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Abstract
The polarization effects of in-plane electric fields and eccentricity on electronic
and optical properties of semiconductor quantum rings (QRs) are discussed
within the effective-mass approximation. As eccentric rings may appropriately
describe real (grown or fabricated) QRs, their energy spectrum is studied.
The interplay between applied electric fields and eccentricity is analysed, and
their polarization effects are found to compensate for appropriate values of
eccentricity and field intensity. The importance of applied fields in tailoring
the properties of different nanoscale materials and structures is stressed.

1. Introduction

The electronic energy spectrum and wavefunctions of nanostructures are quite sensitive to
electric fields due essentially to the induced polarization of the spatial carrier distribution. This
property may be used to control and modulate the intensity of photocurrents and light emission
of optoelectronic devices. In particular, a remarkable decrease of the photoluminescence signal
and a red shift in the photoluminescence peak position in GaAs–(Ga, Al)As quantum wells,
for increasing electric field intensity, was reported two decades ago by Mendez et al [1].
Electric field effects on other heterostructures, such as quantum wires and dots, have also
been investigated. For spherical quantum dots, a quasi-linear dependence on the electric field
was predicted for the electroabsorption spectrum in the strong electric field regime [2]. The
influence of axially applied electric fields on exciton binding energy, Stark shift and oscillator
strength in quantum disks has been studied [3]. By changing the disk diameter and height, it
was shown that the red Stark shift and the oscillator strength may be controlled. A general
result is the appearance of new transitions which are forbidden when the electric field intensity
is zero [4].
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Among semiconductor low-dimensional systems, quantum rings (QRs) are of special
interest, mainly due to their unique topology. The effective dimensionality of such structures
may range from quantum-dot to quantum-well-wire regimes, depending on the geometrical
sizes of the rings. The experimental realization of nanoscopic semiconductor QRs has been
possible due to the large progress in the nanotechnology of self-assembled structures, such
as those based on InGaAs [5, 6]. The occurrence of persistent currents (PCs) when QRs
are threaded by magnetic fields is, perhaps, their most interesting property. Mailly et al
[7] found PCs in semiconductor GaAs–(Ga,Al)As rings grown by molecular beam epitaxy
techniques. The measured resistance signal showed Aharonov–Bohm oscillations, which are
direct consequences of the ring topology. Also, Lin and Chui [8] reported PCs in toroidal carbon
nanotubes, which may suffer metal–semiconductor transitions under variations of the threading
magnetic flux. Recently, capacitance and transmission spectroscopy have been used to study
self-organized InAs ring-like structures embedded in a GaAs matrix [9]. Interband absorption
measurements were performed for neutral dots and rings, and the corresponding oscillator
strengths show very different behaviours. The explanation for this is based on the interplay
between Coulomb and quantization energies in such systems. A detailed study of the electronic
states in the quantum limit is fundamental for the optical characterization of QRs [10]. While
axially applied electric fields do not affect the axial symmetry of quantum disks [3], in-plane
fields do, and may drastically change the corresponding electronic spectrum. In this respect, in-
plane applied electric fields in QR structures were shown to break the wavefunction symmetry,
to couple different angular momenta and to affect the interband oscillator strength [11]. Studies
in those directions should lead to important technological applications, such as the fabrication
of self-assembled QRs embedded in a field-effect transistor structure, where the number of
electrons per ring may be controlled [6].

For the case of donor impurities in QRs with infinite barriers [12], the impurity binding
energies are strongly affected by the ring hollow, since even for quite small internal radii
the binding energy values for the corresponding QD limit are not attained. The sizes of
the QRs are also shown to be fundamental in determining the electronic motion inside these
low-dimensional structures. Axial magnetic fields distort the impurity states, and strongly
modify the impurity density of states. Also, excitation-spectrum and oscillator-strength
calculations of excitons in GaAs QRs pierced by magnetic fields have shown [13] that, for
currently realizable QRs, excitons behave to a large extent as those in quantum dots of similar
dimensions. In addition, excitons in InGaAs QRs have been studied within the effective-
mass approximation [14], and a strong red-shift of transition peaks in the optical susceptibility
was found.

Although most QR models assume an axially symmetric shape, the study of more realistic
situations has addressed some attention. In particular, Magarill et al [15] have studied PCs in
elliptical QRs. These authors have shown that the PC is a periodic function of the magnetic
field intensity in elliptical rings, but the current amplitude is reduced as the eccentricity of
the ellipse increases. In this paper, we present a theoretical study of electronic states in QRs
limited by cylindrical surfaces, and analyse the effects of in-plane electric fields. Such QRs
may be concentric or eccentric, where the eccentricity is the distance between the axes of the
cylindrical faces. In this sense, a micrograph view of the mask used for the fabrication of etched
GaAs–(Ga, Al)As QRs, reported by Philipp et al [16], suggests that real QRs may present some
degree of eccentricity3. Such a lack of symmetry would produce a measurable built-in dipole
moment [17]. Therefore, we believe that a detailed investigation of the electronic spectrum of
eccentric QRs should help the understanding of optical spectroscopic measurements in QRs.

3 Actually, the eccentricity is not apparent in their samples, as the authors stressed in a private communication.
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Figure 1. Schematic view of the eccentric quantum ring in the electric field F applied in the x-axis
direction. ρ1(ρ2) is the internal (external) radius, Lz is the height and � is the eccentricity.

2. Theoretical framework and results

To study the energies and wavefunctions of electrons in GaAs QRs we use a parabolic-band
scheme within the effective-mass approximation. The confinement potential is chosen to be
zero inside and infinite outside the QR. Hence, the wavefunction is zero in the latter region. The
QR is a GaAs crystal limited by two cylinders of radii ρ1 and ρ2 (ρ2 > ρ1) with axes parallel
to the z axis, and two parallel planes z = ±Lz/2 (therefore, the xy plane bisects the QR). An
schematic view of the quantum ring is shown in figure 1. The distanceLz between those planes
defines the QR height, whereas the distance� between the axes is called the eccentricity (with
� < Lρ = ρ2 − ρ1). When � = 0 the ring is said to be concentric, otherwise it is eccentric.
The internal and external cylindrical faces satisfy (x −�)2 + y2 = ρ2

1 and x2 + y2 = ρ2
2 ,

respectively. We also consider an electric field F = (F, 0, 0) applied in the x-axis direction.
The Hamiltonian of a charge carrier with position vector r inside the GaAs QR is written as(

− h̄2

2m∗ ∇2 + eF · r

)
�(r) = E �(r) (1)

with −e denoting the electron charge and m∗ being the effective mass in GaAs (for conduction
electrons we take m∗

c = 0.067m0, where m0 is the electron mass). As the z component of
F is zero, the carrier dynamics may be separated in vertical (z axis) and in-plane (xy plane)
motions, namely

�ν(r) = Zν(z)ψ (x, y)

where

Zν(z) =
√

2

Lz

sin

[
νπ

(
z

Lz

+
1

2

)]

for ν = 1, 2, . . . , and |z| � Lz/2. The function ψ (x, y) satisfies[
− h̄2

2m∗ ∇2
(x,y) + eFx

]
ψ (x, y) = E ψ (x, y) (2)
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and Eν = ν2π2h̄2/
(
2m∗L2

z

)
+ E. In what follows, different cases for the in-plane motion are

discussed.

2.1. Concentric ring with F = 0

In this case, the system has axial symmetry and we conveniently use polar coordinates (ρ, φ)
to solve equation (2), with ρ � 0 and −π < φ � π . However, we do not choose the states as
eigenfunctions of the angular momentum projection in the z axis. Instead, states with defined
parity in φ (or y, equivalently) are chosen. With this, the solutions may be written as

ψ
(0)
m,l,α(ρ, φ) = 1√

π(1 + δl)
Rm,l(ρ) cos (lφ − απ/2) (3)

with α = 0 (even states) or α = 1 (odd states), and l � α being an integer. Also, δl = 1
(δl = 0) if l = 0 ( l �= 0). The radial part is

Rm,l(ρ) = Am,lJl(βm,lρ) + Bm,lYl(βm,lρ) (4)

where Jl and Yl are the ordinary l-order Bessel functions and βm,l is the mth solution of

Jl(βρ1)Yl(βρ2) = Jl(βρ2)Yl(βρ1) (5)

for β > 0, with m � 1. To guarantee orthonormalization, the coefficients Am,l and Bm,l are
chosen as

Bm,l = −Am,l

Jl(βm,lρ1)

Yl(βm,lρ1)
(6)

with

Am,l = (βm,lπ)

√
2

Y 2
l (βm,lρ2)

− 2

Y 2
l (βm,lρ1)

. (7)

Also, the energies are given by E(0)
m,l = h̄2β2

m,l/ (2m
∗).

The wavefunction in equation (3) has rotation symmetry of order l for l � 1, and revolution
symmetry for l = 0 (see figure 2(a1)), but has no symmetry in the radial direction. However, if
the radial widthLρ = ρ2−ρ1 satisfiesLρ 	 ρ1 then the low-energy states exhibit approximate
symmetry about the geometrical mean radius ρg = (ρ1 +ρ2)/2. In particular, the ground-state
probability distribution ρ |R1,0(ρ)|2 reaches its maximum at points with radius ρ = ρ∗

1,0, and
ρ∗

1,0 → ρg monotonically as ρ2 → ρ1. This behaviour is apparent in figure 3(a), where the
rate ρ∗

1,0/ρg is shown (broken curve) as a function of ρ2/ρ1.
The average value 〈ρ/ρg〉m,0 = 〈Rm,0(ρ)|ρ/ρg|Rm,0(ρ)〉 of ρ/ρg for the Rm,0 mode

with m = 1, which is also displayed (full curve) in figure 3(a), shows a similar behaviour.
It is important to stress that both ρ∗

1,0 and 〈ρ〉1,0 equal ρg within a relative error of 2% for
ρ2/ρ1 < 10. The latter relation is satisfied by most fabricated or grown QRs. Also, 〈ρ〉m,0 
 ρg
for m = 2, . . . , 12 within a relative error of 0.2% for ρ2/ρ1 < 10, as shown in figure 3(b).
This suggests that useful information on the electron states in such QRs may be obtained by
considering separate radial and angular motions, even in the presence of an in-plane electric
field. Namely, in such an approximation the radial motion is described by Rm,0(ρ) with
m = 1, 2, . . . , whereas the angular motion is that of an electron in a purely one-dimensional
QR with radius ρg subjected to the in-plane electric field. The results of this approximation
are presented below.
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Figure 2. In-plane probability distribution for the ground state of an electron in GaAs QRs with
ρ1 = 50 Å and ρ2 = 200 Å. Columns 1, 2 and 3 correspond to F = 0, −5 and −10 kV cm−1,
whereas rows (a)–(c) are for � = 0, 10 and 20 Å, respectively.

2.2. Concentric ring with F �= 0

In this case the electron energies and states for F and −F coincide due to the QR symmetry,
except for the mirror reflection x → −x in the wavefunctions. As the Hamiltonian is invariant
under transformation y → −y, its eigenfunctions may be chosen as

ψα(ρ, φ) =
∞∑
l=α

∞∑
m=1

c
(α)
m,l ψ

(0)
m,l,α(ρ, φ) (8)

for even (α = 0) or odd (α = 1) states. Substituting the latter expression in equation (2), one
gets the eigensystem
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Figure 3. The averaged radius 〈ρ〉m,0 (full curves) with (a) m = 1 and (b) m = 2, . . . , 12 in
units of the geometrical mean radius ρg as a function of the rate ρ2/ρ1, for a GaAs QR. The rate
between the maximal radius ρ∗

1,0 for the ground-state probability distribution and ρg is also shown
as a broken curve in (a).

∞∑
l′=α

∞∑
m′=1

(
E
(0)
m,l δl′−l δm′−m + eF M

(α)
m,l,m′,l′

)
c
(α)
m′,l′ = Eα c

(α)
m,l (9)

where M(α)
m′,l′,m,l = M

(α)
m,l,m′,l′ and

M
(α)
m,l,m′,l′ = δl′−l−1

√
1 + δl(

β2
m,l − β2

m′,l+1

)2

[
ρ

dRm,l(ρ)

dρ

dRm′,l+1(ρ)

dρ

]ρ=ρ2

ρ=ρ1

(10)

for l′ � l. The energies Eα,n and coefficients c(α,n)m,l for n � 1 are obtained from equation (10)
by diagonalization techniques, and therefore the in-plane wavefunctions are denoted by
ψα,n(ρ, φ), following equation (8).

The polarization of the ground state due to applied electric fields is apparent in figures 2(a2)
and (a3) for F = −5 and −10 kV cm−1, respectively. Note that F < 0 means lower electric
potential to the left, and consequently electrons are pushed to the right. The dependence of the
energy spectrum Eα,n for the in-plane motion with the electric field intensity F is displayed
in figure 4, for ρ1 = 50 Å and ρ2 = 200 Å. In the calculations a set of (13 − α) × 12
terms in equation (8) was considered, corresponding to l = α, . . . , 12 and m = 1, . . . , 12.
The complicated structure of the spectra is better understood if the separation of variables is
considered. As mentioned above, the radial motion is described byRm,0(ρ)withm = 1, 2, . . . ,
whereas the angular motion is that of an electron in a purely one-dimensional (1D) QR with
radius ρg subjected to the in-plane electric field. Hence, the in-plane energy spectrum is
obtained by shifts in E(0)

m,0 of the spectrum for the 1D ring4. The results of this approximation
are shown in figure 4, where broken, dotted and chain curves correspond to m = 1, 2, and
3, respectively. One may clearly note that low-energy levels and anticrossings between them
are well explained with the separation of variables. An important result is that the variation of
lower levels is mainly due to the ring shape and not to the finite width Lρ .

The polarization or induced dipole moment for electron states corresponding to the five
lower levels is shown in figure 5 for (a) even and (b) odd levels. By symmetry, the polarization
occurs in the x-axis direction, and its value is calculated as

4 The details of this spectrum, which involves the Mathieu equation, will be presented elsewhere.
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Figure 4. Electron energy levels Eα,n (full curves) for (a) even and (b) odd states as functions of
the electric field intensity F for a GaAs QR with ρ1 = 50 Å and ρ2 = 200 Å. Broken, dotted and
chain curves correspond to the m = 1, 2 and 3 energy-level aproximations, respectively, based on
the separation of variables.
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Figure 5. Polarization pα,n of (a) even and (b) odd states as a function of the electric field intensity
F for a GaAs QR with ρ1 = 50 Å and ρ2 = 200 Å.

pα,n = −e
∫ π

−π

∫ ρ2

ρ1

|ψα,n(ρ, φ)|2ρ2 cos (φ) dρ dφ (11a)

= −2e
∞∑
l=α

∞∑
m=1

∞∑
m′=1

c
(α,n)
m,l M

(α)
m,l,m′,l+1c

(α,n)
m′,l+1. (11b)

In figure 5 it is clear that n = 1 states show increasing polarization with the field intensity,
as would be expected for a charged cloud without nodes under applied electric fields. States
with n > 1 show a complex behaviour both in energy and polarization. Indeed, energy and
polarization satisfy the relation

pα,n = −∂Eα,n

∂F
(12)

which allows a better understanding of figure 5 from figure 4. As may be noted, odd states
show smaller polarization than even ones. This is due to the existence of wavefunction nodes at
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Figure 6. Interband ground-to-ground level transition energy (full curve) and oscillator strength
(broken curve) as functions of F for a QR with ρ1 = 50 Å, Lz = Lρ = 150 Å.

the x axis for odd states. This reduces the probability values at the left and right regions in the
ring, i.e. reduces the effective size of the QR in the field direction. The negative polarization of
states with n > 1 (see figure 4), which is called anomalous, is explained by the orthogonality
correlation (coupling) between wavefunctions of different levels [11].

A strong dependence of the electron ground level E0,1 on F is apparent in figure 4,
suggesting a possible experimental control of the ground-state energy in QRs. This may be
performed by measuring the interband absorption spectrum [16]. As a first approximation
for the peak positions, one may determine the free electron–hole recombination energy by
using a simple parabolic band for the holes in GaAs. In doing this, we substitute e → −e
and m∗ → m∗

h in equation (2), where m∗
h = 0.34m0 is the heavy-hole effective mass

for GaAs. We determine the photon energy of the first peak from the energies E
(c)
0,1 and

E
(h)
0,1 of the conduction and hole ground levels, respectively. The recombination energy

Eg +E(c)
0,1 +E(h)

0,1 +π2h̄2
(
m∗
c + m∗

h

)
/
(
2m∗

cm
∗
hL

2
z

)
is plotted in figure 6 as a function of F , where

Eg = 1.52 eV is the GaAs energy gap. The oscillator strength, which may be calculated as

Tα,nh,nc =
∫ π

−π

∫ ρ2

ρ1

ψα,nh(ρ, φ)ψα,nc (ρ, φ)ρ dρ dφ (13a)

=
∞∑
l=α

∞∑
m=1

c
(α,nh)
m,l c

(α,nc)
m,l (13b)

is also shown in figure 6 for α = 0 and nh = nc = 1, corresponding to the ground-to-ground
transition. Note that the oscillator strength strongly decreases as F increases, due to the
opposite and increasing polarizations of electron and holes. In calculations we consider a QR
withρ1 = 50 Å andLz = Lρ = 150 Å. Of course, a better theoretical description would include
excitonic effects and mixing of light and heavy hole states. In this sense, it should be stressed
that the values of oscillator strength are underestimated in the above prediction. Actually, the
Coulomb attraction between electron and hole should enhance the oscillator strength when
the exciton is considered. However, the present approach for interband transitions illustrates
important effects of in-plane fields for optical investigations concerning QR structures.
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2.3. Eccentric ring with F = 0

For eccentric rings (� �= 0), one has to solve equation (2) within the ring R between the
circumferences (x −�)2 + y2 = ρ2

1 and x2 + y2 = ρ2
2 , where solutions ψ (x, y) must vanish

at the boundary of R. Alternatively, we make a transformation of coordinates, such that
circular boundaries become concentric. This is performed by introducing the complex variable
ω = x + iy, and a conformal transformation ω′ = x ′ + iy ′ = f (ω) which maps R onto the
ring R′, limited by |ω′| = ρ ′

1 and |ω′| = ρ2. Such a transformation is called bilinear and is
written as [18]

ω′ = ω − x0

1 − x0ω/ρ
2
2

(14)

where

x0 =
1 + L1L2 −

√
(1 − L2

1)(1 − L2
2)

2�/ρ2
2

(15)

withL1 andL2 given by (�−ρ1)/ρ2 and (�+ρ1)/ρ2, respectively. Note that R′ is a concentric
ring with internal radius given by

ρ ′
1 =

1 − L1L2 −
√
(1 − L2

1)(1 − L2
2)

2ρ1/ρ
2
2

. (16)

At the same time, equation (2) for F = 0 is transformed to

− h̄2

2m∗J (x ′, y ′)
∇2
(x ′,y ′)ψ̃

(
x ′, y ′) = E ψ̃

(
x ′, y ′) (17)

where ψ̃
(
x ′, y ′) = ψ (x, y) must vanish at the boundary of R′, and J

(
x ′, y ′) = g

(
x ′, y ′)−2

with

g
(
x ′, y ′) =

(
1 + x0x

′/ρ2
2

)2
+

(
x0y

′/ρ2
2

)2

(1 − x2
0/ρ

2
2 )

(18)

is the Jacobian of the coordinate transformation
(
x ′, y ′) → (x, y). The Hamiltonian in

equation (17) is rather complicated, but it is invariant under transformation y ′ → −y ′. Hence,
using polar coordinates (ρ ′, φ′) the eigenfunctions may be chosen as

ψ̃α(ρ
′, φ′) = g

(
x ′, y ′) ∞∑

l=α

∞∑
m=1

c
(α)
m,lψ̃

(0)
m,l,α(ρ

′, φ′) (19)

for even (α = 0) or odd (α = 1) states, where the functions ψ̃(0)
m,l,α(ρ

′, φ′) satisfy equation (17)

if J
(
x ′, y ′) andE are substituted by 1 andE(0)

m,l , respectively. The resulting equation describes
the in-plane motion of an electron in the concentric ring R′, and we obtain its solutions
following section 3.1. After solving the eigensystem

∞∑
l′=α

∞∑
m′=1

N
(α)
m,l,m′,l′ c

(α)
m′,l′ = Eαc

(α)
m,l (20)

with

N
(α)
m,l,m′,l′ = E

(0)
m,l + E

(0)
m′,l′

2

∫ π

−π

∫ ρ2

ρ ′
1

ψ̃
(0)
m,l,α(ρ

′, φ′) ψ̃(0)
m′,l′,α(ρ

′, φ′)
J (x ′, y ′)

ρ ′ dρ ′ dφ′ (21)

+
6h̄2x2

0

m∗ρ4
2(1 − x2

0/ρ
2
2 )

∫ π

−π

∫ ρ2

ρ ′
1

g
(
x ′, y ′) ψ̃

(0)
m,l,α(ρ

′, φ′)

×ψ̃(0)
m′,l′,α(ρ

′, φ′) ρ ′ dρ ′ dφ′ (22)
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Figure 7. The electron energy levels Eα,n for (a) even and (b) odd states as functions of the
eccentricity � for a QR with ρ1 = 50 Å and ρ2 = 200 Å.

the energies Eα,n and coefficients c(α,n)m,l , for n = 1, 2, . . . , are obtained. The wavefunctions

ψα,n (x, y) = ψ̃α,n(ρ
′, φ′) form an orthonormal set if the eigenvectors c(α,n) are normalized.

The electron energy levels Eα,n are displayed in figure 7 as functions of the eccentricity
�, for a QR with ρ1 = 50 Å and ρ2 = 200 Å. In the calculations we considered (17−α)×12
terms in equation (8), corresponding to l = α, . . . , 16 and m = 1, . . . , 12. One may notice
that the dependence of lower levels (odd and even states) on the eccentricity value is relatively
weak, even for � ∼ 2

3Lρ . In particular, for small � (less than 10 Å) the levels do not change
more than 1.3 meV with eccentricity. One may conclude that eccentricities in this range,
which covers most undesired defects in high-quality growth or fabrication, would produce
very small shifts in the peak positions of optical spectra involving such levels. In contrast, the
wavefunctions are far more sensitive to eccentricity and a strong polarization of electron states
occurs even for small values of � (see figures 2(b1) and (c1)). Hence, oscillator strengths in
optical spectra should appreciably depend on eccentricity, as occurs in the presence of in-plane
electric fields (see figure 6).

2.4. Eccentric ring with F �= 0

The interplay between electric field and eccentricity effects on the electronic energy spectra in
QRs is also investigated. In this case the electron states forF and −F differ due to eccentricity.
To consider the applied electric field, the term

eFρ2
2

x0

[
1 −

(
1 + x0x

′/ρ2
2

)
g (x ′, y ′)

]
(23)

is included in the Hamiltonian of equation (17), and the resulting equation is solved in analogy
with section 2.3. The in-plane probability distributions for the ground state in a GaAs QR
with ρ1 = 50 Å and ρ2 = 200 Å are displayed in figure 2. Columns 1, 2 and 3 correspond
to F = 0, −5 and −10 kV cm−1, whereas rows (a)–(c) are for � = 0, 10 and 20 Å,
respectively. Negative values of F are taken in order to produce a polarization opposed to
that due to eccentricity. As already discussed, the revolution symmetry in figure 2(a1) for
F = 0 kV cm−1 and � = 0 Å is clearly broken by electric field and eccentricity effects. One
may expect the polarizations induced by those effects to compensate, somehow, for appropriate
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Figure 8. The lower two in-plane energy levels for even states as functions of the electric field
intensity F for GaAs QRs with ρ1 = 50 Å, ρ2 = 200 Å, and different values of the eccentricity
�. Dotted, full and broken curves are for � = 0, 10 and 20 Å, respectively.

values of � and F . Such a compensation is apparent in figure 2(c2) for F = −5 kV cm−1 and
� = 20 Å. Weaker compensations are shown in figures 2(b2), (b3) and (c3).

In figure 8, the two lower energy levels corresponding to even states (in φ) are plotted
as functions of the electric field intensity F , for GaAs QRs with ρ1 = 50 Å, ρ2 = 200 Å and
different values of the eccentricity � = 0, 10 and 20 Å. As may be noted, the slope on energy
levels at F = 0 is zero for concentric QRs, whereas it is not for eccentric ones. Following
equation (12), it means that one-electron eccentric rings have a built-in dipole moment. As
hole states polarize in the opposite direction, states of electron and holes in an eccentric
QR are expected to be polarized too. Furthermore, the compensation between electric field
and eccentricity induced polarizations should occur at stationary values of F , for which the
energy slope vanishes. This is the case for the lower broken curve (� = 20 Å) in figure 8 at
F 
 −5 kV cm−1, in agreement with figure 2(c2).

3. Conclusions

We have presented a detailed analysis of the electronic properties of semiconductor QRs, giving
emphasis to electric field and eccentricity effects on the spectra of GaAs QRs. For simplicity,
we have chosen the infinite potential model. In this case, the energy spectrum remains discrete
when applied electric fields are considered. For finite barriers, quasi-stationary states of
a continuous spectrum should be considered. When eccentricity is taken into account, a
conformal mapping allows a relatively simple solution of the Schrödinger equation for infinite
barriers. Instead, further mathematical discussions are needed for finite barriers, since the
bilinear transformation (see equation (14)) is not analytic outside the ring. For a parabolic
confinement model with strong in-plane electric field, the low-energy levels should manifest
a quadratic decrease with field intensity. This behaviour contrasts with the linear dependence
of the ground level at high fields for infinite barrier QRs. Instead, for low fields both models
are expected to give similar qualitative behaviours. We believe, however, that our results
are meaningful for experimental QRs if low-energy levels and moderate electric fields are
considered.

The electronic energy spectrum is shown to strongly depend on the intensity of the
applied electric field exhibiting similar qualitative features as the energy spectrum of electrons
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in a quantum well previously reported [19]. This makes the interband optical absorption
measurement an appropriate technique to monitor the energy levels in QRs under in-plane
electric fields. In this sense, the induced polarization affects the interband oscillator strength,
and for the ground-to-ground transition its value strongly decreases with the field intensity.
Unexpectedly, this is in contrast with the results of Llorens et al [11] for a QR, even if one
takes into account the difference between the QR parameters in calculations.

On the other hand, the eccentricity is included in the theoretical framework as a tentative
parameter to model the natural defects on the experimental realization of QRs. While lower
energy levels are weakly dependent on the eccentricity value, the corresponding wavefunctions
are quite sensitive to the lack of symmetry. Hence eccentricity should produce a built-in dipole
moment and affect the oscillator strength in optical absorption. Also, the competition between
applied electric fields and eccentricity has been analysed, and their polarization effects were
found to compensate for appropriate values of them. This reinforces the usefulness of applied
fields in tailoring the properties of different materials and structures.

Finally, taking into account the increasing number of experimental techniques developed
to generate self-assembled quantum ring and dot arrays, we believe that a better understanding
of the physical properties of QRs should help the development of optoelectronic devices based
on such nanostructures.

Acknowledgments

We would like to thank M Pacheco and Z Barticevic for useful suggestions and the Brazilian
agencies CNPq, CAPES and FAPESP for partial financial support. ABA is grateful to
colleagues E M Rosa and V Locci for useful discussions.

References

[1] Mendez E E, Bastard G, Chang L L, Esaki L, Morkoc H and Fischer R 1982 Phys. Rev. B 26 7101
[2] Casado E and Trallero-Giner C 1996 Phys. Status Solidi b 196 335
[3] Susa N 1996 IEEE J. Quantum Electron. 32 1760
[4] Peyghambarian N, Koch S W and Mysyrowicz A 1993 Introduction to Semiconductor Optics (Englewood Cliffs,

NJ: Prentice-Hall)
Haug H and Koch S W 1994 Quantum Theory of the Optical and Electronic Properties of Semiconductors

(Singapore: World Scientific)
[5] Warburton R J, Schaflein C, Haft D, Bickel F, Lorke A, Karrai K, Garcia J M, Schoenfeld W and Petroff P M

2000 Nature 405 926
[6] Lorke A, Luyken R J, Govorov A O, Kotthaus JP, Garcia J M and Petroff P M 2000 Phys. Rev. Lett. 84 2223

Lorke A and Luyken R J 1998 Physica B 256 424
[7] Mailly D, Chapelier C and Benoit A 1993 Phys. Rev. Lett. 70 2020
[8] Lin M F and Chui D S 1998 Phys. Rev. B 57 6731
[9] Petterson H, Warburton, R J, Lorke A, Karrai K, Kotthaus J P, Garcia J M and Petroff P M 2000 Physica E 6

511
[10] Barticevic Z, Pacheco M and Latgé A 2000 Phys. Rev. B 62 6963
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[12] Bruno-Alfonso A and Latgé A 2000 Phys. Rev. B 61 13 885
[13] Song J and Ulloa S E 2001 Phys. Rev. B 63 125 302
[14] Hu H, Li D J, Zhu J L and Xiong J J 2000 J. Phys.: Condens. Matter 12 9145
[15] Magarill L I, Romanov D A and Chaplik A V 1996 JETP 83 1063
[16] Philipp G E, Mejia Galeana J A, Cassou C, Wang P D, Guash C, Vögele B, Holland M C and Sotomayor
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