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de Sitter attractors in generalized gravity
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We obtain conditions for the existence and stability of de Sitter attractors in the phase space of homogeneous
and isotropic cosmology in generalized theories of gratitgluding nonlinear and scalar-tensor theoyies
These conditions are valid for any form of the coupling functions of the theory. Stability with respect to
inhomogeneous perturbations is analyzed using a covariant and gauge-invariant formalism. The relevance for
inflationary scenarios of the early universe and for quintessence models of the present era is discussed.
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. INTRODUCTION . . dv
b+3H+ 55 =0. (1.4

In general relativity de Sitter space plays a special role

because quantum field theory predicts the existence Ofpe flat section of the potential does not guarantee that the
vacuum energy, which is equivalent to a cosmological congg|ytion of the field equations is of the forh.2) and(1.3).
stantA, and the solution of the Einstein field equations withThe fact that the scalas(t) rolls slowly corresponds to ne-

vacuum energy as the only material source is de Sitter spac P Lok e W .
A period of de Sitter-type inflationary expansion of the earlySIeCtIng Its first derivative(its “speed") ¢ in the Klein

universe has come to be regarded as the canonical solution §°rdon equationi1.4), which reduces tap=—dV/d¢. Al-
the horizon, flatness and monopole problems that plaguéatively, the slow-roll approximation corresponds to
standard big bang cosmology. As a bonus, inflation provideseglecting the kinetic energy density)?/2 in the expres-
a mechanism for generating density perturbations throughions of the scalar field energy density and pressure
qguantum fluctuations of the inflation field, seeding the struc- )
tures observed in the universe toddy-3]. ?

In most inflationary models based on general relativity the =5 — V(o) (1.9
expansion of the universe described by the scale faft)r
of the Friedmann-Lemaitre-Robertson-Walkéhereafter

“FLRW” ) metric P=—+V(g). (1.6

ds?’=—dt?+a?(t)(dx?+dy?*+d7z?), (1.1
As a result, the scalar field is equivalent to a fluid with equa-
is approximately exponential. This accelerated expansion ition of stateP=—p. For comparison, in de Sitter space the
achieved if the dynamics of the universe are dominated by @osmological constanh can be regarded as a matter fluid
scalar field¢ self-interacting through a potentigl(¢) that  with energy density and pressure
has a plateau such th&t(¢)=Vy=constant for a certain
range of values ofh. While ¢ evolves through this interval A A

the potential mimics a cosmological constant. The corre- PA=g G’ Pr= 857G’ (1.7
sponding solution of the Einstein equations has the form

and equation of statB,=—p, .

_ ()t . . :
a(t)=ape" (1.2) Even if the potentiaV/(¢) has a flat section, the scalér
where could still roll fast (with non-negligible $) over it—the _
slow-roll approximation is an assumption about the solution
H(t)=Hg+Ht+--- (1.3 (a(t), ¢(t)) of the dynamical equations, not on the form of

V(¢). What makes this approximation viable is the fact that,
anday,Hy, andH; are constant, withHt|<Hg. In other in general relativity with a minimally coupled scalar field
words spacetime is close to the de Sitter solution and théand also when the field is nonminimally couplgg-7]), de
scalar field rolls slowly over the plateau of the potential Sitter space is an attractor for the orbits of the solutions in
(“slow-roll approximation”[4,2]). The dynamics of a scalar phase spacgt]. The main purpose of the present paper is to
field minimally coupled to the spacetime curvature are deestablish whether de Sitter space is an attractor also in more
scribed by the Klein-Gordon equation general gravity theories.

There has been increasing interest in cosmology in alter-
native theories of gravity, with several different motivations
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by adding terms proportional to higher order curvature in- In the literature, slow-roll inflation in the context of gen-
variantg[9]. These corrections to the classical Lagrangian areralized gravity is often considered. It is interesting to deter-
small at small curvatures but become dominant wiken mine whether de Sitter spaces are actually solutions of the
grows, e.g., approaching a singularity. theory and whether they are attractors for the orbits of the
From another point of view, theories of gravity generaliz- solution_s. This is;ue is crucial for understanding inflati_on in
ing Einstein’s relativity have been studied for decades at th@eneralized gravity because the slow-roll approximation is
classical leve[8]. The prototypical alternative theory, Brans- Meéaningless unless there is a de Sitter attractor in phase

Dicke theory, was originally motivated by the need to explic-SPace. _ o
itly incorporate Mach’s principle in relativistic cosmology, _Another independent motivation comes from the recent

and has later been generalized to the class of scalar-tensgScOVery[13] that the present expansion of the universe is
theories in which a Brans-Dicke-like scalar describes th Ceelerated, which has led cosmologists to postulate the ex-

gravitational field together with the metric tensor, and cou-IStence O.f anew for!“ of energy callemintessencer dark
ling functions appear in scalar-tensor gravity instead of Cougnergywnh the exotic equation of stat®= —p/3. Indeed,
ping PP . 9 Y . there are claims of evidence for a very negative presBure
pling constants. In versions of these theories motivated b

: , i . —p, a fact that, if confirmed, has interesting implications
high energy physics the Brans-Dicke-type scafans al- o the fyture of the universe—it could lead to a Big Rip

lowed to self-interact through a potenti{ ). The gravita-  gingylarity in a finite futurg14] (see Sec. VI for a discus-
t!onal sector of scalar-tensor theories is described by the aGjon). An obvious candidate for dark energy is the cosmo-
tion logical constant associated with de Sitter space. However,
H) (%) the cosmological constant carries with it two embarrassing
_ 4 ® ab problems:(1) the well-known cosmological constant prob-
SST_f d X\/__Q[TR_ 5 9 VadWd—V(d)|. lem [15] of why the value ofp, predicted by quantum field
theory is 120 orders of magnitude larger than the energy
(1.9 density of the universe; an@) the cosmic coincidence prob-
lem of why the dark energy is beginning to dominate the
Scalar-tensor gravity has been studied in relation to inflationgosmic dynamics right now when there are galaxies and hu-
resulting in various extendefd0] and hyperextendefil] ~ Man observers to notice it. These problems are only solved
inflationary scenarios. Added interest comes from the facPy an enormous amount of fine-tuning. For these reasons,
that a gravitational scalar field is an essential ingredient ofheoretical models of quintessence explore different avenues.
modern high energy theories unifying gravity with the otherAMoNg t.he many mode_ls proposed, mod|f|cat|ons of.Elnsf[eln
fundamental interactionéin particular string theorigs[g], ~ 9ravity including nonlinear corrections to the Einstein-
from certain similarities between scalar-tensor and stringﬂ!lbert action have been proposed, in both the Einstein-
theories[8], and from the fact that the low-energy limit of ilbert[16—23 and the Palatini form of the variational prin-

. : : . . ciple [24-26. Such models do not usually admit a
trgﬁ]gt%s;g)n:lc_sin[nl%]theory is a Brans-Dicke theory with PaMinkowski solution that would be useful to study the weak-

: . ._field limit of the theory—a de Sitter space is used instead for
In this paper nonlinear gravity and scalar-tensor theoriegis nurpose. Moreover, quintessence models that do not end
are considered simultaneously as special cases of the geng{-5 Big Rip often evolve to a de Sitter phase in the future.

alized gravity theory described by the action Thus, both classes of models—either invoking a scalar field
as dark energyin general relativity or in scalar-tensor grav-
S:j d4x\/—_g ity), or advocating nonlir!ear corrections_ to gravit_y, exhibit
aspects related to the existence of de Sitter solutions.
In a different context, it is interesting to examine the sta-
(1.9  bility of general relativity with respect to small deviations
from Einstein’s theory due to quantum corrections. This is
We neglect matter contributions to the action because wehe approach adopted, e.g., in Rgf7].
want to study situations in which the scatardominates the The purpose of the present paper is to establish conditions
dynamics of the universe, such as during inflation in theunder which de Sitter solutions exist in the generalized
early universe or in a late era in which a quintessence scalaheory described by the actiqd.9), and to study their sta-
field has come to dominate. The action contains the Ricchility with respect to inhomogeneous perturbations. Our
scalarR but no other curvature invariant. In addition to the main motivation is to establish a firm foundation for the
simplification that accompanies it, this choice is motivatedslow-roll approximation to de Sitter-type inflation in these
by the fact that in the homogeneous and isotropic cosmolotheories.
gies that we consider all the quadratic invariants of the Rie- The issues of existence and stability of de Sitter solutions
mann tensor can be expressed in termB.ofhe action(1.9)  have been addressed in the literature only for special cases of
includes as special cases Brans-Dicke theory, scalar-tenstite general theoryl.9) and usually only for spatially homo-
theories, induced gravity, quadratic Lagrangians, the theorgeneous perturbations. This limitation is probably due to the
of a scalar field coupled nonminimally to the Ricci scalar,fact that inhomogeneous perturbations are in general gauge-
general relativity with or without a minimally coupled scalar dependent and they must be analyzed in the context of a
field and a cosmological constant, and the theory of phantoroovariant and gauge-invariant formalism. The latter is sub-
fields. stantially more complicated than the analysis of time-

1 1 ab
(SR~ 50()gVpVod— V() |.
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dependent homogeneous perturbations. In the present paparcomoving coordinatest(r, 6,¢), the field equations as-
the covariant and gauge-invariant formalism of Bardeensume the form
Ellis-Bruni-Hwang-Vishniac is employed to study stability.
This formalism has been used before to analyze the stability l/w., RF f . K
of de Sitter solutions in the theory of a scalar field coupled 3F §¢ + o §+V_3HF a2 (2.9
nonminimally to the curvaturgg,7], and the stability of Ein-
stein space in general relativit28]. Following the same line
of reasoning, it is also interesting to consider the stability of H=— ——(wd?+F—HF)+ —, (2.6)
Minkowski space solutions of the theory. 2F a

An independent motivation for the study of de Sitter

space arises from the idea that the universe could have origi- . . do., df dv

nated in a de Sitter state, thus avoiding the initial big bang $+3H+ 20 @‘i’ N %"'2@ =0, 27
singularity and evolving into an inflationary phase. Varia-

tions of this idea include the possibility of a Minkow§l9—  \yhereH=a/a is the Hubble parameter, an overdot denotes

32] or an Einstein spade3,2§ as a possible initial state. We differentiation with respect to the comoving tint@and the
include Minkowski space in our analysis as a special case %icci curvature isR=6(H+2H2+K/a?). Only two equa-

de Sitter space. . . tions in the set2.5—(2.7) are independent.

T_he plan .Of this paper Is as follows. ".1 Sec. |l we sum- There is now substantial evidence that the universe has
marize the field equations of the generalized theory and WH 4t spatial section§36] and therefore from now on we re-
derive the conditions for the existence of de Sitter solutions,Strict ourselves to the spatially flat cake=0. In this case
Section Il addresses the issue of stability with respect tq . ..o chooskl and ¢ as dynamical variables—this is not
inhomogeneous perturbations using a covariant and gauge- ssible ifK#0, in which case one must consider as dy-
invariant approach. Section IV discusses the existence a mical variablé the scale facter appearing in the field

stability of Minkowskian solutions of generalized gravity, equations through the termsK/a? instead ofH. However

while Sec. V contains a discussion and the conclusions. W = . .
use units in which the speed of liget=1 and &rG=1, WhenK =0 these terms disappear aacgppears only in the

where G is Newton's constant, the metric signature-is combinationH =a/a and in its time derivativeén nonlinear

+,+,+, and ngabvavb denotes d’Alembert’s operator. gravity the field equations are of fourth order ardand H

For ease of comparison with previous works, the other conappear in the field equationsrhe phase space picture of the
ventions follow Refs[34,35. dynamical system depends on the specific form of the func-
tionsf(¢,R), w(¢), andV(¢). However, for any choice of
f,w, andV, the fixed points of the systefif they exis) are

Il. GENERALIZED GRAVITY, FIXED POINTS, .
given by

AND DE SITTER SOLUTIONS

Variation of the actior(1.9) leads to the field equations of (H,H,A,H,¢,¢)=(H0,0,0,0¢,0), (2.9

generalized gravity35] ) )
whereH, and ¢ are constants, i.e., they are de Sitter spaces

1 with constant scalar fielfi37]. The conditions for the exis-
Va¢>Vb¢>—§gabV°¢Vc¢) tence of de Sitter fixed point solutions are obtained by sub-

stituting Eq.(2.8) in Egs. (2.5 and (2.7), which yields the
two conditions

1
Gab:E

w

1
- Egab(RF—f+2V)+VaVbF—gabDF}, (2.9

6H3Fo—fo+2Vy=0 (2.9
O¢+ ! dwchav b+ ot zdv) 0, (2.2 and
== b+ — —2—| =0, _
20 \de dp d¢ fo' —2Vo' =0, (2.10
where where
of of
F=—. (2.3 Fo=-5 : (2.11
J R0
For a FLRW metric of curvature indei, given by the line fo=Tf(¢g,Rop), (2.12
element
Vo=V(¢o), (213
ds?=—dt®+a?(t) d—r2+r2(d02+sin2 6de?) dv
1—Kr? VO/E% : (2.149
(2.9 bo
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fo' i (2.15 1 /u
0= ; : Ho=*+=/—. 2.2
54) (¢O,R0) 0 2 \/§ ( 4)

2 . .
and Ry =12HG. There are two independent conditiof59)  Note that this theory does not admit a Minkowski space so-
and (2.10 for the existence of de Sitter solutions becauseytion corresponding té41=0.

only two equations in the sé€2.5—(2.7) are independent.
Let us consider a few examples of specific gravity theo-

ries. Equation2.9) generalizes the condition lIl. PERTURBATIONS

If de Sitter fixed points exist for the dynamical system
(2.5-(2.7) with K=0, the problem arises whether these
fixed points are attractors in phase space or are unstable—a
stability analysis is required to answer this question. The
approaches to this problem available in the literafild@—

$=1, f=f(R), V=A=const (2.17 40,27,6,7,41,2Bare limited to special cases of generalized
gravity theories and, usually, to homogeneous perturbations.
(there is only one condition in this case because the scalarhe consideration of more general inhomogeneous perturba-
field is not a dynamical variableNote that not all general- tions is complicated by the gauge-dependence of this kind of
ized gravity theories admit de Sitter solutions. For examplecosmological perturbations. A gauge-independent analysis
nonlinear theories witli(R)=AR", A=constantn>2 and requires the use of a covariant and gauge-invariant formal-
¢=0, V=0 do not satisfy Eq(2.9 [27]. ism, which has been used before to study the stability of

In general relativity with a cosmological constaft>-0 de Sitter solutions against inhomogeneous perturbations in
and without scalar Eq2.9) produces the familiar de Sitter the special case of the theory described by R0 [6,7].
solutions Another problem addressed in the literature with a gauge-
independent approach is the stability of the Einstein universe

A in general relativity with a nonminimally coupled scalar field
(H0,¢o):( = \/;,O). (2.1 [289]. ’ Yo

6H2Fo—fo+2A=0 (2.16

found in Ref.[27] for the nonlinear gravity theories given by
the choice

We proceed by using the covariant and gauge-invariant
If a minimally coupled scalar is present, de Sitter space igormalism of Bardeen42,3] further developed by Ellis,
achieved if Bruni, Hwang, and Vishniag43,44]. A version for general-

ized theories of gravity is given in Refl85,34]. The metric
Vo0, Ho= + Vo and V' =0 (2.19 perturbations are defined by
0 ’ 0o~ — y o— V. .
3

Joo=—aZ(1+2AY), (3.1
In the theory of a nonminimally coupled scalar field corre-
sponding to goi=—a’BY;, (3.2
f(6,R)=R(1—&¢?), w=1, (2.20
(¢ (1-¢¢ gij=a’[h;;(1+2H)+2HY; ], (3.3

whereé is a dimensionless coupling constant, E@s9) and . _ .
(2.10 reduce to the conditions for the existence of de Sittewhere the scalar harmonicéare the eigenfunctions of the
fixed points previously found in Ref§5—7], eigenvalue problem

ML £7)= 2, @21 T VY=-kY. 34

Hereh;; is the three-dimensional metric of the FLRW back-
ground and the operatdi is the covariant derivative asso-

R v the hiah ivative th f : : iated with h;;, while k is an eigenvalue. The vector and
ecently the higher derivative theory of gravity described bytcensor harmonic¥,; andY,, are defined by

12¢6H3 o+ V=0. (2.22

2

f(q&,R):R—%, =1, ©=0, V=0, (2.23 1
Yi = - vaY, (35)
where u~ Y2 is a length scale, has attracted attention as a
model theory for the acceleration of the universe that does 1 1
not require dark energyl6—26. In this theory the correction Yi==V ViY+ 5 Yh;. (3.6
to the Einstein-Hilbert Lagrangian is small at large curva- k? 3

tures, but becomes important as the universe expands and
R—0. The conditiong2.9) and(2.10 for the existence of de We use Bardeen'$42] gauge-invariant potential®, and
Sitter solutions reduce to ®, and the Ellis-Bruni43] variableAd defined by
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Hr a a. . . . . 1
4 a al 1 1 A#+2HAF+(P )AF
. . . . = —_— | — — —p —
=A+—|B—o —|B—+ 2| F F 2F
®p=At | B Hr|+ | B— 1 (aHy) }
°9 F NG o L[ pde Vi A 3.1
FOAGT 5| 0 gt 5y 2gg|0e]. 316
a.
Ap=5d+ 14| B HT)' B9 hereAF=d(AF)/dt, etc.,
. . 2
Equations analogous to Eq(3.9 define the gauge- Al : _k_ g
independent variableAF,Af, and AR. To first order the AR=6| Gyt aHDy+ 3 an)H HP A

perturbations evolve according to the equatif®s)

2
% do k2 d>2 1 do - 2H+4H2—%)®A, (3.17
Ap+ 3H+ ¢>A¢ 2 s wdqb)
and the effective energy density and pressure of the scalar

d {1 of 1dv S are given by

_@(ZQ_ZE) Ap=(Pp—3Dy) w¢2
NE dv 1 p:F{ > 2(RF f+2V)— 3HF+V°FC} (3.18

- IR r - UL 2

P== %+ (f—RF 2V)+F+2HF——V°F}

. . [ K? F 2 .. Fl 2

AF+3HAF+(¥—§ AF+ §AR+ §w¢A¢ (3.19

Here FCEhSVdF is the spatial projection of the gradient

1/.,do _df  dV - : of F. In the de Sitter backgroun¢?.8) the gauge-invariant
- 2 A Rl _ _ . .
T3l ¢ d¢+23¢ 4d¢>A¢ F(®aA=304) variables reduce, to first order, to
2 Ap=6p, AR=6R, AF=6F, Af=5/6f, 3.2
+5(FR=2f+4V)d, (3.11) $=0¢ (3.29
and the equations they obey reduce, to first order, to
TN PP L P (3.12 aparoast| S o L avn | age 1R aR
T Pt 2o : ¢H3HADF| 5= 5, (To=2Vo) |[Ad=5 T AR,
(3.21
Pyt | Ht | @ (AF HAF+w¢A¢) k2 F
" 2F) A2 AF+3HoAF +| = —4H3 | AF+ - AR=0,
(3.13 a 3
(3.22
K\ 2o L w.2+3'F2q) 2
a) Pvr | E 2 ) e Fir+ 3Hokr+ —Hy=0,
a
_1[3FAF [ . Kk* 3HF|AF .. 323
2|2 "2 2 FFTENY AE ar
— &+ Hod (— H —) (3.24
L[ 00 of v [ F)] AT R TR
ﬁQS@—@ﬂL @JF wp| H+ =18, L AF
(3.14 P TIE (.29
AF AF
¢)A+(DH:_?1 (315) q)A+(I)H:_F_0! (32©
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B+ 3HD—Hoba— 3H2D, and using conformal time; defined bydt=ad» and the
standard relation
1 AF AF 3H3 AF

=—=——Hy—+——— . 1
2 Fo HO FO 2 Fo’ (3 27) glo t=— aoH07]

(3.33

with valid in de Sitter space, E@3.23 is reduced to the formal

) Schralinger equation

. . 2 .
ARZG (I)H+4HO(I)H+§¥(DH_H0(I)A dzu , 2
—2+ k - U(??):O. (334)
K2 dn 7
+| == —4H3 | D, (3.28 _ _ _
3a? Let us consider the expandindgd{>0) de Sitter spaces

(2.8). We are interested in the late time evolution of pertur-
and where bations, corresponding tb— +% and »—0". In this re-
gime, the general solution of the asymptotic equation

o 9°f o 9°f ,
R™ bR + RRT o2 g du 2 B
($0.Rg) (d.Ro) d_772_ ?U(ﬂ)—o (3.39
o?f i
=" : 329 °
d
(40.Ro) Cy )
u(y)= 7+Czn (3.36
The comparison of Eq$3.25 and(3.26 yields
AF for »#0, whereC, , are integration constants. Then
Pu=Pa= -5 (3.30 Hr=—Ho(Cy+Cpn?), (3.37
which, substituted in Eq(3.28), leads to and the gauge-invariant tensor perturbation does not grow

when »—0~. Hence, expanding de Sitter spaces are always
stable with respect to tensor perturbations.
. (3.3) Let us consider also the contractingl{<0) de Sitter
spaces(2.8). In this caset— + corresponds top— +©
and the asymptotic solutions of E¢3.34) are free waves
*1k7 hence the amplitude of the tensor perturbations

) . k2
b+ 3HeD+| =

AR=6 —
a

—4H3><I>H

Equations(3.21) and (3.23 do not change form, while the
remaining equations reduce to identities. The decoupling o
scalar, vector, and tensor modes is not apparent in the for- etikn
malism used, with the exception of tensor modes described Hr=
by the perturbationH;. This quantity obeys Eq(3.23,

which is decoupled from the other modes. We do not congjyerges wheri— +. As a conclusion, contracting de Sit-

sider vector modes described by the quanBsince, as  ter spaces are always unstable with respect to tensor pertur-
proven in Ref[35], vorticity modes cannot be generated in pations.

generalized gravity when matter contributions are absent
(i.e., when the scalar field or nonlinear correctionsRo
dominate. The vector modeB effectively disappears from
the gauge-invariant variablesA¢ and ®,=®,= At a first glance it might seem that we are left with only
—AF/(2F,) defined by mixing scalar modes afd More ~ one equation3.21) to determine the perturbations¢ and
naively, other authors refer to these facts by saying that th@y=®s=—AF/(2F,), but this is not the case since one
vector perturbations can be gauged away. For this reason #&n Taylor-expand the coupling functidii¢,R) obtaining
the following we consider explicitly only scalar and tensor

gHol t (3.39

Qp

B. Stability with respect to scalar perturbations

; AF f f
perturbations. — _¢R _RR
Fo Fo Ap+ Fo AR. (3.39
A. Stability with respect to tensor perturbations Equations(3.30 and (3.39 then yield
The evolution of tensor perturbations is regulated by Eq.
(3.23, where a(t)=aqe0t. By introducing the auxiliary _ —2F, B for
variable AR= frr Py Rmﬁ’ (3.40
u=aHr (332 while Eq.(3.2) becomes
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Ad+3HA S fr— 2V — o A
¢+3HoA ¢+ 2 2w, T ¢
Fof
+ 0 R 0, (349
wo frr
The comparison of Eq$3.40 and(3.29 yields
b+ 3HP k2 —4H Fo [} f A 0.
Ht3HoPy+| — o+3f H+6f b=
(3.42

PHYSICAL REVIEW Dr0, 044037 (2004

In the rest of this section we consider the case in which

frr# 0. This restriction leaves out linear theories of gravity,

including general relativity, which are discussed in the nexwhere the matri is

section.

We have now the systerf8.41) and (3.42 for A¢ and
®,,, which can be simplified by switching to the variables
andw defined by

w
, AqﬁEE

Q<

and by using conformal time instead oft. In terms of these
new variables it is

(64
—+| K+ — v+ —=w=0, (3.49
dr? 7 e
d2W+ K2+ + ° 0 (3.49
— —|w+—v=0, .
d7? 7 7
where
__Fo ¢ (3.46
3frrHZ '
lg:i (3.47)
6frrH2’ '
1 o Tor
= S (2vO £+ o -2, (3.48
Fo f
=2 = (3.49
woH3 TrR

The systen3.44) and(3.45 can be linearized around the
conformal timezg at which the perturbations originate and
then rewritten as the first order system

U’EX, (35@

w'=y, (3.5)
a

X'=— k2+—2 v —W, (3.52
o o

é
y'=—|k>+ lz)w— —5U (3.53
7o 7o
This can be written in compact form as
v [
w' 0 w
o | | (3.59
y' y
0 0 10
0 0 0 1
M=| —| K2+ — —ﬁz 0 0
7o 7o
S
-2 |k 12) 00
Ul o
(3.55

A stability analysis for this systertsee Appendix A yields
the result that de Sitter space is stable if any one of the
following conditions is satisfied:
(i) if by=0 andc,;=0, it must bek=k; for stability,
(i) if b;>0 andc,<0, it must bek=maxk,,ks},
(iii) if by=0 andc;=0, it must bek=ky,
(iv) if by=0 andc,<0, it must bek=maxk;,k,},
(v) if —2<b;<0 andc;>b?/4, it must bek=kj,
(vi) if —2<b;<0 and 0<c;<b3/4, it must bek,;<k
<ks (this inequality can be satisfied only Ks
>k,) or k=maxk,keg},

(vii) if —2<b;<0 and c;<0, it must be k
=maxKky,ks},

(viii) if b;<—2 and c¢;<0, it must be k
=maxky ks, ks},

(ix) if b;<—2 and 0O<ci< b1/4 it must be
maxXk,,k,}<k=<k; (when k;>k;,k;) or k
=maxKky,ks,Kg},

(x) if b;<—2 and c;>b?4, it must be k

=maxKkq,Ko}.
The parameterb,,c; and the critical wave vectolg are
defined in terms of the values of the coupling functions and
parameters by

2
f¢>R

fRR

1
> Z—wO(ZV f0+
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andHy=+/A/3 as in general relativity. Since=(2eA) !

f2
C1= 1 21 (ZV” fo+ f¢R -8+ Fo 5 —2 andB=7y=6=0, Eqgs.(3.44 and(3.45 reduce, in the
43| 200 RR 3freH limit e—0, to
all LT (2v" o+ 19%) g
- T 5 A - " 2 —
72| 3fraH2 200\ "% 0 fre "+ | K2+ 2o v=0, (3.67
F0f<2bR " 2
— (3.57) w”+k“w=0, (3.68
6w0f§RHé773
which constitute decoupled equations for the variablesd
1 1 f¢R Fof(sz w with positive (angulay frequency squared and hence de-
ki=y— Pon —2Vy— r 0 scribe oscillatory perturbations associated with stability of de
275 2@0 RR 3Hofgrr Sitter space. The small correctieR? to the Einstein-Hilbert
12 Lagrangian does not destabilize de Sitter space. Naively, this
+8— Fo , (3.59  correction “reinforces” the effects oR. If, however,e were
3freH2 allowed to be negative, the effect eR? would be the op-
posite and it would tend to destabilize de Sitter space. This is
11 2R Fo 12 evident in Eq.(3.67 when e<0 and the term containing
k,= [ o ( —2Vg— : ) 8—— ] , dominates fore— 0, making the effective frequency squared
2’70 “o RR 3Hofre of v negative and introducing exponential solutions associ-
(359 ated with instability.
S by + Vbi-4c, (3.60 IV. SCALAR-TENSOR THEORIES
=\ — .
2 We now restrict the stability analysis to scalar-tensor
o a theories, for which the couplinf(¢,R) is linear inR and
ka=lca|™, (3.6 frr=0 — this case was not contemplated in Sec. lll. Having
already established that contracting de Sitter spaces are al-
|b,| = \/b§—4cl ways unstable with respect to tensor perturbations, we only
56— 5, (3.62 need to consider an expanding de Sitter backgro{(g
with Hg>0. It is straightforward to derive the first order
evolution equations for the perturbations. Equati¢®80),
\/|b1|+ Vbi+4lc,| (3.39, and(3.40 yield
k,= . (3.63
2
. Py=—5="A7¢ (4.9)
The effective Jeans wavelengths=2m/k; are deter- 2 Fo
mined by the values off(¢,R),V, and o at the point ]
(¢0,Ro) and by the value of the initial conformal time,. ~ While Egs.(3.31) and(4.1) lead to
The conditions for stability, when expressed in termg ,&f 3 4m 2
and wg, 779 are not partlcular_ly illuminating—they bgcome AR= — Ad+3HA b+ ~ —4H )Aqbl
more meaningful when specific forms of these functions are a?
adopted. Although the classification of the stability regions 4.2
seems involved, once the generalized gravity theory is speci-
fied, the values of the parametdos andc, are completely In conjunction with Eq(3.2]) this yields
fixed and only one of the cases contemplated in the list above , 5
applies. Therefore this list contains complete conditions to (—O—V”+ %Hz)
check at a glance whether de Sitter space is stable against 2 2 0" Fy O
inhomogeneous perturbations in general theories of gravity. A¢+3HoA b+ 372 A¢p=0
As an example consider the theory described by wo| 1+ 5 "’; )
woFo
f=R+eR? ¢=1, w=1, V=A>0, (3.649 4.3
where € is a small positive constar(general relativity is if 1+3f2R/(2w0F0)¢0 In the case in which 1

recovered in the limit—0). One has +3f¢R/(2wOF0) 0, mstead Eq (3.2) ylelds either the
5 trivial solutionA¢=0 or fg— =8wgH3 [46].
Fo=1+24eH;, Vo=A, We look for solutions of the asymptotlc form of E@.3)

(3.69  at late times satisfying the ansatz

(3.66 Agp=

fo=12H3(1+12eH3),

Vo=fo=To=T4r="144,=0, frr=2¢ e, (4.4
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where e ands are constants, witls satisfying the algebraic where

equation
) 1-3x
s2+3Hys+c=0, (4.5 x=&py, T)=—7—- (4.13
with Equation(4.12 coincides with the stability condition found
£ 612 in Refs.[6,7] when ¢¢#0 [45]. If the effective coupling
(—0—V6+ d’RH(Z)) (4.10 is instead negative, the stability condition is given by
- 2 Fo .6 (4.12 with the direction reversed.
B 3R ' In the case¢,=0 one hasfy=Ry=12H32 Fo=1,f
wo| 1+ 2w0F o =f¢3:o,fg= —2¢R,, and the condition for the stability of
de Sitter space becomes
The roots 2
V§+126H3=0. (4.14
—3Ho= \9H—4c
S.= ° 0 (4.7  Using Eq.(2.9), this assumes the form

- 2
o+ = .

of Eq. (4.6) are such thaRe(s_)<0, while the sign of Vot 46Vo=0, 4.19

Re(s,) depends on the sign af If c=0 thenRe&(s.)<0 e stability condition found in Ref§6,7] for ¢,=0. Equa-

and there is stability. If insteack<0 thenRe(s,)>0 and the  tjon (4.8) generalizes to arbitrary scalar-tensor theories the

de Sitter spac€.8) is unstable. The condition for the stabil- stapjlity conditions already known for nonminimally coupled

ity of de Sitter space in a scalar-tensor theory described byca|ar field theory, which are recovered as a special case.
the action(1.8) is then

" 6f2 B. General relativity
0 " $R 12
(E_VO—’_ Fy Ho) In Einstein gravity with a minimally coupled scalar,
<0. (4.8
wal 1+ 3f<2f)R ) w=Fo=1, f0:12H2, f(,):fngd)R:fRR:Ov
0 2woF, (4.16

and the de Sitter space obtainedHf=\Vo/3, V(=0 is

stable ifV}=0, in particular if the potential has a minimum
As a particular case of scalar-tensor gravity we consideat ¢,. Hence in this case the concavity of the scalar field

the theory of a nonminimally coupled scalar field given by potential is the stabilizing factor, while its convexity would

A. Nonminimally coupled scalar field

the choice(2.20 of the coupling functions, yielding instead cause instability.
) , , If the scalar is absent the de Sitter space obtained thanks
Fo=1-£&¢5,  fo=—2¢Rodo=2Vo, to a positive cosmological constant is automatically guaran-

teed to be stable with respect to inhomogeneous perturba-
Vo A tions. It is well known that this space is also stable with
For= _2591’0:@' fO:(TO’ (4.9 respect to large anisotropic perturbations, with the exception
0 of highly positively curved Bianchi IX models, as described
where Eq(2.10 has been used. If the effective gravitational by the cosmic no-hair theorenid7].
coupling of the theory
C. Phantom field

= L (4.10 The superstring-inspired theory of a phantom field with
1-87GEp? negative kinetic energy correspondsf{ap,R)=R and w=

_ N _ ) ) —1. The conditions for the existence of de Sitter solutions
is positive[which happens for any negative value®br, if  gre

£>0, for |¢|<(8wGE&) Y7, then the denominator on the
left-hand side of Eq(4.8) is also positive and the stability » Vo ,
condition of de Sitter space reduces to Ho_g’ Vo=0, (4.1

Geff

" 2 2
v fo_ 8ferHo while the condition for stability reduces ¥j=<0. Thus, de

b= =- =0. (4.11 . . . P ;

2 Fo Sitter fixed points Kg, ¢) are attractors iV, has a maxi-
mum ate¢o. Due to the negative sign of its kinetic energy the
phantom field¢ “falls up” and settles in the maximum of
, the potential. de Sitter attractors have been found in super-
_O, (4.12 accelerating models of dark energy, thus avoiding evolution
®o of the universe in a Big Rip singularity in the fut49-51.

Upon use of Eq(4.9), this condition is written as
Vi=1f(x)
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V. MINKOWSKI SPACE AND ITS STABILITY perturbations, which decouple from the other modes. To as-

Generalized aravity often admits Minkowski space solu-S€SS stability with respect to scalar perturbations, one consid-
9 y P ers the analogue of Eq3.41) and(3.42, which are

tions. In general, flat space solutions in generalized gravity

are physically nontrivial and correspond to a balance be- d2 = f
tween gravity and the scalar field formally acting as a ke 2 Rw=o0, (5.9
material source. In nonlinear gravity theories where this bal- dt? 3frr 6frr
ance cannot be achieved, a Minkowski solution may not ex-
ist. This is the case, for example, of the theory described by d2w 1 ff,,R Fo fyr
Eq. (2.23. — K2+ ——| 2V§— 3+ — — —v=
dt 2w frr wo frr

It has been suggested that the present universe could have (5.10
originated from Minkowski spac€30,31] or from a static '
Einstein spacé33,28. To pursue this idea it is necessary to jn the casefrg# 0, where the variables andw introduced
ascertain the stability of Minkowski or Einstein space. Thejn Eq. (3.43 now coincide withd®,,=®, andA ¢, respec-
stability of Einstein spaces is a long-standing isE3@-40  {jvely.
and it has recently been revisited in general relativity by The system(5.9) and (5.10 can be reformulated as the
considering inhomogeneous and anisotropic perturbationgyst order system
[28]. Here we consider the stability of Minkowski space in

generalized gravity with respect to inhomogeneous perturba- v'=X, (5.1)
tions.
The conditions for the existence of Minkowski solutions w'=y, (5.12
(with Hy=0) of the field equations of generalized gravity
are F f
fo—2V,=0, (5.2) RR RR
o ,_ Fofyr
fo—2V(=0. (5.2 y'=— v+Dw, (5.19
wofrr

A positive value off, which describes a realistic situation,
can be balanced in E¢6.1) by a negative cosmological con-
stantA, which is familiar to high energy physicists working

where

2
with anti-de Sitter space. . . D=—| K2+ i( 2VI—f+ Tor . (5.15
In order to study the stability of Minkowski space one 2wy frr
needs the linearized equations for the gauge-invariant vari-
ables In compact form,
Nt Kom (11— 2V (A =R AR, (53 ' :
(rb 2_(1)0( 0 O) ¢_2_(U0 ’ ( . ) W’ | w
.| =N , (5.16
X X
- Fo ,
AF+k“AF+ ?AR=0, (5.9 y y
) where
Hr+k?H=0, (5.5
0 0 10
o= LAF 5.6 0 0 01
HT ™5 F_o' (5.6)
AF NZ _(k2+ Fof¢’R) _ f¢’R 00 . (517}
¢)A+(DH:_F_O. (57) 3fRR 6fRR
Equation (5.6) yields again ®y=—AF/(2Fy)=®,, _ Fofgr D 0 0
while Eq. (3.28 reduces to wofrr
AR=6(Dy+k2Dy). (5.8 A stability analysis for this linear system, presented in Ap-

pendix B, leads to the result that Minkowski space is stable if
Again, we consider scalar and tensor modes and drop théc,< bg and one of the following conditions is satisfied:
vector modes which cannot be generated in the absence of (i) b,=0, ¢,<0, andk=maxKkg,k1q},
matter{35]. Inspection of Eq(5.5) allows one to conclude at (i) b,<0, c,<0, andk=maxkg,kq3},
once that Minkowski space is always stable against tensor (iii) b,>0 andc,=0,
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(iv) b,>0, c,<0, andk=kq, when the argument of the square root is positiwefor any
where wavelength if the latter is negative or zgro

Fofyr

3o’ (5.18 VI. DISCUSSION AND CONCLUSIONS
RR

1 v en ., ToR
bz— 2_600< 2V0 f0+ E) +
Motivated by inflation, quintessence, and quantum gravity
corrections to the low-energy gravitational action, we have
derived conditions for the existence and linear stability of de
Sitter solutions in a very general theory, including scalar-
b, tensor gravity, induced gravity, nonlinear gravityRidorrec-
kg= N (5.20  tions to the Einstein-Hilbert action, nonminimally coupled

scalar field theory, general relativity with or without a mini-

Fof
C,= ol 4R

mally coupled scalar and a cosmological constant, and phan-
—by+ \/bg— 4c, tom fields. Our analysis does not depend on the specific form
ko= 5, (52D ofthe coupling functions and the conditions for the existence
and stability of de Sitter solutions are, in this respect, very
Kyg=| |4 (5.22 general. Minkowski space is studied as a special case of de
12l ' Sitter space. The phase space picture of the theory depends
in an essential way on the form of the coupling functions and
\/|b2|+ Vb3 +4]cy| the scalar field potentiaf(¢) but, in a spatially flat FLRW
K13= 2 : (5.23 universe, the dynamical variables are alw&ysand ¢. Al-
though the field equations are of fourth order in nonlinear
Consider as examples general relativity and the theoryheories of gravity, and hence the dimensionality of the phase
described by space depends crucially on the form if¢,R), the fixed
points of the dynamical system are always de Sitter spaces
f=R+eR?, ¢=1, w=1, V=0. (5.24  with constant scalar field. It is for this reason that the condi-
tions for the existence of de Sitter space and for its stability
General relativity is recovered by letting—0. One has, for can be expressed by inequalities valid for any choice of the

both theories, coupling functions and the values of the free parameters.
o Equations(2.9) and (2.10 are necessary and sufficient
fo=0, Fo=1, Vo=Vo=fo=fo=fr="144=frr=0. conditions for the existence of de Sitter fixed points. Note

(5.29  that the existence of these de Sitter solutions is not automati-
Equations(3.39 and (3.30 yield AF=0 andd, = ®,=0. cally guaranteed in generalized gravity. Equati¢29) and

. . = (2.10 reduce to conditions previously obtained in special
Equation(3.3]) then yieldsAR=0 and Eq.(5.3) becomes cases of generalized gravitponminimally coupled scalar

field theory[6,7] or theories withf = AR" [27]).
When de Sitter fixed points exist, their stability against
linear inhomogeneous perturbations and their attractor be-

and tensor inhomogeneous perturbations of Minkowsk avior are assessed by using a covariant and gauge-invariant

space, which are effectively decoupled. It is obvious from ormalism originally developed to study perturbations of

these equations that Minkowski space is stable since the frég—lo‘ri\rlgc‘?ﬁ]agcgj Sltitlti:rezta:at::l:asshz?etg?vtvaexgz?;?wgnggxz:y,
guency squared is positive in each of these equations. P Y P Y,

Let us consider now the class of scalar-tensor gravit nstable with respect to tensor perturbations. Scalar pertur-

. X _ _ ations may threaten the stability of expanding de Sitter
::r:)enc;rilc(jaesr’ \gg;z r21)a \;ﬁ( dqz,A,Rs)’) Jv(rﬁ:)ﬁ t?e ncdofrﬁz 0. One must spaces, which are the ones of interest for inflationary and

quintessence scenarios of the real universe. For nonlinear

Ap+k?Ap=0. (5.26)

Equations(5.26 and (5.5 describe the evolution of scalar

3f! theories of gravity(with fgg#0), Sec. IlIB provides the
AR=— —O(Aéiﬂr k?A &), (5.27  desired stability conditions, while Sec. V describes the sta-

fo bility of Minkowski space. For linear gravity theories with
frr=0, including scalar-tensor gravity and general relativ-
. fo(2Vo—fo ity, the stability conditions for de Sitter space are given by
2 _ 1
Ad+ ko 2fo+3f) $=0. (5.28 Eq. (4.8), while the stability of Minkowski space is deter-

mined by Eq.(5.28. In the particular case of nonminimally
The stability of a scalar perturbation depends on its wavecoupled scalar field theory, these conditions reproduce those

length and is achieved if already known from a previous analy$&7].
The analysis presented here can be generalized further.
fo(fo—2V0) 12 First, it is well known that there can be attractors in phase
k=kyp=| ————| , (5.29 space that are inflationary but are not fixed points. This is the
2fy+3f, case of power-law inflatioa(t) =a, t? with p>1, which is
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an attractor solution of Brans-Dicke cosmology when the APPENDIX A: STABILITY ANALYSIS
only form of matter present is a cosmological constant. Ex- FOR DE SITTER SPACE

tended inflationary scenari40] are based on the presence . . .
of this attractor. Power-law inflation is also an attractor in The stability of the systertB.54) is assessed by studying

scalar-tensor theories generalizing Brans-Dicke graj@ly the sign of the real part of the eigenvaluesof the matrix
and in many nonlinear theori¢48]. Hence, in general, the M. The characteristic equation D&t(—AI), wherel is the
fixed points do not provide the complete phase space picturéentity matrix, reduces to

Second, we restricted our attention to inhomogeneous pertur-

bations. Although more general than the case of homoge- A+ BA%+C,=0, (A1)
neous perturbations usually studied in the literature, it would

be interesting to generalize the stability analysis to anisowhere

tropic and to nonlinear perturbations. Finally, we considered

only four spacetime dimensions but quantum gravity exten- ¥

sions of general relativity would call for a more general Bl=2k2+%+—2, (A2)
analysis in arbitrary spacetime dimension. o 7o
The stability conditions derived here can be applied to the
investigation of the Big Rip singularity in the future. It has o ¥ Bo
been pointed out that the present expansion of the universe Ci=| k?+ _2> + ( k2 + _2) - (A3)
may be superaccelerated, i.e.>>0, which is equivalent to o 7o Mo
an effective equation of state paramete=P/p<—1 for
the dark energy dominating the dynamics of the universe at The squares of the roots are given by
redshiftsz<1 [14]. Superacceleration cannot be achieved
with a canonical, minimally coupled scalar field in Einstein , —Bix \/A—1
gravity [8,14]. If the universe really superaccelerateshich )\i:T’ (A4)
is not yet established due to the error in the observational
determination of the parametes) it runs the risk of ending A1=B§—4C1. (A5)

in a Big Rip singularity in a finite futur¢14]. This kind of
singularity is different from the Big Bang or the Big Crunch )
because the universe expands explosively while the enerdyt US consider the cas&s >0, C,=0, andC;<0 sepa-
density of dark energy diverges instead of getting diluted’ately.

due to the peculiar equation of stadte<—p [8,14]. If the

equation of state of the dark energy is constant with 1. 0<C,<B%4

=consk — 1, the Big Rip is unavoidable. However, a time- P
dependent effective equation of state witl+w(t) is more Notze that one cannot hani, =0 in this case. IfB.1>O’.
realistic and in this case scenarios have been proposed fiénA %<0 and the rootd.. . of Eq.(Al) are purely imagi-
which the Big Rip is avoided. At present, there are in thenary, i.e., ReX)=0 and de Sitter space is neutrally stable.
literature superaccelerating models in which the Big Rip is If B;<0 then\%>0 and all four eigenvalues. . are
unavoidable[14] and others in which a late time de Sitter real, with two of them positive and two negative. The posi-

attractor withH =0 exists which stops superacceleration andtiveé ones give rise to instability.
avoids the Big Rip[49-51]. It is in this context that the

stability conditions derived here can play a role: these con- 2. C;>BY4 (A,<0)
ditiqn_s help assessing th(_a stability.of de Sitter spaces and B,#0, then

deciding whether a late time de Sitter attractor exists that

attracts the orbits of the solutions of the field equations in —B,*iv|A,] )
L A . 2 1 _ 6
phase space, thus avoiding the Big Rip. A generic statement MZfﬂ)e' - (A6)
about the fate of the universe requires the knowledge of the
attraction basin of an attractor, and this issue can only b
addressed in a specific theory with the form of the potentia
V(¢) fixed. However, the conditions for the existence of de N, L= \/;ei(gi,z). (A7)

Sitter attractors provide an answer about the possibility of
avoiding the Big Rip at least for initial conditions lying in a
certain attraction basin to be determined.

The stability conditions derived in this paper will be ap-
plied elsewhere to specific models of inflation and dark en-

ergy.

In this case two roota have positive real part and de Sitter
space is unstable.
If B;=0 andC;>0 one has\2 =+i,/C; and

1/4
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3. C;=0 The inequalityC,<B3/4 is equivalent to
In this case Eq(A1) gives\2=0 or \5,=—B,. If B, 5
>0 the roots\, 3 are purely imaginary, corresponding to K41 ﬂ_z K24 (a+y)® (aty) '8_520
oscillating perturbations and to stability. If inste&® <0 7 4} 7 7
there is a real positive root associated with instabilityB|f (A17)
=C,;=0 then\=0 and de Sitter space is neutrally stable. ] )
which can be written as
4. C,<0 o(k)=k*+b;k?*+¢c,=0, (A18)
In this case
where
, —Bi=\Bi+4[C] )
A= > . (A9) l f¢R Fo
C1= 2Vy—fo+ —| —8+
. . . . 4770 Zwo frr 3frrHp
The lower sign produces two imaginary roots, while the up-
per sign gives two real positive roots associated with insta- 1 Fo 1 Vo fz(/)R
bility. ~ a2 2an 2Vo—fo+ | -8
As a summary, de Sitter space is stable if 7ol >TRR™0 0 RR
f
0<Ci<® and B0 (A10) —0 (A19)
1= 4 1 6wofRRHo’?o

and unstable otherwise.

To identify the values of the wave vectérthat satisfy the

The conditions for stability can be formulated in terms of inequality (A18) one studies the sign af(k) by distinguish-
effective Jeans wavelengths and of the values of the couplinijg several cases:

functions and parameters of the theory. The inequdlity

=0 is equivalent to

2k? 92+ a+ y— B6=0, (A11)
which can be expressed as
f2n  Fof?
k>kl—{ 5o (f” Vo
273 2wo RR 3HyfrR
Fo 1/2
+8— St (A12)
3frrHp
The inequalityB,=0 is equivalent to
2Kk? 92+ a+ y=0, (A13)
or
b;+2+k?=0, (A14)
where
1)1 fir Fo
by=— 2Vo—fot+ — |+ -8|—2.
1;0 2wo frr 3fRRH0
(A15)

Equation(Al4) is satisfied for any if b;+2=0 or, if by
<—2, by wave vector& such that

1 2 Fo ||
27] 2(1)0 RR 3H0fRR
— b+ 2]. (A16)

(i) by=0 andc,=
any value ofk.

(i) b;=0 andc;<0: the curve representing(k) starts
negative atk=0 and is always increasing, crossing
the k-axis at a poink;. The functione(k) becomes
positive fork>ks, where

—b;+ Vbi—4c,
2

0: the inequality(A18) is satisfied for

(i) by=0; then, ifc;=0, ¢(k)>0 for any value ofk
=0; if ¢;<0 thenp(k)=0 for k=k,=|c,|**

(iv) by<0; the curve representing(k) starts from the
value c; at k=0, decreases for Ok</|b,|/2, reaches a
minimum atk=/|b,|/2, and then is always increasing for
k>/|b;|/2. If ¢;>0 and the minimum is non-negative, then
¢(k)=0 for any value ok and the equatiog(k)=0 has no
real roots. This happens df; > b‘1‘/4.

If instead c;>0 but the minimum ofe(k) is negative
there are two real roots of the equatigifk) =0 and ¢ is
positive for 0<k<ks and fork>kg, and negative otherwise.
This situation occurs it;<b?/4 and the critical wave vec-
tors are

|by| = Vbi—4c,
ko= \ ———5 (A21)

Finally, if c;<0, the curve representing(k) is negative for
0=<k<k5 and positive for

|b|+ Vb3 +4|c,|
k>k7: 2 .

(A22)
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By setting together the three conditions for stabil@y 2. C,>By4
=0, B=0, andC=<B?%/4 one obtains that, in order for de If B,#0, then
Sitter space to be stable with respect to scalar perturbations, '

Fhe latter must have wave vectors in one of the following ) —Bziim_ "
intervals: Ne=———"F—— =pe’= (B5)
(i) if by=0 andc,=0, it must bek=k; for stability,
(i) if by>0 andc;<0, it must bek=maxk;,ks}, and
(ii) if b;=0 andc,;=0, it must bek=k;,
(iv) if b;=0 andc;<0, it must bek=maxk; ,k,}, Ao o=x\pet=2) (B6)

(v) if —2<b,<0 andc,>b?4, it must bek=kj, _ B
(vi) if —2<b,;<0 and O<c1<bf/4, it must bek,<k In this case two roots\. - have positive real part and

e ; g - Minkowski space is unstable.
<Kks (note that this inequality can be satisfied only if > o —121/Ar g
ke Ky ky) OF k=maxky Kql. If B,=0 andC,>0 one has\. .=+2"Y2CY41+j),

(ii) if —2=b,<0 and ¢;<0, it must be k Two roots have positive real part, corresponding to instabil-

=maxkq,k;}, ity.
(viii) if by<—=2 and c¢4<0, it must be k
=maxki,ks,ks}, 3. C,=0
(ix) if by<—2 and 0<c;<b%4, it must be In this case Eq(B1) gives \?=0 or A\?=—B,. If B,
maxk, ,k,} <k=k; or k=maxk;,k,,ke}, >0 the roots are purely imaginary, corresponding to oscil-
(x) if b;<—2 and c;>b3/4, it must be k lating perturbations and to stability. If insteBg<0 there is
=maxKky,ky}. a real positive root associated with instability. B, =C,

=0 thenA=0 and Minkowski space is neutrally stable.

APPENDIX B: STABILITY ANALYSIS

FOR MINKOWSKI SPACE 4. <0
. . . In this case
The stability of the systent5.16) is determined by the
real part Pf thg eigenvaluesof N. The characteristic equa- , —By* ‘/327+4|c2|
tion Det(N—AI) is A= 2 : (B7)
M+ Bo\2+Cy=0 (81)  The lower sign produces two imaginary roots, while the up-

per sign gives two real roots, one of which is positive and is
associated with instability.

where To summarize, Minkowski space is stable if

BZ
-D, (B2) 0<C,< ZZ and B,=0 (B8)

and unstable otherwise.

C.,=—Dk2— F0f</>R( D fyr ) (B3) Let us express the conditions above in terms of the cou-

2 3frr 2wofrr/ pling functions and of the wave vectr The inequalityC,
=0 is equivalent to

The squares of the roots are given by

P(k)=k*+b,k?+c,=0, (B9)
—B,+ A where
xizzTJ_z, A,=B2—4C,. (B4)
f Fof
b2=g(2vg—fg+fﬂ t oo, (81O
Let us consider the cas€%>0, C,=0, andC,<0, sepa- ° RR RR
rately. Fof 4r
Co= W]jﬁm(zvg—fg . (B11)

1. 0<C,<B¥%4

Note that one cannot ha\@,=0 in this case. IB,>0,
then )\2i<0, the roots\ .. .- of Eq. (B1) are purely imagi-
nary, and Minkowski space is neutrally stable.

If B,<0 then\ >0 and all the four eigenvalues are real,
with two of them positive and two negative—the positive which is always satisfied ib,=0, and is satisfied only for
ones make Minkowski space unstable. perturbations with wave vectors such that

The inequalityB,=0 is equivalent to

b
K2+ 7220, (B12)
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Ib,| If 0<c,=<b3/4, theny(k)>0 for 0<k<kq; and fork
k=ks=\ 5" (B13  >k,,, where
whenb,<0. The inequalityC,=< 82/4 is equivalent to YES /[35_402
K111~ _—. B16
4e,<Db2. (B14) Haz 2 (B16)

Note that in this case the wave vector drops out and this is finally, if c,<0, ¢(k) is positive for
requirement on the theory of gravity independent of the

wavelength of the inhomogeneous perturbation. Next, one
studies the sign of(k) as in Appendix A, with the following |ba| + b2+4|02|
result: k>kqa= ' (B17)
(i) b,=0 andc,=0, theny(k)=0 for any value ok.
(i) b,=0 andc,<0, itis ¢(k)=0 for The stability of Minkowski space is assured by imposing
> that the three inequalitig®9), (B12), and(B14) hold simul-
ke —by++b3—4c, 81 taneously. It must be @=<b2, plus one of the following
—ho™ T (B19) conditions must hold:
(i) b,=0, c,<0, andk=maxkg,k1q},
(iii) b,=0, if c,=0 theny(k)>0 for any value ofk; (if) by,<0, c,<0, andk>max{k8,k13},
(iv) if c,<0 theny(k)=0 for k=ko=|c,| ¥4 (i) b,>0 and O<c,=<b2/4,
(V) bp<0, if c,>b3/4, theny(k)>0 for anyk. (iv) b,>0, c,<0, andk=k,.
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