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Abstract

The influence of electric field on the ground-state energy of a polaron, bound to a hydrogenic impurity in a cylindrical quantum dot is investi-
gated. The results illustrate the competing effects of the quantum confinement, the electric-field confinement, and the Coulomb interaction.
© 2006 Published by Elsevier B.V.
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1. Introduction

The rapid developments in the field of semiconductor nano-
technology and the potential device application in recent years
have attracted great attention to quantum dot (QD) systems. To
develop novel devices, e.g., flash memories, tunneling-injection
quantum dot lasers and optical detector structures, understand-
ing of the carrier-phonon interaction [1], and the effects of the
applied electric field on physical properties of low-dimensional
semiconductor structures [2] is a prerequisite. Recent mea-
surements [3–7] of the optical (photoluminescence, magneto-
photoluminescence, resonant photoluminescence and photolu-
minescence excitation) spectra of self-assembled InAs/GaAs
quantum dots reveal a remarkably high probability of phonon-
assisted transitions. The application of an electric field in the
heterostructure growth direction raises the polarization of the
carrier distribution and the energy shift of the quantum states
[8–12]. Such effects introduce considerable changes in the tran-
sition energy spectrum of carriers, which may be used to control
and modulate the intensity output of optoelectronic devices.
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The polaronic effect has become the main subject in these
studies because the electron–phonon interaction is enhanced by
the geometric confinement, which makes the polaronic effects
obvious [13]. Therefore, one of the recent interests in the area
of quantum dots has been to explore the electron–phonon inter-
action effects on the energies of electron states. A number of
authors [14–25] have investigated in this connection the ground
and some excited state polaronic properties of several semicon-
ductor quantum dots.

A number of studies have focused on the influence of
electron–phonon interactions on the impurity properties in
a QD [26–33]. Xie and Chen have investigated the phonon con-
tribution to the binding energy (BE) of the on-center and off-
center impurities in a spherical quantum dot [26]. The binding
energy and dipole moment of a hydrogenic impurity confined
in a quantum dot with the shape of spherical cap are calculated
by Yuan et al. [27]. Recently, Charrour et al. [28,29], and Wang
et al. [30] calculated the influence of the coupling between the
electron and ion with the confined LO, top-surface and side-
surface phonon modes on the binding energy of an on-centre
donor impurity in a cylindrical QD embedded in a dielectric
matrix. The adiabatic variational method was used to calculate
the bound polaron and the so-called donor-like exciton bind-
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ing energy shift in nanocrystals [31,32]. The influence of the
electron–phonon coupling on the properties of a negatively
charged donor center confined in a semiconductor spherical
quantum dot embedded in a glass matrix was studied by Szafran
et al. [33].

Polaronic effect becomes more pronounced also in the pres-
ence of external electric and magnetic fields. A lot of work
has been devoted to the study of magnetic field effects in QDs
[34–39]. Chen et al. [34] have studied the thickness dependence
of the binding energy of an impurity bound polaron in a par-
abolic QD in presence of a magnetic field by the second-order
perturbation theory. Resonant shallow donor magnetopolaron
effect in a GaAs/AlGaAs quantum dot in high magnetic fields
is investigated by variational treatment by Zhu et al. [35]. Us-
ing an exact numerical diagonalization scheme, the low-lying
spectrum of a magnetopolaron quantum dot with a confined par-
abolic potential in the presence of a Coulomb impurity have
been studied by Lee et al. [36]. Kandemir et al. [37] have
calculated the polaronic effects for an electron confined in an
anisotropic QD in presence of magnetic field. A unitary trans-
formation scheme to diagonalize the Frölich Hamiltonian de-
scribing an impurity magnetopolaron confined in 3D parabolic
QD potential has developed in [38]. The polaronic correction
to the ground-state energy of an electron confined in a cylindri-
cal quantum dot (CQD) subject to electric and magnetic fields
along the growth axis has been investigated by Wang et al. [39].

To the best of our knowledge, the impurity bound elec-
tronic states in QD has not been considered in presence of
both—applied electric field and electron-LO phonon (ELOP)
coupling. In this Letter, we consider this problem for the semi-
conductor QD embedded in a dielectric medium, assuming an
infinite-confinement potential. Binding energy and polaronic
shift calculations were performed as function of the impurity
positions, the electric field and the QD sizes. The results il-
lustrate the competing effects of the spatial confinement, the
confinement effects due to applied electric field and the elec-
tron coupling with the polar-optical phonon. The variational
procedure [40] in the framework of adiabatic approximation has
been used. This Letter is organized as follows: in Section 2 we
present the theoretical model with calculations of the hydro-
genic impurity ground-state binding energy and its polaronic
shift. In Section 3 the numerical results for the ground-state
binding energy of an impurity and polaronic correction to this
state are analyzed. In Section 4, we present our conclusions.

2. Theory

For our theoretical modeling, the quantum dot is assumed
to have a cylindrical form and is made of a polar semicon-
ductor materials surrounded by another kind of polar crystal.
In the presence of an electric field �F applied in the axial di-
rection, the basic Hamiltonian for the single conduction-band
electron coupled to a hydrogenic impurity and interacting with
the LO-phonon field can be written within the effective-mass
approximation as

(1)H = He + Hph + He–ph.
The first term is the electronic Hamiltonian given by

Hel = − h̄2

2m
∇2 + V (ρ, z) + |e|Fz

(2)− e2

ε0

√
( �ρ − �ρi)2 + (z − zi)2

,

where m is the effective mass of the electron, F is the value of
the electric field applied along the z axis, ( �ρ, z) and ( �ρi, zi) are
the electron and impurity position vectors, respectively. ε0 is the
static dielectric constant. The confining potential has the form:

(3)V (ρ, z) =
{

0, ρ < R, and |z| < d/2,

∞, ρ � R, or |z| � d/2,

where R and d are the cylindrical dot radius and length, respec-
tively.

The second term is the phonon Hamiltonian

(4)Hph =
∑

�q
h̄ωLOa+

�q a�q,

where a+
�q (a�q ) is the creation (annihilation) operator of the

longitudinal optical bulk phonon with wave vector �q and fre-
quency ωLO.

The third term is the electron phonon interaction Hamil-
tonian

(5)Hel–ph =
∑

�q

(
V�q exp(i �q�r)a�q + V ∗

�q exp(−i �q�r)a+
�q
)
,

where

(6)V�q = − ih̄ωLO

q

(
4πα

Ω

)1/2(
h̄

2mωLO

)1/4

,

with

(7)α =
(

e2

2h̄ωLO

)(
2mωLO

h̄

)1/2( 1

ε∞
− 1

ε0

)
.

In order to calculate the ground-state energy of the hydro-
genic impurity in a quantum dot with an applied electric field
the trial wave function can be written as

(8)Φ(�r, λ) = Φ0( �ρ, z) exp
[−λ

√
( �ρ − �ρi)2 + (z − zi)2

]
,

where exp[−λ
√

( �ρ − �ρi)2 + (z − zi)2] is the hydrogenic vari-
ational wave function with parameter λ, and Φ0( �ρ, z) is the
ground-state eigenfunction of the Hamiltonian (2) when the
hydrogenic impurity is absent. The function Φ0( �ρ, z) is given
by [9]

(9)Φ0( �ρ, z) =
{

J0(η)Z(ζ ), ρ < R, and |z| < d/2,

0 ρ � R, or |z| � d/2,

where J0(η) is the ordinary Bessel function of order zero, and
Z(ζ ) is a linear combination of Airy functions:

(10)Z(ζ ) = Bi(+)Ai(ζ ) − Ai(+)Bi(ζ ).

The arguments of the Bessel and Airy functions are

(11)η = κ10ρ/R
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and

(12)ζ = ac

z

d
− E0 − (κ10a

∗/R)2

ωc

,

where κ10 is the first zero of the Bessel function, ωc =
(|e|Fa∗

B/Ry∗)2/3 and ac = (ωc)
1/2d/a∗

B . a∗
B is the effec-

tive Bohr radius and Ry∗ is the effective Rydberg energy. In
Eq. (10)

(13)

Ai(±)
[
Bi(±)

] = Ai[Bi]
(

±ac/2 − E0 − (κ10a
∗/R)2

ωc

)
,

and E0 is the dimensionless eigenvalue of Hamiltonian (2)
without hydrogenic impurity. It is obtained as the first root of
the transcendental equation:

(14)Bi(+)Ai(−) − Ai(+)Bi(−) = 0.

The expectation value of the energy of the Hamiltonian Hel
is given by

(15)E(λ) = 〈
Φ(�r, λ)

∣∣Hel
∣∣Φ(�r, λ)

〉
/
〈
Φ(�r, λ)

∣∣Φ(�r, λ)
〉
.

The binding energy Eb(xi, yi) for the impurity is defined as
the ground-state energy of the system without Coulomb interac-
tion, minus the ground-state energy in the presence of electron-
hydrogenic impurity interaction

(16)Eb(xi, yi) = E(λ = 0) − E(λ0),

where λ0 is the value of λ, which minimizes E(λ). Expression
for E(λ) in a closed form is presented in [9].

In the framework of the adiabatic approximation we can
write the total wave function of the electron–phonon system
as the product of an electronic wave function Φ( �ρ, z) and
a phonon part.

(17)|Ψ 〉 = Φ( �ρ, z)U |0〉,
where |0〉 is the vacuum state for phonons. This implies that
the phonon field experiences a static distribution of electronic
charge and there is no correlation between the instantaneous po-
sition of the electron and the induced polarization field. In QDs
this situation can be realized in the following cases: (i) when
the radius of the QD is small so that the quantum confinement
increases the electron speed (ii) when the electron–phonon in-
teraction is so strong that electron self-localization occurs, i.e.,
fast electron oscillations; (iii) when the electron-impurity inter-
action is so strong that the electron becomes localized around
the impurity [30,31].

The unitary displacement transformation operator is given
by

(18)U = exp

(∑
�q

(
f�qa+

�q − f ∗
�q a�q

))
.

The function f�q and the parameter λ are determined by mini-
mizing the expected value of the Hamiltonian, Eel–ph(f�q, λ) =
〈Ψ |H |Ψ 〉/〈Ψ |Ψ 〉. The following relations hold for the trans-
formations:

(19)U−1a�qU = a�q + f�q and U−1a+U = a+ + f ∗.
�q �q �q
Then we obtain the expected value of the transformed Hamil-
tonian of the system

Eel–ph(f�q, λ)

= E(λ) +
∑

�q
h̄ωLO|f�q |2

+
∑

�q
V�q

〈Φ(�r, λ)| exp(i �q�r)|Φ(�r, λ)〉
〈Φ(�r, λ)|Φ(�r, λ)〉 f�q

(20)+
∑

�q
V ∗

�q
〈Φ(�r, λ)| exp(−i �q�r)|Φ(�r, λ)〉

〈Φ(�r, λ)|Φ(�r, λ)〉 f ∗
�q .

From the variation condition

(21)
δEe–ph(f�q, λ)

δf�q
= 0,

we obtain

(22)f�q = −
V ∗

�q
h̄ωLO

〈Φ(�r, λ)| exp(−i �q�r)|Φ(�r, λ)〉
〈Φ(�r, λ)|Φ(�r, λ)〉 .

Substituting Eq. (22) into Eq. (20), the bound electron’s ground
state energy in a quantum dot with an applied electric field in
the presence of electron–LO phonon interaction is obtained as

Eel–ph(λ)

(23)

= E(λ) −
∑

�q

|V�q |2
h̄ωLO

∣∣∣∣ 〈Φ(�r, λ)| exp(−i �q�r)|Φ(�r, λ)〉
〈Φ(�r, λ)|Φ(�r, λ)〉

∣∣∣∣
2

.

3. Numerical results and discussion

To calculate the bound polaron energy spectrum in CQD
with electric field, we carry out numerical integration in
Eq. (23). In the calculations we use the following parameter val-
ues for GaAs [41]: ε0 = 12.83, ε∞ = 10.9, h̄ωLO = 36.7 meV,
and electron–phonon coupling strength α = 0.0681.

The aim of our numerical calculations is to clarify the role of
effective confinement on the polaronic shifts of BE. The elec-
tron effective confinement is a result of competing action of
three effects: (i) spatial quantum confinement, (ii) electron-im-
purity Coulomb interaction, and (iii) electric-field confinement.
To see the effect of Stark confinement, we show in Fig. 1 the
variation of the ground-state BE of a hydrogenic impurity (a),
and the polaronic shifts of the BE due to ELOP interaction (b)
as a function of the electric field, at various symmetric positions
of an impurity on CQD axis. Solid lines in Fig. 1(a) correspond
to the impurity binding energy with ELOP interaction. For com-
parison, in this figure we also show the results obtained by
Duque et al. [9] without ELOP interaction (dotted lines). Note
that for on-center impurity the BE shift increases with field in-
tensity, whereas BE decreases. This is caused by the effective
confinement, which in spite of the electron-impurity Coulomb
interaction strength decrease increases due to the Stark con-
finement strengthening. Both the Stark confinement and the
Coulomb interaction between the electron and the hydrogenic
impurity increase, with the increase of the electric field for
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(a) (b)

Fig. 1. Reduced binding energy Eb/Ry∗ (a) with (solid lines) and without (dotted lines) ELOP interaction, and reduced polaronic shifts of binding energy
�Epol/Ry∗ (b) as a function of the electric field for different impurity positions.

(a) (b)

Fig. 2. Reduced binding energy (a) with (solid lines) and without (dotted lines) ELOP interaction, and reduced polaronic shifts of binding energy (b) as a function
of the impurity position along the CQD axis at different values of electric field.
impurity positions (0;−0.25d) and (0;−0.5d), as the electric
field forces the electron to approach the impurity. As a conse-
quence, the curves of BE shift in this case are placed higher
than the curves with (0;0) position of impurity. Note that the
curves of BE shift cross at F = 100 kV/cm, for impurities at
(0;−0.25d) and (0;−0.5d). It means that for larger electric
fields the electron is closer to the impurity position (0;−0.5d).
The BE shift �Epol as a function of electric field has a minima.
The presence of minima can be explained, taking into account
that with the increase of electric field, the Coulomb interac-
tion weakens as the field removes electron from impurity, and
then the effective confinement increases because of the electron
confinement increase in the electric field. The merging of the
BE shift curves, for positions of an impurity (0;0), (0;0.25d)

and (0;0.5d), at large values of an electric field, testifies that
the effective confinement basically is determined by the elec-
tric field. For CQD with d = 4a∗

B and R = a∗
B , the contribution

of ELOP interaction to BE for zi = 0.25d (zi = 0.5d) is about
7.8% (15%) for F = 0, and increases to about 29.5% (37.5%) as
electric field increases to F = 200 kV/cm, while in the situation
in which the impurity is located at zi = −0.25d (zi = −0.5d),
the contribution changes from 7.8% (13%) to 9.7% (9%). These
results show that the electric field leads to a significant increase
in the polaronic correction to the ground state binding energy
in QD.

In Fig. 2 we display the BE and BE shift as a function of an
impurity position along the CQD axial direction, for different
values of applied electric field. Obviously, the peaks of the BE
shifts, just as the BE peaks, are displaced in opposite to the elec-
tric field direction and have different from the BE peak posi-
tions. Indeed, for the electric field F = 100 kV/cm (50 kV/cm)
the BE has a maximum at zi = −1.5d (zi = −1.4d) while the
maximum of the BE shift is at zi = −1.6d (zi = −1.5d). Such
discrepancy again testifies for the increase of the influence of
polaronic effect on BE energy with the electron effective con-
finement strengthening. In difference to the BE, the polaronic
correction is not dependent on the impurity position for the
electric field F = 100 kV/cm (50 kV/cm) when zi > −0.1d

(zi > 0). It means that at these conditions the electric field plays
a main role in the polaronic effect.

The BE of the on-center hydrogenic impurity with and with-
out the ELOP interaction and the polaronic shift as a function
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(a) (b)

Fig. 3. Reduced binding energy (a) with (solid lines) and without (dotted lines) ELOP interaction, and reduced polaronic shifts of binding energy (b) of on-center
impurity as a function of CQD radius at different values of electric field.
of radius of the CQD for different values of the electric field
are presented in Fig. 3. As expected, the BE, as well as the po-
laronic shift of the BE decreases with the increase of the CQD
radius, due to the decrease of the electron quantum confine-
ment. The contribution of ELOP interaction to BE for d = 4a∗

B

and F = 100 kV/cm (50 kV/cm) is about 18.5% (15.4%) for
the CQD radius R = a∗

B , and decreases to about 9.8% (9.3%)
as radius increases to R = 5a∗

B . At comparatively weak electric
field (F = 0.1 kV/cm) the contribution of the ELOP interac-
tion increases from 6.4% to about 7.6%, when radius changes
in the above mentioned range. As seen in this figure, the dot
radius dependence of the polaronic shift of the BE becomes
slower with the decrease of the electric field. The crossing of
the curves in Fig. 3(b), may be explained as follows: for large
values of the CQD radius quantum confinement does not play
a dominant role, and the effective confinement is determine
by the interplay of Stark confinement and electron–hydrogenic
impurity interaction. Therefore in stronger electric fields due
to the larger displacement of the electron from the impurity
the effective confinement decreases, and thus the BE shift is
smaller. For small values of the CQD radius quantum con-
finement plays a dominant role, and the effective confinement
is determined by the interplay of Stark and quantum confine-
ments. Thus in stronger electric fields the effective confinement
increases, which brings to the increase of the BE shift.

4. Conclusions

We have first presented a systematic study of the ground-
state binding energy of a hydrogenic impurity in cylindrical
quantum dot subjected to external electric field and ELOP in-
teraction. The results of the polaronic effects on the binding
energy are obtained as functions of the applied electric field as
well as of the impurity position and the radius of QD. The inter-
play between the confinement effects due to the applied electric
field, spatial confinement and Coulomb interaction on the bind-
ing energy is analyzed. We show that the polaronic shift of the
binding energy increases with the enhancement of the effective
confinement. The results of numerical calculations show also
that the influence of the ELOP interaction on the BE depends
strongly on the impurity position, electric field and dot size.
The correction of the binding energy due to electron coupling
with the polar-optical phonon for the same cases can reach val-
ues up to 37.5%. This aspect must be taken into account in the
interpretation of optical phenomena related to hydrogenic im-
purities in which the effect of an applied electric field competes
with the spatial quantum confinement.
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