface mode

O g (R) = { @
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dispersion by plotting the quantity P which is independent of the material para:heters and
is given by . )

P = [e1(omg) + 2{0ng)] /(o1 (0mg) — 22(emg)]  —1<P<L ()

From equation (6) it is seen that P is unity when @, corresponds to the zone-centre GaAs
TO- and AlAs LO-phonon frequency, and P = —1 when wy, comresponds to the zone-
centre GaAs LO- and AlAs TO-phonon frequency. In other words P spans the reststrahl
bands of the two materials. The vanishing of P corresponds to the frequency of the two
surface modes on a planar GaAs/AlAs interface or the single GaAs/vacuum surface mode
for the free-standing wire. The density of interface modes is highest near P = 0. The.
variation of P with the axial wavevector is depicted in figure 1.
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Figure 1. P as a function of gR (equation (6)} for a circular wire (from top to bottom we have
|m|=0,1,2,3, 4,3

It is straightforward to quantize the potential associated with the interface modes and
we find

Bug = \/e2(0mg) R/ 450V In(@ R)IL(GR)D (0mg)
Cmg = [In(@RY/ Kn{qR)]|Bpg. 0]

It should be noted that only the results for m = 0 are quoted in [15] and these are in
agrecment with the above results. In (7) the factor D(wy,) is given by

D(wng) = (e2(@)de1(w) /30 — £1(@)Dea(w) [/ Bw)wmm. (®)

The quantized potential operator for the interface modes has now been determined. We are
now in a position to evaluate the electronic intrasubband rates.

The effective mass Schridinger equation for an electron confined via hard walls to a.
circular wire is exactly solvable in terms of Bessel functions [10]. ' Unfortunately, these
do not yield analytical results for the form factors. Since we are only interested in
intrasubband scattering within the lowest subband, we may employ the approximate ground
state wavefunction proposed by Gold and Ghazali [25]

Yo (R) = 3/V(1 - r¥/RYee  Ey=6r*/2m*RE. ©)
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The above approximation wavefunction has been recently employed to calculate analytical
rates for scattering with bulk phonons by Masale and Constantinou [26] and properties of
plasmons in cylindrical wires by Wendler and Grigoryan [27].

The intrasubband scattering rate, W, for scattering within the first subband via emission
of confined modes is obtained via Fermi’s golden rule and we find

[N(wp +1] & Ei[ 1 1 ]

+
(B, —1 ,,Z=; THem} L Q5 +ed, 02+,
where £, = Ei/Awy;. The quantities Q. and Z, are given by

Ox = (2m*ori [B) PR [ B £ B — 1] (1

W="%W,

(10)

En = (48/03,) 73 (cton).- (12)
The quantity Wy is defined by
Wo = (e?/4meoh) (2m™ w1 /B) 2 (1 /€001 — 1/841) (13)

and for GaAs Wy is approximately 8.7 x 10'2 s~!, The scattering rate given by equation (10)
is essentially that obtained by Constantinou and Ridley [19], the only difference being that
the modes were dispersive in [19].

The intrasubband scattering rate for coupling to the cylindrical interface modes is given
by

— ZWO(_}— _ i)—l Z w11z _ [N(wﬂ'qg) + 1]530 (14)
ot &1/ T D(wog) | G(Ex)|goRlIo(goR) 11 (goR)
where gqp is a zero of
g* — g + 2m* Wy /i =0 (15)
and
6(Ee) = |\/B — faad/zmass - [ o 16)

with vy (=8wpg,/3¢) the group velocity of the interface mode at g4 = gg. In equation (14)
B, is the analogue of (12) for the interface modes and is given by

B¢ = (48/(gR)’}5(gR) (17)
and we note that &, — 1 as gR — 0.

The scattering rate for a GaAs quantum wire of radius 70.7 A embedded in AlAs is
displayed in figure 2 as a function of the axial energy. The discontinuities in the rates arise
from the singularity in the one-dimensicnal density of states, and this type of behaviour
by the scattering rate in quasi-one-dimensional systems is well known. The discontinuities
may, if necessary, be smoothed cut phenomenclogically by an ad hoc broadening of the
density of states [281 which will arise in practice due to various mechanisms such as the
fluctuations in the wire boundary. It should be noted that the contribution of the GaAs
interface modes in this system is marginal. The main contribution originates from the
confined GaAs modes, and, for energies above approximately 48 meV, the AlAs interface
mode as well. Also plotted in figure 2 are the rates using bulk three-dimensional GaAs
and AlAs phonons (in calculating the scattering rate via bulk AlAs LO modes we take the
GaAs effective mass, all other parameters being the AlAs ones). Note that this often-made
assumption of bulk phonons does not completely reproduce the complex behavior of the
scattering rates, although away from the singularities the assumption of bulk GaAs phonons
is not too bad an approximation to the overall rate.
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Figure 2. The scattering rate as a function of axial energy for an R = 70.7 A GaAs circolar
wire embedded in AlAs. The solid curve represents the total scattering rate from all the allowed
modes. The dashed curve is the contribution from the GaAs (m = 0) confined modes; the dot—
dashed curve which makes the smallest contribution represents the rate from the m = () GaAs
interface mode and the other dot—dashed curve which makes a more significant contribution is
that due to the m = O AlAs interface mode. The dashed curve labelled 1 is the scattering rate
agsuming bulk GaAs phonons whilst that labelled 2 is the rate assuming AlAs bulk phonons.

3. The electronic states of an elliptical quantum wire

We consider an elliptical GaAs wire with semimajor axis a and semiminor axis . We
assume that the electrons are confined in GaAs by an infinite barrier. In elliptical co-
ordinates R = (u, v, z) with & the ‘radial’ co-ordinate, v the ‘angular’ co-ordinate and
z the axial co-ordinate, Schriédinger’s equation (as is Laplace’s} is separable with the
wavefunction given by

U(R)=Ae® UW)V(v) as)

where & is the axial wavevector. The radial (U) and angular (V) components of the
wavefunction satisfy the equations
d2U (u) fdu® — (B — 24 cosh(2u)Y (u) = 0 (19)
d*V ()/dv? + (B — 2Acos2u)) V(v) =0 (20)
which are the equations of Mathieu [29]. The angular functions are periodic (V{(v +2x) =
V(v)) which implies that the separation constants 8 {denoted f,,) are quantized and labelled
by the azimuthal quantum number m. The solutions to the above equations which are regular
at the origin are
- Cen(u, lm,,)ce,,,(u, M) even

Yyt (B = A 21
k() ] Sen(s Ame)som(v, Ams)  odd @n

and our notation for all of the Mathieu functions employed in this work is standard [29].
In (21) A,y is given by ;

I (22)
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with f the semifocal distance (= ae with ¢ the eccentricity); &, is the confinement
wavevector of the electron in the x—y plane. The labels odd and even refer to the parity
of the angular functions with respect to v. The Mathieu functions with index m even have
periodicity 7 whilst those with m odd have periodicity 2. The requirement that the above
wavefunction vanishes at uo which is given by

ug = cosh ™ (1/¢) (23)

yields the quantum number n. The nth root of the radial component is labelled A,,. The
normalization factor A, is given by

2 up
A=, f f U2 (s Ama) V2 (s Aonn) £2(sinh?() + sin®(v)) du dv (24
0 0 ,

where L, is the length of the elliptical wire which, as for the circular wire, is assumed to
be effectively infinite. The total energy of the state (m, n, &) is given by

Ept = (2/2m) [E?,,,, +#]. 25)

Figure 3 illustrates the confinement energy as a function of /b for fixed b = 50 A. It is
noted that both the cylindrical (¢ = 0) and the slab (¢ — 1) limits are obtainable, with
the degeneracy in the cylindrical states lifted by the elliptical asymmetry. The number of
electronic states within the energy interval shown in figure 3 increases dramatically as e
approaches unity, and we only show a few of the states in this regime.

Energy (meV)

0 s J
1 10 100
a/b
Figuxe 3. The subband energies of an elliptical wire with b = 50 A as a function of @/b. The
solid curves correspond to even states with period . the dotted corves are even states with

period 27, the dashed curves are odd states with period x and the dashed—dot curves are odd
states with period 2.

We pause here to mention that as the eccentricity increases the ground state wavefunction
tends to be localized near the region of lowest curvature, in other words towards the centre of
the ellipse. This, as we demonstrate in the following section, is in contrast to the behaviour
of the elliptical interface mode. A more detailed explanation of this behaviour is given
elsewhere [30].
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Our next task is to consider the optical phonons. Fortunately, as demonstrated below,
the above formalism for the electrons also describes the form of the potentials for the various
optical modes via a redefinition of A.

4. The confined and interface optical phonons of an elliptical quantum wire

The potential associated with the confined modes can be shown, by direct analogy with the
electron calculation outlined above, to have the form (we follow closely the derivation of

[24])

Cep (2, Aun)Cem (U, Aomn) even

Sem(u, )Lm,,)sem(v. J\.,,m} odd

with ¢ the phonon axial wavevector; By, are normalization constants and
Ao = 50 @7

with g, the phonon confinement wavevector in the x—y plane. Because of the boundary

conditions, the potentials for the confined modes are completely analogous io the electron

wavefunctions and have exactly the same form.
The potentials associated with the interface modes satisfy equations (19} and (20) with

= —1 f2g? - (28)
and have the form ‘
Prg (R = Cp €92 Uy () Vi (0) (29).

where C,,; is the normalization constant, and the radial and angular functions are given by

q)mnq(R) = By, eiqz { (26)

Ce, (u, JLm)Fekm (ug, }Lm) u<up

U, () = Vin(v) = cen(v, An) even  (30)
Fek (i, JLm)Cem(uo, m) u > U
Sem () A )Gk (10, Am <

U,wy=1" (s, d)Ockn(io, ) u o V() = sem{v, An) 0dd.  (31)
Gekm (%, A )Sep (19, Am) > o

In equations (30) and (31) the relevant Mathieu functions are those which are finite at the
origin and vanish at infinity.

The dispersion relation for the interface modes is obtained from the usual electrostatic
boundary conditions and may be expressed in the following way:

e1(ong) _ ((3/0w) In[Fekn(u, An))),_,,

oalmg) (G700 W [Conle )]y, O G2

s1{omg) _ ((8/3u) In[Gek (i, An)]),
= - dd. 33
&2{wmg)  ((3/34) In[Sen(u, An)]), .. ° ©3)
(34)

We follow the procedure of section 2 and display the interface mode dispersion by plotting
the quantity P (equation (6)). The variation of P with the axial wavevector is depicted in
figure 4. The density of interface modes is again highest near P = 0. It is noted that the
degeneracy of the m 3 ( interface modes of the circular wire is lifted by the asymmetry of
the ellipse, in analogy to the splitting of the electronic subbands in figure 3.

Figure 5 shows the behaviour of the first-order interface mode potential for varying
eccentricities. The striking behaviour that the potentials tend to localize near the region
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Fipure 4. P as a function of axial wavevector gb for an ellipse with 4 = 25. The curves are
labelled in the same manner as figure 3 for the symmetry of the various modes shown,

of higher curvature is already apparent for an ellipse with ¢ = 2b, and for ¢ = 10&
this behaviour is even more apparent. This is in contrast to the trend for the electron
wavefunction and the potential of the confined modes which tend to move away from the
areas of higher curvature as a increases. This difference in behaviour can be explained
by considering the angular equation (20) as a Schrodinger equation [24] with ‘potential’
2|A)cos(2v). This ‘potential’ is illustrated in figure 6 for an ellipse with a = 2b. The
electrons and confined photons have A > 0 and in the language of the analogous Schrddinger
equation behave like ‘electrons’ and hence tend to be found at ‘potential’ minima which
in this case means cos(2v) = —1 (hence v = x/2 and 3x/2) i.e. the region of minimum
curvature (as shown in the diagram). The interface phonons, in contrast, have A negative,
hence they are the analogues of holes, and therefore are to be found at ‘potential’ maxima,
which corresponds to cos(2u) = 1 (hence v = 0 and =) ie. the regions of maxirmum
curvature. In fact this maximum in the ‘potential” occurs at the foci of the ellipse. Although
we have concentrated here on the [owest-order modes, the analogy also holds for modes with
higher quantum numbers. For these higher-order modes £ and A become more comparable
and the modes can spread out from the lowest-curvature region (in the electron and confined
phonon case) or the highest-curvature regions (for the interface modes). We therefore expect
that for intrasubband scattering the higher-order interface modes will couple more efficiently
to the ground state electrons compared with the coupling of the lowest-order interface mode
as the eccentricity of the wire increases. This is due to their larger overlap with the electronic
wavefunction at the centre of the ellipse.

5. The electron—phonon scattering rates

It is straightforward to quantize the potentials associated with the confined and interface
modes of the elliptical wire following the methods employed in section 2 for the circular
wire. The integrals involved cannot be case in closed analytical form in this case, and
the expressions are as a consequence rather cumbersome. For this reason the details are
not presented here. Once the phonons are quantized we can evaluate the scattering rate W
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Figure 5. The elliptic interface mode potential for (a)  Figure 6. The effective angular ‘potential” for an ellipse
a=>b,(bya=2hand (c) a = 10b. with ¢ = 25.

using Fermi’s golden rule. In this section we, therefore, go beyond the work of Knipp and
Reinecke [24] by coupling the optical phonons of an elliptical wire to the electrons.

Figure 7 displays the scattering rate as a function of the axial electron energy for
an elliptical GaAs wire (b = 50 A, @ = 2b) embedded in AlAs (note that the area of
this ellipse corresponds to a circular wire of radius 70.7 A). The results illustrated in
figure 7 are qualitatively similar to those predicted for a rectangular wire vsing a rather
more sophisticated numerical procedure in order to correcily deal with the sharp corners
[31].

In figure 8, we display the scattering rates versus a/b for a fixed axial energy of
60 meV and b = 50 A in the GaAs/AlAs structure. The total rate lies between that obtained
by bulk GaAs and buik AlAs phonons and confirms the sum rule for electron—phooon
interaction [3,6]. What is evident from this figure is the importance in the rates of the
higher-order interface modes as the eccentricity of the elliptical wire increases accompanied
by a corresponding decrease in the rates of lower-crder modes. This is in accord with the
‘potential’ analogue of the previous section in which the higher-order interface modes are
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Figure 7. The scattering rate for an embedded elliptical wire for b = 50 A and o = 2b. The
solid curve corresponds to the total rate. The dashed curve is the rate due to the confined
modes of the ellipse allowed via the selection rules. The dot-dashed curve that begins around
34 meV is the contribution from the GaAs interface modes which are allowed to contribute
by the selection rules. The other dot-dashed curve corresponds to the contribution from the
allowed AlAs interface modes. The dotted curve labelled 1 corresponds to scattering via bulk
GaAs phonons and the dotted curve labelled 2 to that by bulk AlAs phonons.

15 T

W (per ps)

Figure 8. The scattering rate for 2 GaAsfAlAs elliptical quantam wire with & = 50 Aasa
function of a/b for fixed Ep = 60 me'V. The solid curve is the total rate whilst the dashed curve
is the contribution from the allowed confined GaAs modes. The dat—dashed curves represent
the contribution from the allowed AlAs interface modes. It is noted that as a/b increases the
higher-order AlAs interface modes contribute more significantly, The contribution from the
allowed GaAs interface modes is small and not depicted in the diagram for clarity although their
contribution is included in the total rate,

known to overlap more strongly with the electronic states as the eccentricity of the wire
increases. - . :
Finally, as the eccentricity of the ellipse increases it is possible to go from the results
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O“tl
1T 3 5 7

Figure 9. The total emission rate via confined modes as a function of a/b (b = 75 A) for an
electron with an initial axial energy of 44 meV in the lowest subband. The dotted line is the
2D resuft.

of the cylinder to those of a slab. To obtain the intrasubband scattering rates of a quantum
well, all possible intersubband and intrasubband transitions need to be taken into account
and summed over. We illustrate this 1D to 2D trangition for scattering via the emission of
confined modes in figure 9. The electron is assumed to have a fixed axial energy of 44 meV
within the lowest subband. As a/b is increased (b is fixed at 75 A), infinities in the total
rate occur whenever scattering into a new subband becomes permissible. These infinities
are again due to the divergent nature of the 1D density of states, and the resylts are similar
to those obtained by Bockelmann [28].

6. Conclusions

In this paper we have considered in detail the intrasubband scattering rates of embedded
circular and elliptical GaAs quantum wires for electrons interacting with optical phonons
calculated using the DC model. The choice of an elliptical geometry leads to analytically
well behaved solutions of the Schridinger and Laplace equations. Quantitative differences
are exhibited between the cylindrical and the elliptical wires, in particular the non-trivial
angular behaviour of the electrons and phoncns which was shown to lead to an effective
angular ‘potential’ that confines the lower-order electrons and confined phonons along the
minor axis of the elliptical wire and the interface phonans to the regions of higher curvature,
the ‘corners’ of the wire.
~ The assumption of an infinite confining potential for the electrons is of course only
an approximation which, nevertheless, should give a reasonable estimate of the scattering
rates and has been often employed for Q2D and Q1D calculations. Comparisons of the
rates obtained via this approximation for a circular wire have been made [10, 13] with the
conclusion that the intrasubband rates are reduced if a realistic finite potential is made.
The inclusion of a finite confining potential in the case of an elliptical wire is much more
complicated as compared to the circular case. This is due to the dependence of the angular
electronic wavefunction functions on the wavevector on either side of the interface. The
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reader is directed to the work of Nag and Gangopadhyay [32] for fusther details where a
comparison of the subband energies in an elliptical wire using a infinite and a finjte confining
potential is made.

As has already been pointed out in the introduction, the DC model gives a good
agreement for the total scattering rate in the GaAs/AlAs system compared with results
emerging from microscopic calculations and from the more sophisticated hybrid model for
the optical phonons [2,33-38]. Despite its success in predicting the total scattering rate, the
DC model suffers from shortcomings as regards Raman and micro-Raman measurements, It
is therefore of considerable intersst to investigate the behaviour of the more realistic hybrid
phonons in such wires, as such a description is required in order to properly understand
Raman measurements from such novel structures. The use of these more sophisticated
continuum models which include bulk dispersion are crucial in a proper understanding of
the observed Raman frequencies in the analogous Q2D systems [39]. It is anticipated that
such Raman measurements will be carried out in the near future on quantum wires with
cross-sectional areas small enough to observe confined phonon effects. Narrow free-standing
wires [40] are possible candidates for such an investigation.
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