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A VERSATILE VECTOR MEAN VALUE THEOREM

D. E. SANDERSON, Iowa State University

If a particle moves smoothly in n-space and at two points in time its velocity
is orthogonal to a given direction, then so must its acceleration be at some inter-
mediate time. The following easily proved extension of Rolle’s theorem embodies
this principle for arbitrary dimension and orders of differentiation (the one-dimen-
sional case reduces to Rolle’s theorem if orthogonality is interpreted as meaning the
(inner) product of the vectors is zero). The two-dimensional version affords a simple
way to present the elementary applications or forms of the usual mean value theorems.

THEOREM 1. Suppose v:[a,b] — R" is a k times differentiable n-dimensional
vector-valued function and v(a), v(b) and the first k—1 derivatives of v at a are
orthogonal to a non-zero vector vy,. Then for some ¢ between a and b, v¥(c) is
orthogonal to v,.

Proof. Let F(t) = v(?) - v, denote the inner (dot) product of the vectors wv(t)
and v, . Then, since the vanishing of F™(f) = v™(t) - v, is equivalent to orthogonality
of v™(¢) and vy, we have F(b) = F(a) = F'(a)= --- = F*"')(a) = 0. Successive appli-
cations of Rolle’s theorem give points ¢, = b, ¢y, ++,¢, = ¢ such that F™(c,) = 0
and a <c¢, < Cp—; for m = 1,---, k. Thus v*¥(c) is orthogonal to v, and the proof
is complete.

To illustrate the ease with which standard mean value results can be obtained
from this theorem (with n = 2) let us simplify the form by translating coordinates
in the domain and range of v so that a is replaced by 0, b by h = b — a, and v(0)
by the origin of R2. If we write v(t) = (f(¢),g(t)) where f(0) = g(0) = 0, and
assume vo(h) is non-zero, then we may use (g(h), —f(h)) for v, so that
F(t) = f(t)g(h) — g(¢) f(h) and the orthogonality condition in the conclusion becomes
F(Wg®(c) = g(h)f®(c). This remains true, trivially, but of little use if v(h) is the
zero vector.

Applications. (1) The ordinary mean value theorem for a function f, differentiable
on [0, h] (where f(0) = 0) is obtained by setting k = 1, g(t) = t: f(h) = hf'(c).

(2) The Cauchy or generalized mean value theorem results from setting
k= 1: f(W)g'(c) = g(h)f'(c) (where f(0) = g(0) = 0).

(3) From (2) and appropriate conditions on f and g, one can of course write
f(h)/g(h) = f'(c)/g9’(c) and derive L’Hospital’s Rule.
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For applications involving values of k greater than one (and n = 2, still) it
should be observed that the condition on v and its first k—1 derivatives at a requires
them to all be parallel. In particular, the theorem is applicable whenever the values
of f and its first k—1 derivatives at a are equal to the respective values of g and its
first k—1 derivatives at a. We state this as the next application, continuing to use the
notationally simpler case, a = 0.

@ If f™(0) = g™(0) for m = 0,1, k—1 (f© = f, etc.) and £ P(1), g™ (1)
exist for te[0, k], then f(h)g®(c) = g(h)f*(c) for some ¢ between 0 and h.

(5) Taylor’s Formula for a k times differentiable function ¢ follows from (4)
if we set f(f) = p() — T E23990)/s! and g(f) = t*.

Proof. Since f™(t) = ¢™(t) — T *Z1 d“N(0)"™/(s—m)!, we have f™(0) =0
=g™(0) for m =0,1,---,k—1 and (4) applies, giving f(h)k! = h*f¥(c) = h*$¥(c),
hence

k=1

ph) = X O O0)h%s! + ¢V [k!.
s=0

(6) The standard formula for the error in Simpson’s Rule for approximating
the integral of a four times differentiable function ¢ on the interval [ —h, h] follows
from Corollary 4 by setting

10) = @I +460) + 0] = [ 6 and g0 = ©.

Proof. Differentiating, one finds that f and its first three derivatives vanish
at 0. In particular, f"(#)=[¢" (t) — ¢" (—1)]¢/3. Applying (4) with k = 3 and using
the mean value theorem (i.e., (1) modified to apply to the interval [ —c,c]) gives

f(h) - 60c* = [¢"(c) — ¢" (= )]h%¢[3 = 2 @)h*c/3,
or
f(h) = ()90,

where ¢e(—c, ¢) = (—h, h). This is the standard formula for the error f(h) in Simp-
son’s Rule.

Note that in the proof of (6) we could just as well apply the theorem with k = 4,
and it would be more natural to do so. However, this leads to the more complicated
form

f(h) = [26@) + $c) + $“(—)]1°/360

and the same estimate | f(h)| < M h%/90, where M is the maximum of |$“)()|
for —h<t<h.

(7) The standard formula for the error in the Trapezoidal Rule for approxi-
mating the integral of a twice differentiable function ¢ on the interval [—h, h]
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follows from (4) by setting

1) = [6(— + ¢ — f g and g9 = £ and k= 1),

The proof of (7) parallels that of (6), the error formula being 2 h*¢"(¢) for some
¢e(—h,h). The corresponding formulas for an arbitrary interval divided into sev-
eral (equal) subintervals are easily obtained if ¢'*) (respectively, ¢”) is continuous
on the interval (see problem 9 section 8.22 of [1]). The fact that the hypothesis of
the theorem is satisfied for a higher value of k than is used in the proofs of (6) and (7)
suggests that a sharper error estimate may be possible but the note preceding (7)
does not bear this out.

Using Theorem 1 with k = 1 in much the same way that Rolle’s theorem was
used in proving Theorem 1, the following variation can be proved:

THEOREM 2. Suppose v: [a,b] — R" is a k times differentiable n-dimensional
vector-valued function which is orthogonal to a non-zero vector v, at k + 1 distinct
points of [a,b]. Then for some c between a and b, v® (c) is orthogonal to v,.

Theorem 2 can be used to obtain the error formula for polynomial interpolation
given in Theorem 8-3 of [1].
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A NOTE ON UNIFORM STRUCTURES OF TOPOLOGICAL GROUPS

J. S. YaNG, University of South Carolina

We present here an extension of an exercise in [1, 4.24, page 28] which states
that if there are sequences {x,},~, and {y,},2, in a T, topological group G such that
lim,, , x,y, = eand lim,_, , y,X, = z # e, then the left and right uniform structures
of G are inequivalent.

It is well known that a topological group G has equivalent left and right uniform
structures if and only if for each neighborhood U of the identity e, there is a neigh-

borhood ¥ of e such that xV'x~! < U for all xe G (cf. [1], 4.14, page 22).

THEOREM. A topological group G has inequivalent left and right uniform
structures if and only if there are nets {x,} and {y,} in G such that {x,y,} converges
to the identity e but e is not a cluster point of the net {y,x,}.

Proof. Suppose there are nets {x,} and {y,} such that {x,y,} converges to e,
but e is not a cluster point of the net {y,x,}. Then there is a neighborhood U of e
in G such that {y,x,} is eventually in W = G — U. Let V be an arbitrary neighbor-
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