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Abstract—Based on time–space duality, we deduce a time-do-
main equivalent to the Fraunhofer (far-field) approximation in the
problem of spatial diffraction. We can use this equivalence to carry
out a real-time optical spectrum analysis, which is shown to be re-
alizable by using, as the dispersivemedia, filtering devices based on
chirped distributed resonant coupling. In particular, we present the
design of linearly chirped fiber gratings (reflection configurations)
and linearly chirped intermodal couplers (transmission configura-
tions) to work as real-time spectrum analyzers. The proposed sys-
tems are shown to work properly by means of simulation tools. Fur-
thermore, we use joint time–frequency signal representations to
get a better understanding of the physical processes that determine
the behavior of these systems. In this way, we demonstrate that the
propagation of a given signal through a chirped fiber grating (or a
chirped intermodal coupler), under the temporal Fraunhofer con-
ditions, translates into a temporal separation of the spectral com-
ponents of the signal. The results of our study indicate potential
important applications based on this effect.

Index Terms—Fourier transforms, gratings, optical fibers, op-
tical fiber devices, time-domain analysis, transient propagation.

I. INTRODUCTION

DEVELOPMENT of short-pulse laser technology continu-
ously increases the areas of application of temporal optics

in signal processing, optical communications, and other scien-
tific areas. One of the main tasks in these applications consists
of the ability to control, modify, and analyze the form of optical
pulses. For this purpose, it is especially useful to find temporal
analogs of the signal processing tools which have already been
used in spatial optics.

There exists a well-known analogy between the equations that
describe the paraxial diffraction of beams in space and the tem-
poral dispersion of narrow-band pulses in a dielectric [1]–[3].
Several authors have used this similarity to propose and create
temporal analogs of spatial systems [4]–[15]. T. Jannson and
J. Jannson [4] demonstrated that a temporal self-imaging ef-
fect (the Talbot effect) might exist in single-mode fibers and
they proposed using this effect for transference of the informa-
tion contained in periodic signals. Saleh and Irshid [5] applied a
time-domain Collett–Wolf equivalence theorem to pulse propa-
gation in fibers. The time–space duality has led to the conclu-
sion that an element that provides quadratic phase modulation
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in time is the analog of a thin lens in space. These elements are
known as time lenses. In that sense, T. Jannson [6] theoretically
proposed the implementation of real-time Fourier transforma-
tion based on a temporal equivalence with the spatial Fourier
transformation that uses spatial lens. For this purpose, he used
single-mode optical fibers as the dispersive elements (equiva-
lents to free space) and chirping lasers to provide the required
quadratic phase modulation (time lens). Kolner and Nazarathy
[7], [8] proposed a temporal imaging system based on a time
lens bounded by dispersive media, which allows for distortion-
less magnification or compression of optical power waveforms.
Their system uses an electrooptic phase modulator as the time
lens. Furthermore, they derived equivalent expressions for the
focal length and thef -number of a time lens. Practical imple-
mentations of similar imaging systems have been demonstrated
in [9] and [10]. Recently, it has been shown that the time–space
duality also applies to the reflection of pulses from linearly
chirped fiber gratings (LCFG’s), and several applications have
been proposed based on this idea [12]–[15].

Here, we present a detailed study of the time-domain formu-
lation equivalent to spatial Fraunhofer diffraction and its appli-
cation to design real-time optical Fourier transformer systems
[12], [13]. The proposed systems do not require quadratic phase
modulation. The only requirement is an appropriate filtering
configuration working as the dispersive media. To first order,
the temporal Fourier transformation can be carried out by use
of any filtering scheme that closely provides flat amplitude and
linear group delay over the bandwidth of the pulses to be pro-
cessed. Such a filter can be obtained using single-mode optical
fiber [4]–[6], and any of the proposed configurations for disper-
sion compensation in optical fiber links and for pulse compres-
sion [16]–[21]. However, the implementation of the temporal
Fraunhofer approximation also requires components that pro-
vide both high dispersion and bandwidth large enough to cover
the pulse bandwidth. The design of an optical fiber which ver-
ifies the required dispersion conditions leads, in general, to too
long a distance for a practical implementation, whereas the re-
quirements of dispersion and bandwidth are usually contradic-
tory in a resonant system (the higher the dispersion, the nar-
rower the bandwidth). These drawbacks have been overcome
with filtering configurations that use chirped distributed reso-
nant coupling [18], such as LCFG [19] and the linearly chirped
intermodal coupler (LCIC) [20]. In the design of these compo-
nents, the two requirements (dispersion and bandwidth) can be
fixed independently, making them optimal candidates for the
practical implementation of the time-domain Fraunhofer con-
ditions. In this paper, we demonstrate that the propagation of
a given signal through a LCFG or a LCIC, whose dispersion
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characteristics are specifically designed to verify the temporal
Fraunhofer conditions, translates into a temporal separation of
the spectral components of the signal. This effect is, in fact, re-
sponsible for the real-time power spectrum analysis provided by
these devices. In particular, we carry out a detailed analysis of
the effect by using joint time–frequency signal representations
[22], [23]. The results of our theoretical study indicate a poten-
tial of important applications based on the described effect, such
as real-time spectral filtering, temporal pulse shaping, and new
techniques for dispersion measurements.

The paper is structured as follows. Section II is devoted to
a detailed study of the time–space duality. We use this duality
in our deduction of the temporal formulation equivalent to the
spatial Fraunhofer diffraction. Section III analyzes the design
method of real-time Fourier transformers based on the time-do-
main Fraunhofer approximation. We present the design method
for LCFG’s (reflection configuration) as well as for LCIC’s
(transmission configuration), by using a unified approach. In
Section IV, we present an example of the design of a real-time
Fourier transformer system. We analyze the performance of this
system for different input signals, by using well-proved simu-
lation tools. We include a joint time–frequency analysis of the
input and output signals to get a better understanding of the
physical processes which determine the behavior of the consid-
ered systems. From the results, we also discuss several potential
applications of real-time spectrum analysis. Finally, in Section
V, we point up some conclusions.

II. THEORY

In this section, we use the well-known time–space duality to
present a temporal formulation equivalent to Fraunhofer diffrac-
tion. This formulation enables us to carry out a real-time power
spectrum analysis.

Firstly, let us review the analogy between the free-space
Fresnel diffraction and the distortion of a temporal signal in the
first-order dispersion approximation [1]–[3]. On the one hand,
the propagation of monochromatic light of wavelength� over
a distanced, under Fresnel conditions (paraxial diffraction),
is described by a linear system with an amplitude impulse
responsehd(x; y) according to the expression [24]

hd(x; y) = hspace exp
�
�j

�

�d

�
x2 + y2

��
(1)

wherehspace = (j=�d) exp(�j(2�=�) d), andx andy repre-
sent the Cartesian coordinates in planes transverse to the prop-
agation directionz.

On the other hand, dispersive media in the linear regime
can be characterized by means of a transfer function
H(!) = jH(!)j exp(�j�(!)). We center our attention
on the distortion of a pulsed plane wave centered at the angular
frequency!0. The analytical signal representation of this pulse
is a1(t) =

_

a1(t) � exp(j!0t), where_a1(t) represents the
complex envelope of the signal. Let the transfer functionH(!)
have constant amplitudejH(!)j = H0 and quadratic phase
response (linear group delay) over the spectral bandwidth of the
pulsea1(t). In this case, the transfer function for the complex

envelopes
_

H(!0) = H(!0 + !0), over the pulse’s bandwidth,
takes the form

_

H(!0) =H(!0 + !0) = H0 exp(�j�0) exp(�j _�0!
0)

� exp

�
�j

1

2
��0!

02

�
(2)

where�0 = �(!0), _�0 = @�=@! for ! = !0, and ��0 =
@2�=@!2 for ! = !0. Notice that we have used the Taylor
expansion of the phase function�(!) in the vicinity of!0. The
related impulse response

_

h(t) can then be obtained by taking
the inverse Fourier transform of this transfer function

_

h(tR) = htime exp

�
j

1

2��0

t2
R

�
(3)

wheretR = t� _�0 andhtime = H0 exp(�j�0)(1=

q
j2���0).

The constant_�0 (group delay) denotes the average pulse delay.
The constant��0 (first-order dispersion coefficient), slope of the
linear group delay characteristic, is responsible for the pulse
shape distortion. The complex envelope_a2(t) of the output
pulse may be obtained by convolving the complex envelope
_

a1(t) of the input pulse with the impulse response function
_

h(t). The temporal impulse response in (3) has the same math-
ematical structure as the spatial impulse response in (1), which
shows that the distortion of a pulse in dispersive media because
of first-order chromatic dispersion is mathematically identical
to Fresnel diffraction.

According to our initial considerations, (3) describes pulse
distortion in dispersive media that closely provide constant
amplitude response and quadratic phase response (linear
group delay) over the pulse’s bandwidth. For example, the
equation describes the narrow-band pulse propagation through
a single-mode optical fiber. As a result, (3) is also valid for
describing the pulse distortion in the different filtering con-
figurations that have been proposed for chromatic dispersion
compensation in optical fiber. In this context, we work with
optical filters based on chirped distributed resonant coupling
[18]: the LCFG [19] and the LCIC [20]. An LCFG (or LCIC)
provides the required optical properties (i.e., flat amplitude and
linear group delay) within the grating’s reflected (transmitted,
for the LCIC case) bandwidth. As a result, (3) (the fundamental
relation of the time–space duality) describes the interaction
between the LCFG (LCIC) and an incident pulse when the
pulse’s bandwidth is narrower than that of the grating. Fur-
thermore, these filters (LCFG or LCIC) can be specifically
designed to get exactly the required amount of dispersion over
the desired bandwidth, which makes these devices optimal
components to use in the design of time-domain analogs of
spatial systems [12]–[15]. In particular, we study the design
of the aforementioned devices to work as power spectrum
analyzers [12] by using a time formulation equivalent to the
spatial Fraunhofer approximation.

For free-space propagation, it is well known that if the prop-
agation distanced is sufficiently long, the field complex ampli-
tude in the planez = d is, within a phase factor, proportional to
the two-dimensional (2-D) Fourier transform of the field com-
plex amplitude in the input planez = 0 [24]. This approxima-
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tion is valid if the input field is confined to a circle of radius
�x1, which satisfies the condition

�x21
�d

� 1 (4)

which is known as the Fraunhofer (far-field) approximation.
Now we turn our attention to the temporal pulse distortion in

dispersive media (LCFG or LCIC). Let us assume that the input
pulse’s bandwidth is narrower than the grating’s bandwidth. As
we have seen in this case, the complex envelope_

a2(t) of the
output pulse can be obtained by convolving the complex enve-
lope_a1(t) of the input pulse with the impulse response function
_

h(t) in (3). We obtain

_

a2(tR) =htime

Z +1

�1

_

a1(t
0) exp
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� exp
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��0

tRt
0
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dt0: (5)

If _a1(t) is confined to a small time width�t1, and if the dis-
persion coefficient��0 is sufficiently large so that���� �t21

2���0

����� 1 (6)

then the phase factor(t02=2��0) � (�t21=2��0) is negligible and
(5) may be approximated by

_

a2(tR) = htime exp
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[
_

A1(!)]!=tR=��0

(7a)

_

A1(!) = F (
_

a1(t)) (7b)

whereF denotes the Fourier transform. Hence, under the con-
ditions of inequality (6), the output pulse envelope is, within a
phase factor, proportional to the Fourier transform of the input
pulse envelope, evaluated at the angular frequency

! =
tR
��0

: (8)

Inequality (6) is the time-domain analog of the spatial Fraun-
hofer condition (4) and is valid if the first-order dispersion
coefficient of the grating,��0, is much greater than the square
of the input pulsewidth�t1. It is worth noting that only the
magnitude of the Fourier transform is recovered, since the
phase of the output signal is complicated by the additional term
exp(j (1=2��0) t

2
R).

In conclusion, if the temporal Fraunhofer condition [in-
equality (6)] is verified, we can assert that the average optical
power of the output pulseP2(tR) = j

_

a2(tR)j2 is proportional
to the energy density spectrum (squared magnitude of the signal

Fourier transform) of the input complex envelope_a1(t) evalu-
ated at! = tR=��0. The effect can be explained as follows. The
reflection of an incident signal upon the LCFG (LCIC) does not
essentially affect the power spectrum of this signal; however,
the different spectral components of the signal undergo a
temporal realignment process according to the group delay
characteristic of the grating (i.e., dispersion causes different
frequencies to travel at different velocities). The time-domain
Fraunhofer condition ensures that this dispersive effect is strong
enough to temporally separate the spectral components of the
original signal. In this way, although the phase of the signal
spectrum is not directly obtained from the propagation through
the dispersive element, the resultant signal contains the total
input spectral information (including magnitude and phase)
along the time axis. For instance, a spectral filtering of the
original signal can be carried out, from the resultant signal after
the propagation, by using time-division techniques: by taking
the appropriate time interval and compensating the dispersion
introduced by the grating (using the complementary grating),
we can filter the original signal through the desired passband.
In our numerical investigation (Section IV), we analyze with
more detail the described effect by using a joint time–frequency
representation of the signals involved in the processes.

III. D ESIGN OFPOWERSPECTRUMANALYZERS

In this section, we analyze the implementation of the Fourier
transformation based on a temporal formulation equivalent to
the spatial Fraunhofer diffraction by using all-fiber filters based
on chirped distributed resonant coupling (LCFG and LCIC)
[18]–[20].

The LCFG and the LCIC provide a propagation delay that is a
linear function of frequency, which is achieved by coupling en-
ergy between two modes with different group velocities in such
a way that the coupling location varies linearly in frequency.
These devices consist of a periodic perturbation of the refrac-
tive index along the fiber length, which is formed by exposure
of the core to an intense optical interference pattern. The re-
quired distributed coupling location is achieved if the period of
the perturbation is linearly chirped. The difference between the
two components is that the LCFG is based on counterdirectional
coupling in single-mode fiber whereas the LCIC uses co-direc-
tional coupling between two modes (LP01 and LP02, in practice)
in a few-mode fiber. Therefore, the LCFG works as a reflective
device whereas the LCIC works in transmission. At this point,
it is worth noting that similar filters can be fabricated within a
waveguide.

For the design of this type of filter, it is convenient to define
the parameter� or time delay between the two coupled modes
over a unit length, i.e.,� = j1=vg1 � 1=vg2j, wherevg1 and
vg2 are the group velocities of the two modes. For the calcula-
tion of the parameter� , the waveguide and material dispersions
of the fiber are not usually considered, i.e., the group velocities
vg1 andvg2 are assumed to be constant with frequency. Under
these conditions, in the LCFGvg1 = �vg2 = c=nm and there-
fore � = 2nm=c, c being the speed of light in vacuum andnm
being the effective refractive index of the single mode. In the
LCIC, the parameter� depends on the normalized frequency or
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Fig. 1. Diagram of the proposed configurations for the implementation of
real-time optical spectrum analysis. (a) Reflection configuration based on
LCFG. (b) Transmission configuration based on LCIC.

fiber parameterV [20]. Let 
(z) be the local spatial angular
frequency of the grating (z being the fiber distance). In the case
of a linearly chirped period,
(z) can be expressed as


(z) = Cz +
0;
�L

2
� z �

L

2
(9)

whereC denotes the chirp factor of the grating andL is the
length of the coupling region.
0 fixes the center frequency
!0 of the grating spectral band, since, according to the Bragg
condition,
0 = !0� . The chirp factorC determines the dis-
persion coefficient of the filter��0 according to the expression
C = ��2=��0, where the positive sign corresponds to the LCFG
and the negative one corresponds to the LCIC. The critical de-
sign parameter is the device lengthL since it depends on both
requirements, the magnitude of the dispersion coefficientj��0j
and grating bandwidth�!, according to the expressionL =
j��0j�!=� . The reader can find a detailed description of the
stated relations between the dispersion characteristics of the
grating and the perturbation parameters in [18]. To obtain such
relations, it is assumed that the waves are coupled exactly at the
point where the phase-matching condition is verified for each
frequency.

Next we present the design of the LCFG and the LCIC to
provide a real-time optical spectrum analysis. Fig. 1 shows a di-
agram of the proposed configurations for the implementation of
the Fourier transformation, using a LCFG [Fig. 1(a)] and LCIC
[Fig. 1(b)]. The main disadvantage of the LCFG is that it is a
reflective device, requiring an optical circulator to retrieve most
of the reflected signal. Input Signal in the figure labels the av-
erage optical power of the pulse entering in the corresponding
device,P1(t) = j

_

a1(t)j2. Output Signal in the figure labels the
average optical power of the output pulse,P2(t) = j

_

a2(t)j2.
In the case of single pulses, the devices must be designed

to verify the time-domain Fraunhofer approximation for a
given pulse time-width. Let�t1 be the time-width of the input
pulses to be processed. We must design a filter that provides a
linear group delay whose slope (dispersion coefficient) satisfies

j��0j � �t2
1
=2� [time-domain Fraunhofer approximation in in-

equality (6)] over a spectral bandwidth broader than the pulse’s
bandwidth (�! > 2�=�t1). At this point, it is important to
note that, even if the designed grating bandwidth is narrower
than the pulse bandwidth, the Fourier transformation is carried
out although this analysis only extends over the designed
bandwidth�!. The grating filters (LCFG or LCIC implemen-
tations) will provide the required dispersion characteristic if its
chirp factorC and lengthL satisfy the following conditions:

jCj �
2��2

�t2
1

(10)

and

L�
�t1
�

: (11)

The required device length only depends on the pulse time-
width: the larger the pulsewidth, the longer the required device.
In practice, the parameter� in the LCFG is larger than the pa-
rameter� in the LCIC, which means that the resultant LCIC
structure is longer than the corresponding LCFG. This is the
main disadvantage of the LCIC: the fabrication of sufficiently
long LCIC structures may constitute a serious problem, since it
is very difficult to maintain the required uniformity of the de-
sign parameters over long lengths [18].

In the case of pulse sequences, the magnitude of the grating
dispersion coefficientj��0j has to be sufficiently large to ensure
that the temporal Fraunhofer condition is verified for the total
duration of the sequence. Furthermore, the grating bandwidth
must be broader than the largest bandwidth of the individual
pulses that constitute the sequence.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present an example of implementation
of time-domain Fraunhofer approximation. In particular,
we design an LCFG (reflection configuration) to work as
a Fourier-transformer system for pulses with time widths
�t1 = 1–10 ps. This design works properly also for pulse
sequences if the total duration of the sequence is not longer
than 10 ps. We have tested this design with different input
signals by use of simulation tools. Furthermore, we use
joint time–frequency representations of the signals to get a
better understanding of the physical effects that determine
the performance of the proposed system and its potential
applications. Taking into account that the maximum time
width of the pulses to be processed is 10 ps, the LCFG must
provide a dispersion which, under the Fraunhofer approxi-
mation conditions, satisfiesj��0j � (1=2�) � 100 ps2/rad
[inequality (6)]. The minimum time width of the pulses (1
ps) determines the grating bandwidth, i.e.,�! > 2� � 1012

rad/s. In particular, the LCFG is designed to provide a positive
dispersion coefficient��0 = (1=2�) � 103 ps2/rad over
a 1200-GHz bandwidth centered at frequency 193.1 THz
(� = 1552:524 nm). Takingnm = 1:4522 as the effective
refractive index of the grating (1.452 being the core refractive
index without perturbation, and 4�10�4 being the maximum
index modulation of the perturbation), we obtain a time
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Fig. 2. Reflection spectral characteristics of the LCFG designed to process
pulses with time widths from 1 to 10 ps. Left axis: LCFG reflectivity versus
optical frequency. The grating has a 1.2-THz bandwidth centered at 193.1 THz.
Right Axis: LCFG reflection group delay. The grating provides a linear group
delay with a slope (dispersion coefficient) of 103 ps2 .

delay over a unit length equal to� = 2nm=c � 9:69 ns/m.
Therefore, the LCFG with the required characteristics has a
chirp factorC = �2=��0 � 600 � 103 rad/m2 and length
L = ��0�!=� � 12 cm. The grating spatial frequency is
centered at
0 = !0� � 11:76 rd/�m. As result, the grating
period varies from 536.21 nm to 532.89 nm. It is worth noting
that an LCIC (transmission configuration) providing similar
dispersion characteristics requires a length of the order of 6 m,
which could be too long for a practical implementation.

We compute the LCFG field reflection coefficientH(!) =
jH(!)j exp(�j�(!)) by use of the model proposed in [25],
which is based on the transfer matrix formalism and thin-film-
filter computational techniques. Fig. 2 shows the LCFG reflec-
tivity R(!) = jH(!)j2 (left axis) and group delaytg(!) =
@�(!)=@! (right axis). It can be observed that the grating pro-
vides the required features. Notice, however, that the amplitude
and group delay responses exhibit undesirable high-frequency
ripples around their respective mean value. These ripples can
be reduced (or even eliminated) by an appropriate apodization
of the grating’s refractive index perturbation [26], although in
this case the ripples do not affect practically the expected re-
sults. It has been demonstrated that the effect of the ripples
becomes less noticeable for broader grating bandwidths [26],
which is the case for our application. Thus, in most of the cases,
the apodization process is not required to avoid the influence of
such ripples. Nevertheless, the fabrication process of the grat-
ings introduces stochastic fluctuations on the group delay and
reflectivity responses, which, in principle, cannot be completely
eliminated [27]. Particularly important are the time delay fluctu-
ations (roughly 15–20 ps). However, when the gratings are used
as real-time Fourier transformers, these fluctuations could be ig-
nored under the conditions described below. The time delay�tg
between the faster frequency of the incident pulse and the slower
one can be estimated as�tg � j��0j�!pulse, where�!pulse

represents the bandwidth of the pulse. Obviously, for the es-
timation of the time delay�tg , we have to use the grating’s
bandwidth�! instead of the pulse’s bandwidth�!pulse when
�!pulse > �!. The ripples around the mean group delay char-
acteristic do not affect essentially the operation of the grating as

(a)

(b)

Fig. 3. Results from the simulation of the real-time spectrum analyzer, taking,
as the input signal, an ideal 10-ps-wide squared pulse. (a) Input signal: the plot
at the bottom shows the signal in the time domain. The plot on the left shows the
signal in the frequency domain. The larger plot shows the joint time–frequency
representation of the signal by using the Wigner–Ville distribution. (b) Output
signal, with the same definitions as for (a).

Fourier transformer if their maximum amplitude (peak to peak)
can be neglected as compared with the estimated time delay
�tg, i.e., if this amplitude is less than 10% of�tg . It is worth
noting that the experimental demonstration of real-time Fourier
transformation using an unapodized LCFG has confirmed the
stated criterion [13].

We now test the design by simulating the system response
to different input signals. In the simulations, we assume that
the signals are centered at the central frequency of the grating
bandwidth, 193.1 THz. We first obtain the output (reflected)
signal spectrum by multiplying the grating frequency response
H(!) with the input signal spectrum. The corresponding time
waveforms can then be recovered by taking the inverse Fourier
transforms.

The first example deals with the LCFG response to a
10-ps-wide ideal squared pulse. Fig. 3(a) shows the input signal
in both time and frequency representations as well as in the two
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domains simultaneously (joint time–frequency representation).
The plot at the bottom of the figure represents the average op-
tical power,P1(t) = j

_

a1(t)j2, of the input signal in normalized
units. The plot at the left of the figure shows the normalized
energy density spectrum,j

_

A1(!)j2, of this signal. To obtain a
deep insight into the signal structure, this is also represented in
both time and frequency domains simultaneously. The larger
plot in the upper right of the same figure shows the joint
time–frequency energy distribution of the signal. The 2-D
distribution intensity is represented by the relative brightness
levels of the plot. Such a representation provides temporal
location information of the signal’s spectral components. For
this first case, we have used the Wigner–Ville distribution [22],
[23]. Fig. 3(b) shows the signal at the system’s output using a
similar representation. The plot at the bottom of the figure rep-
resents the normalized average optical powerP2(t) = j

_

a2(t)j2

of the output signal. As expected, the time waveform of this
signal is proportional to the spectrum (sinc function) of the
input signal. The resultant output powerP2(t) coincides with
the input energy density spectrumj

_

A1(!)j
2 [by using the

scale change defined in (8)]. The plot at the left of the figure
represents the normalized energy density spectrumj

_

A2(!)j2 of
the signal. Notice that the spectrum amplitude only undergoes
a weak distortion compared to the input signal, which is due
to the ripple of the grating reflectivity characteristic. Again,
the larger plot shows the Wigner–Ville distribution of the con-
sidered signal. It is observed that the output (reflected) signal
retains spectral components identical to those of the incident
signal (except for the mentioned distortion); these components,
however, undergo a temporal realignment process according
to the group delay characteristic of the dispersive element
(LCFG). The temporal Fraunhofer condition ensures that this
temporal realignment is sufficiently strong so that only a single
dominant frequency term exists at a given instant of time. The
effect is observed in the TF diagram: each signal distributes its
energy along a straight line (following the group-delay curve).
This effect explains the resultant real-time power spectrum
analysis and provides additional abilities to control and modify
the form of temporal optical pulses. For instance, as described
above, the observed effect can be applied to carry out a spectral
filtering of the original signal by using time-division techniques
on the resultant signal after the propagation.

In order to provide a complete analysis of the described pro-
cesses, we study the case of an input pulse with a time-width
broader than that required for Fourier transformation (i.e.,
broader than 10 ps). In this case, the Fraunhofer approximation
is not satisfied. In particular, we simulate the LCFG response
to an ideal squared pulse with duration of 100 ps. The incident
signal is identical to the one analyzed in Fig. 3(a), except for
the obvious scale changes in the time and frequency axes.
Fig. 4 shows the time representation (bottom plot), frequency
representation (left plot), and joint time–frequency represen-
tation (Wigner–Ville distribution) of the resultant signal at the
system’s output. As in the last case, the output signal retains
an energy density spectrum identical to that of the input signal.
Again, the spectral components undergo a temporal realignment
process following the linear dispersion characteristic of the

Fig. 4. Output signal from the real-time spectrum analyzer when the input
signal is an ideal 100-ps-wide squared pulse (out of temporal Fraunhofer
conditions), with the same definitions as for Fig. 3(a).

Fig. 5. Results from simulation of the real-time spectrum analyzer when
the input signal is an ideal squared pulse 3 ps wide (out of bandwidth design
conditions). Solid curve: normalized average power at the system’s output.
Dashed curve: energy density spectrum of the input signal envelope with
tR(ps) = f(THz)� 103. [n.u.] stands for normalized units.

grating (depicted by the dashed line over the time–frequency
plot). However, in this case, the temporal realignment is not
sufficiently strong to get an effective temporal separation of the
signal spectral components. It can be observed that the output
signal energy is distributed in a wider frequency band at each
moment of time. As a consequence, the time waveform of the
reflected signal does not correspond to the spectrum of the
input signal. In fact, this time waveform is easily identifiable
with a Fresnel diffraction pattern for a square aperture [24].

To analyze the opposite case, we now consider an input pulse
that verifies the requirements for Fourier transformation (Fraun-
hofer approximation) but whose bandwidth is broader than the
grating’s bandwidth. This case includes pulses narrower than
those fixed for the design and also several broad-band pulses
having time widths within the design interval. In these cases, the
Fourier transformation is carried out but only over the grating
bandwidth, which is a fraction of the input pulse’s bandwidth.
As an example, Fig. 5 shows the simulation results for an ideal
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(a)

(b)

Fig. 6. Results from the simulation of the real-time spectrum analyzer, taking,
as the input signal, a multi-frequency single pulse, which is composed of three
8-ps-rms-wide Gaussian pulses with identical time averages and modulated at
different frequencies (detuned from the center frequency of 193.1 THz by�250,
0, and 250 GHz). (a) Input signal. The plot at the bottom shows the signal in the
time domain. The plot on the left shows the signal in the frequency domain. The
larger plot shows the joint time–frequency representation of the signal, by using
the Spectrogram distribution. (b) Output signal, with the same definitions as for
(a).

squared pulse with a duration of 3 ps. The figure shows the nor-
malized optical power at the system’s output (solid curve). The
result is compared with the normalized energy density spectrum
of the input signal envelope, which is represented in the same
figure (dashed curve), changing the scale according to the (8),
tR(ps) = f(THz) � 103. The bandwidth of the input pulse is
broader than the grating’s bandwidth (1.2 THz) and, therefore,
only the spectrum over this bandwidth is recovered, i.e., the re-
flected signal extends over 1200 ps, which coincides with the
grating’s bandwidth of 1.2 THz, using the stated scale change.

We now analyze the system response to a multi-frequency
single pulse. In particular, we consider a signal composed of
three Gaussian functions with the same average time (25 ps)
and rms time width (8 ps), but modulated at different frequen-
cies (detuned from the center frequency of 193.1 THz by�250,

0, and 250 GHz). The time, frequency, and joint time–fre-
quency representations of this signal are shown in Fig. 6(a).
We now use the Spectrogram distribution [22], [23] for the
time–frequency representation. The representation shows the
three components of the input signal, which are separated in
frequency but coincide in time. The signal obtained at the
system’s output is shown in Fig. 6(b). Since the input signal
verifies the required conditions for the Fourier transformation,
the time waveform of the output signal (bottom plot) coincides
with the energy density spectrum of the input signal envelope.
In this way, we can generate a train of temporal pulses from
a multifrequency (multiwavelength) source. Furthermore, the
joint time–frequency representation shows that these pulses
are separated simultaneously in both time and frequency.
In this particular case, the resultant pulses are separated by
250 ps, which correspond to the spectral separation of 250
GHz (with the scale change oftR(ps) = f(THz) � 103). It is
worth noting that this type of signal (multiwavelength train of
pulses) has been previously proposed for several applications
in wavelength-division-multiplexed systems [28].

Finally, we study the system behavior with pulse sequences.
In particular, we analyze the system response to a sequence of
two Gaussian pulses. We assume 1-ps rms width pulses, sep-
arated by 8 ps. The average optical power corresponding to
this signal,P1(t), is represented in Fig. 7(a). The optical power
obtained at the system’s output,P2(t)], is shown in Fig. 7(b)
(solid curve). This function practically coincides with the en-
ergy density spectrumj

_

A1(!)j2 of the input signal envelope,
which is represented in the same figure (dashed curve) by using
the scale change in (8) (tR(ps) = f(THz)�103). As in the cor-
responding spatial case (far-field diffraction from two slits), we
obtain an interference pattern. The separation between peaks,
as well as the width and intensity of these peaks, in the ob-
tained pattern can be specifically tailored by varying the sep-
aration between pulses and the individual pulse characteristics
(time width and intensity) of the input signal. This fact can be
used for pulse-shaping applications. Here we center our atten-
tion on the relation between the separation between peaks in
the output intensity pattern and the separation between the two
input pulses. Let�t1 be the time distance between the input
pulses and

_

G(!) the spectrum of each individual pulse. The en-
ergy density spectrum of the input signal envelope can then be
expressed asj

_

A1(!)j2 = 2j
_

G(!)j2[1 + cos(�t1!)]. By using
the relation (7), the output average optical power can be written
as

P2(t) = j
_

a2(t)j
2

=
H2

0

�j��0j
fj
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��0
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�

�
1 + cos

�
�t1
��0

(t� _�0)

��
: (12)

The oscillatory nature of the output signal is due to the cosine
function in the last equation. The period of this function is pre-
cisely the time separation between the peaks in the output op-
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Fig. 7. Results from the simulation of the real-time spectrum analyzer.
(a) Normalized average power of the input signal, which is composed of
two Gaussian pulses of 1 ps-rms-width, separated by 8 ps. (b) Solid curve:
normalized average power of output signal. Dashed curve: energy density
spectrum of the input signal envelope withtR(ps) = f(THz) � 103 . [n.u.]
stands for normalized units.

tical power�t2. Therefore, this time separation depends on the
time distance between the input pulses�t1 according to the re-
lation

�t2 =
2�j��0j

�t1

: (13)

For instance, in the considered case, since�t1 = 8 ps and the
grating dispersion2���0 = 103 ps2, we obtain a time separation
between peaks in the output intensity pattern�t2 = 125 ps (see
Fig. 7). In addition to its utility for tailoring the output signal
characteristics, relation (13) provides a useful and easy means
for measuring the first-order dispersion coefficient in chirped
fiber gratings (LCFG or LCIC). By reflecting two pulses sep-
arated by a short enough time duration (�t1) from the grating
being characterized, we obtain an interference intensity pattern
from which we can measure the temporal separation in the inten-
sity peaks (�t2). The grating dispersion coefficient��0 can then
be determined using (13). The stated relations are also valid for
pulses with a bandwidth broader than the designed bandwidth.
As an example, we consider 250 fs rms-width Gaussian pulses,
separated by 8 ps [Fig. 8(a)]. The time duration of the sequence
is within the design interval (1–10 ps). However, the bandwidth
of the individual pulse is broader than the LCFG bandwidth.
As a result, the real-time Fourier transformation is carried out

Fig. 8. Results from the simulation of the real-time spectrum analyzer out of
bandwidth design conditions. (a) Normalized average power of the input signal,
which is composed of two Gaussian pulses of 250 fs-rms-width, separated by 8
ps. (b) Solid curve: normalized average power of output signal. Dashed curve:
energy density spectrum of the input signal envelope withtR(ps) = f(THz)�
103. [n.u.] stands for normalized units.

but only over a fraction of the input signal’s bandwidth (the
grating’s bandwidth). Fig. 8(b) shows the normalized optical
power at the system’s output (solid line) and the normalized
energy density spectrum of the input signal envelope (dashed
line). The output signal has a total duration of 1200 ps, which
corresponds to the grating bandwidth of 1.2 THz. As predicted
by theory, the temporal separation between the intensity peaks
is again fixed to 125 ps.

V. CONCLUSIONS

We have used the temporal analog of spatial Fraunhofer
diffraction to design real-time optical spectrum analyzers,
using as dispersive media filtering devices based on chirped
distributed resonant coupling. We present a unified approach
for the design of LCFG’s (reflection configurations) or LCIC’s
(transmission configurations) to carry out the proposed optical
spectrum analysis. We have tested our designs by means
of simulation tools for the cases of single pulses and pulse
sequences. The results obtained from simulation show a
very good agreement with those predicted by the theory.
Furthermore, we have used the joint time–frequency signal
analysis to get a deep insight into the physical effects that
determine the performance of the proposed systems. In this
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way, we have demonstrated that the propagation of a signal
through an LCFG or LCIC, specifically designed to verify
the temporal Fraunhofer conditions, translates into a temporal
separation of the spectral components of this signal. This effect
provides key abilities to modify and control the characteristics
of temporal signals and, in consequence, can find important
applications in the fields of temporal signal processing, optical
communications, and other scientific areas.

Single-mode optical fiber or any of the resonant configura-
tions proposed for dispersion compensation could be used as
alternatives to the LCFG (LCIC) in order to yield the real-time
spectrum analysis. The design of an optical fiber which verifies
the required dispersion conditions leads, in general, to too long
a distance for practical implementation, whereas the require-
ments of dispersion and bandwidth are usually contradictory
in resonant system (the higher the dispersion, the narrower the
bandwidth). However, in the LCFG (LCIC) design, these two re-
quirements can be chosen independently. This fact makes these
devices optimal candidates for carrying out the proposed as well
as for implementing other interesting time-domain equivalents
of well-known spatial systems [14], [15]. In general, the prac-
tical implementation of such systems opens important new per-
spectives in the mentioned fields.
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