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Strange Star Surface: A Crust with Nuggets
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We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact
stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are
characterized by an enormous density gradient (1026 g=cm4) and large electric fields at the surface. By
investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark
matter embedded in an uniform electron background, we find that the strange star surface has a much
reduced density gradient and negligible electric field. We comment on how our findings will impact
various proposed observable signatures for strange stars.
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The conjecture that matter containing strange quarks
could be absolutely stable is several decades old [1–4].
In the intervening years numerous authors investigated
how such matter would manifest in nature (for recent re-
views see Refs. [5–7]). Possibilities include tiny (dimen-
sions of a few Fermi) quark lumps called strange nuggets
and large (dimensions� km) compact stars made entirely
of strange quark matter [8–10]. Strange stars, as discussed
to date, have bulk homogeneous quark matter containing
up, down, and strange quarks extending all the way to the
surface, which is uniquely qualified by (i) a steep density
drop ��� 1015 g=cm3 over a distance of several Fermi;
and (ii) large electric fields due to less rapid variation of the
electron density [10]. In this Letter, we reexamine the
surface region of these strange stars and find that, contrary
to conventional wisdom, a heterogeneous (solid) crust
made of strange nuggets and electrons is likely, leading
to a much reduced density gradient and negligible electric
fields in the surface region. Our proposal differs from the
conventional picture, suggested by Alcock et al. [10], of a
tiny nuclear crust suspended a few hundred Fermis above
the quark star, supported by large electric fields near the
surface. It shares some apparent features of the quark-alpha
crust scenario, based on absolutely stable strange quark
states called quark-alphas [11,12], but is otherwise funda-
mentally different. Although Ref. [9] mentions the possi-
bility of a crust with nuggets, not even a qualitative study
of its consequences exists. Our work is the first study of this
type of crust in a general and model-independent context.

In the vicinity of the strange star surface hydrostatic
equilibrium requires the pressure to become vanishingly
small. At the surface the pressure is identically zero. The
pressure of stable quark matter vanishes at a finite and large
quark density n ’ 1 quark=fm3, corresponding to a quark
chemical potential of � ’ 300 MeV. Since the strange
quark mass, ms, is large compared to the up and down
quark masses, homogeneous quark matter needs electrons
to ensure charge neutrality. In normal (nonsuperconduct-
ing) quark matter the electron chemical potential needed to
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ensure neutrality is �e ’ m
2
s=4�. Consequently, when the

total pressure (Pquark � Pelectron) is close to zero, the pres-
sure due to quarks is negative. We show that in this regime
a heterogeneous mixed phase with nuggets and electrons
may be favored if surface and Coulomb costs are small.
Deeper in the crust the mixed phase is characterized by
voids filled by an electron gas embedded in quark matter.
This mixed phase resembles the mixed phase of nuclei and
electrons in the crust of normal neutron stars and shares
several features with the mixed phase of quark drops and
nuclear matter in hybrid stars [13]. As usual, the size of the
charged nuggets or voids in the mixed phase will be
determined by minimizing the surface, Coulomb, and other
finite size contributions to the energy. At low temperature,
the mixed phase is a solid. Using typical quark model
parameters, we find that strange stars will have a relatively
large crust with radial extent �R ’ 50 m for a star with
massM ’ 1:4M� (M� ’ 2� 1033 g is the mass of the sun)
and radius R � 10 km. The electron density decreases to
zero over this length scale.

To prove that a heterogeneous phase is favored when
surface and Coulomb energies are small enough, we adopt
a model-independent approach which is valid when �e �
�. In this case, the quark pressure may be expanded in
powers of �e; to second order in �e, it is given by

Pq��;�e� � P0��� 	 nQ����e �
1

2
�Q����2

e; (1)

where nQ��� � 	@P=@�e is the positive charge density,
�Q��� � @2P=@�2

e is the charge susceptibility, and P0 is
the pressure of the electron-free quark phase. They depend
on �, ms, and strong interactions. To perform a model-
independent analysis we treat P0, nQ, and �Q as
(�-dependent) parameters. To appreciate their typical
magnitude, we note that in the bag model description nQ �
m2
s�=2�2, �Q � 2�2=�2, and P0 � 3��4 	m2

s�
2�=

4�2 	 B, where B is the bag constant. To investigate the
regime where the electron contribution to the pressure is
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relevant, we should keep terms up to fourth order in �e.
However, this greatly complicates the analytic treatment
and does not provide much new insight. For the time being,
assuming the �3

e and �4
e terms in the quark pressure to be

numerically small compared to the electron pressure
(which we include explicitly), we work to second order
in �e and return to a more complete treatment of the
problem later.

A heterogeneous state of positively charged quark mat-
ter coexisting with negatively charged electron gas is pos-
sible if Pq � 0 and @Pq=@�e 
 0. Since electrons reside
both inside and outside quark matter, Gibbs phase equilib-
rium requires Pq � 0. Also, @Pq=@�e 
 0 ensures that
quark matter is positively charged, thus satisfying global
charge neutrality. At fixed�, from Eq. (1) we see that Pq is
zero and quark matter is positively charged when �e takes
on the value

~� e �
nQ
�Q
�1	

������������
1	 �

p
� where � �

2P0�Q
n2
Q

: (2)

Hence a mixed phase is possible when 0< �< 1. In this
regime, the mixed phase has lower free energy (larger
pressure) than homogeneous matter. Relaxing the condi-
tion of local charge neutrality allows us to reduce the
strangeness fraction in quark matter and thereby lower its
free energy. � � 1 characterizes the critical point where
this becomes possible. The pressure at the critical point
Pc � ��c

e�
4=12�2, where �c

e � nQ=�Q is the electron
chemical potential there. In this phase, electrons contribute
to the pressure while quarks contribute to the energy
density—much like the mixed phase with electrons and
nuclei in the crust of a conventional neutron star.

Although P0, nQ, and �Q all depend on �, and, con-
sequently, change across the mixed phase, we find that only
the variation in P0 is relevant because P0 varies rapidly
with � inside the mixed phase. For example, in the bag
model, � changes by less than a percent across the interval
0 
 � 
 1 so that to a good approximation, we can treat
nQ and �Q as constants throughout the mixed phase.
Further, since � is nearly constant across the mixed phase
the variation of the energy density inside nuggets is negli-
gible. In what follows, �0 denotes the energy density inside
nuggets.

To characterize the mixed phase we need to determine
how the electron chemical potential and the volume frac-
tion of the quark phase change with �. We have already
obtained Eq. (2) which determines how�e changes with �.
The volume fraction of the quark phase, denoted by x, is
determined by the condition of global charge neutrality
Q� ~�e�x � ne� ~�e� where Q� ~�e� � 	�@Pq=@�e��e� ~�e

is
the quark charge density in the mixed phase. We find

x �
~�3
e

3�2nQ

�
1	

�Q ~�e

nQ

�
	1
: (3)
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The mixed phase will be penalized by Coulomb, surface,
and other finite size contributions to the energy. Its stability
at fixed pressure is guaranteed if its Gibbs free energy (per
quark) is lower than the homogeneous phase. The Gibbs
energy per quark g � �E� PV�=N, where E is the energy,
P is the pressure, and N is the number of quarks in volume
V. In the homogeneous phase, gH � �H where �H is the
quark chemical potential. Similarly, gM � �M in the
mixed phase if finite size contributions are neglected. We
now calculate the Gibbs free energy gain �g � �H 	�M
in the mixed phase.

Using the local charge neutrality condition �e �

nQ=�Q and Eq. (1), we find the pressure of the homoge-
neous phase PH��� � P0��� 	 n2

Q=2�Q. The Gibbs en-
ergy �H at fixed total pressure P is then determined by the
equation P0��H� � P� n2

Q=2�Q. Since we expect �g�
�, a Taylor series expansion of the form

P0��H� � P0��M� � n�g�O��g2�2�; (4)

where n � �@P0=@�����M
is justified. When �e � �, n

is the quark number density inside nuggets. Using Eq. (2)
and ~�e � �12�2P�1=4, the gain in Gibbs energy per quark
is

�g �
n2
Q

2�Qn

�
1	

2�Q ~�e

nQ
�
�2
Q ~�2

e

n2
Q

�
: (5)

In the bag model whenP � 0, �g � m4
s=16�2n. Forms �

150 MeV and n � 1= fm3, �g ’ 0:4 MeV per quark. The
surface and Coulomb energy cost in the mixed phase has
been studied in the context of the nuclear mixed phase [14].
Using these results, which are valid when corrections due
to Debye screening and curvature energy is negligible, we
find that the Coulomb and surface energy cost per quark

�s�C �
6�

n�16�2�1=3
��e2�dnQ�2fd�x��1=3; (6)

where � is the surface tension, d is the dimensionality
(d � 3 for spheres, d � 2 for rods, and d � 1 for slabs),
and the function fd�x� depends on the dimensionality and
the volume fraction x of the rarer phase. Explicit forms for
fd�x�may be found in Ref. [14]. From Eqs. (5) and (6), the
mixed phase is favored when

� 

n2
Q

6
�����������������
3�fd�x�

p
e2d�3=2

Q

: (7)

In the bag model, this condition may be written in terms of
ms and � as follows

� & 36
�

ms

150 MeV

�
3 ms

�
MeV=fm2: (8)

The surface tension between quark matter and vacuum is
poorly known. Using the bag model, Berger and Jaffe [15]
estimate the surface energy of strangelets � ’ 8 MeV=fm2
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for ms � 150 MeV and � ’ 300 MeV, while � ’
5 MeV=fm2 for ms � 200 MeV (numerical values for
the surface tension are extracted from surface energies
quoted in Ref. [16]). The condition in Eq. (8) implies
that a structured mixed phase is favored even for ms �
150 MeV. The sensitivity to ms in Eq. (8) and other
sources of finite size contributions to the energy which
we have neglected here does not allow us to make a
definitive claim about the stability of the mixed phase.
Clearly, this warrants further work which should include
the curvature energy [16], Debye screening [17–19], shell
effects [20], and better estimates of the surface tension. For
now, we proceed by assuming that surface and Coulomb
costs are small enough to favor the mixed phase.

We had assumed that �3
e and �4

e terms in the quark
pressure were small compared to the electron contribu-
tion to facilitate a simplified model-independent analy-
sis. We now relax this assumption and work within the
bag model, retaining terms to all orders in ms and �e. For
B � 65 MeV=fm3 and ms � 150 MeV, the quark compo-
nent of the pressure of homogeneous matter is zero when
� � �c ’ 300 MeV and �e � �c

e ’ 18 MeV. The criti-
cal pressure below which homogeneous quark matter can-
not exist is given by Pc � ��c

e�
4=12�2 ’ 1:2�

10	4 MeV=fm3. The electron chemical potential decreases
from �e � �c

e at the critical point to zero at zero pressure.
In the mixed phase the pressure is due to electrons, and is
given by Pmixed � ~�4

e=12�2. While the energy density is
due to nuggets, and is given by �mixed � x�0. The variation
of pressure and energy density across the mixed phase are
shown in Fig. 1. For our choice of bag model parameters,
we find �0 ’ 283 MeV=fm3. The inset in Fig. 1 shows how
the volume fraction of the quark phase changes with �e.
Near the critical point, x and consequently the equation of
state (EOS) through �mixed � x�0, varies rapidly. Except
for the region very close to Pc, most of the mixed phase is
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FIG. 1. The equation of state of the mixed phase. Inset shows
the variation of the volume fraction of the quark phase as �e
changes across the mixed phase.
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characterized by small x. Here, sparsely distributed spheri-
cal nuggets are preferred.

To estimate the radial extent �R of the mixed phase
crust, consider a strange star with massM and radius R. For
simplicity, ignoring special and general relativistic correc-
tions

GM
Z R��R

R

dr

r2 �
Z P�0

Pc

dP
�mixed

; (9)

when �R� R; �R �
R2

GM

Z Pc

0

dP
�mixed

; (10)

where Pc is the critical pressure at which the transition to
the mixed phase occurs. Since the energy density �mixed �
x�0 and the pressure P � �4

e=12�2, we may use Eq. (3) to
obtain

�R �
R2nQ
GM�0

Z �c
e

0
d�e

�
1	

�Q�e

nQ

�
�
R
Rs

n2
Q

�Q�0
R; (11)

where Rs � 2GM ’ 3�M=M�� km is the Schwarzschild
radius of the star. From Eq. (10) we can also estimate
the mass in the crust Mcrust ’ 1:4��c

e=20 MeV�4�
�R=10 km�410	5M�.

For ms � 150 MeV and �c ’ 300 MeV we find that
nQ ’ 0:045 fm	3, �Q ’ 92 MeV=fm, and �0 ’

283 MeV=fm3. Substituting these values in Eq. (11) we
find that �R ’ 100 meters for a star with mass M �
1:4M�. The Newtonian estimate for �R and Mcrust which
were obtained using Eq. (1) provides useful insight. To
obtain a more accurate value for �R, we use the bag model
EOS shown in Fig. 1 and numerically solve general rela-
tivistic equations for hydrostatic equilibrium. The resulting
density profile of the crust is shown in Fig. 2. Here we find
that �R ’ 40 m and Mcrust ’ 6� 10	6M� for a 1:4M�
strange star.
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FIG. 2. Density profile of the crust for a strange star with mass
M � 14M� and radius R � 10 km.
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We expect the presence of a crust with nuggets to have
several phenomenological consequences.

(i) Photon radiation.—In the conventional picture, the
high electron chemical potential at the surface of a bare
strange star leads to the formation of an electrosphere. The
high plasmon frequency at its inner edge leads to distin-
guishing spectral features in the photon radiation from bare
strange stars [21,22], especially in the gamma-ray region.
In our scenario the presence of the crust obviates the need
for the electrosphere, a large electric field, or any remark-
able spectral features thereof [23].

(ii) Moment of inertia.—The moment of inertia of the
solid crust Icrust � I0Mcrust=Mstar where I0 is the moment of
inertia of the star and Mcrust=Mstar is the fractional mass in
the crust. From our earlier estimate for Mcrust we may
conclude that Icrust=I0 ’ 10	6–10	5. If glitches originate
from crustal cracking, the observed giant glitches in the
Vela pulsar requires Icrust=I0 ’ ��=� ’ 5� 10	6. This
indicates that star quakes in the strange crust are not a
likely explanation for this phenomenon.

(iii) Thermal conductivity.—The small mean free path
for electrons scattering off nuggets implies that the thermal
conductivity in the crust is much smaller than in the core.
Using the results of Ref. [24], we find that the thermal
conductivity of the nugget crust to be similar to that of a
nuclear crust. This will influence thermal evolution since
the crust will act as an insulator effectively keeping the
surface temperature low. Scattering off nuggets is also
likely to impact neutrino transport during the early evolu-
tion of the strange star subsequent to its birth in a super-
nova event [25].

To reiterate our main findings, a homogeneous and
locally charged neutral phase of quarks and electrons could
become unstable to phase separation at small pressure. Our
main result, Eq. (7), provides a model-independent means
to assess if a mixed phase is energetically favored. When
the inequality in Eq. (7) is satisfied, a heterogeneous solid
crust with strange nuggets embedded in a degenerate elec-
tron gas appears; deeper inside, one has voids filled with
electrons embedded in quark matter. Such a crust closely
resembles the conventional nuclear crust on normal neu-
tron stars, and its thermal and transport properties are
dramatically altered from those of a bare surface. An
interesting exception is color-flavor-locked (CFL) quark
matter [26] where quark pairing ensures equal numbers
of up, down, and (massive) strange quarks [27,28]. The
CFL phase is neutral in the bulk without electrons.
Consequently, such stars do not require a crust but will
be characterized by a bare surface and an extended electron
layer at the surface [23].

Ultimately, the question of whether strange stars have
strange crusts depends on the value of the surface tension
between strange quark matter and the vacuum. To ascertain
if strange nuggets or voids are indeed stable with respect to
04110
fusion at low pressure requires a proper account of Debye
screening and curvature energy; these finite size contribu-
tions to the energy and their model dependence are being
investigated, and will be reported elsewhere. If these are
small enough, then almost all strange stars should have a
crust and strange nuggets at zero pressure should have a
finite stable size.
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