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de Sitter attractors in generalized gravity
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~Received 15 February 2004; published 25 August 2004!

We obtain conditions for the existence and stability of de Sitter attractors in the phase space of homogeneous
and isotropic cosmology in generalized theories of gravity~including nonlinear and scalar-tensor theories!.
These conditions are valid for any form of the coupling functions of the theory. Stability with respect to
inhomogeneous perturbations is analyzed using a covariant and gauge-invariant formalism. The relevance for
inflationary scenarios of the early universe and for quintessence models of the present era is discussed.
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I. INTRODUCTION

In general relativity de Sitter space plays a special r
because quantum field theory predicts the existence
vacuum energy, which is equivalent to a cosmological c
stantL, and the solution of the Einstein field equations w
vacuum energy as the only material source is de Sitter sp
A period of de Sitter-type inflationary expansion of the ea
universe has come to be regarded as the canonical soluti
the horizon, flatness and monopole problems that pla
standard big bang cosmology. As a bonus, inflation provi
a mechanism for generating density perturbations thro
quantum fluctuations of the inflation field, seeding the str
tures observed in the universe today@1–3#.

In most inflationary models based on general relativity
expansion of the universe described by the scale factora(t)
of the Friedmann-Lemaitre-Robertson-Walker~hereafter
‘‘FLRW’’ ! metric

ds252dt21a2~ t !~dx21dy21dz2!, ~1.1!

is approximately exponential. This accelerated expansio
achieved if the dynamics of the universe are dominated b
scalar fieldf self-interacting through a potentialV(f) that
has a plateau such thatV(f).V05constant for a certain
range of values off. While f evolves through this interva
the potential mimics a cosmological constant. The cor
sponding solution of the Einstein equations has the form

a~ t !5a0eH(t)t ~1.2!

where

H~ t !5H01H1t1••• ~1.3!

and a0 ,H0, andH1 are constant, withuH1tu!H0. In other
words spacetime is close to the de Sitter solution and
scalar field rolls slowly over the plateau of the potent
~‘‘slow-roll approximation’’ @4,2#!. The dynamics of a scala
field minimally coupled to the spacetime curvature are
scribed by the Klein-Gordon equation
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f̈13Hḟ1
dV

df
50. ~1.4!

The flat section of the potential does not guarantee that
solution of the field equations is of the form~1.2! and~1.3!.
The fact that the scalarf(t) rolls slowly corresponds to ne
glecting its first derivative~its ‘‘speed’’! ḟ in the Klein-
Gordon equation~1.4!, which reduces tof̈.2dV/df. Al-
ternatively, the slow-roll approximation corresponds
neglecting the kinetic energy density (ḟ)2/2 in the expres-
sions of the scalar field energy density and pressure

r5
ḟ2

2
2V~f!, ~1.5!

P5
ḟ2

2
1V~f!. ~1.6!

As a result, the scalar field is equivalent to a fluid with equ
tion of stateP.2r. For comparison, in de Sitter space th
cosmological constantL can be regarded as a matter flu
with energy density and pressure

rL5
L

8pG
, PL52

L

8pG
, ~1.7!

and equation of statePL52rL .
Even if the potentialV(f) has a flat section, the scalarf

could still roll fast ~with non-negligible ḟ) over it—the
slow-roll approximation is an assumption about the solut
(a(t),f(t)) of the dynamical equations, not on the form
V(f). What makes this approximation viable is the fact th
in general relativity with a minimally coupled scalar fie
~and also when the field is nonminimally coupled@5–7#!, de
Sitter space is an attractor for the orbits of the solutions
phase space@4#. The main purpose of the present paper is
establish whether de Sitter space is an attractor also in m
general gravity theories.

There has been increasing interest in cosmology in al
native theories of gravity, with several different motivatio
@8#. One such motivation arises in the quest for a quant
theory of gravity: it is widely believed that quantum corre
tions modify the Einstein-Hilbert gravitational Lagrangia

ty,
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by adding terms proportional to higher order curvature
variants@9#. These corrections to the classical Lagrangian
small at small curvatures but become dominant whenR
grows, e.g., approaching a singularity.

From another point of view, theories of gravity general
ing Einstein’s relativity have been studied for decades at
classical level@8#. The prototypical alternative theory, Bran
Dicke theory, was originally motivated by the need to expl
itly incorporate Mach’s principle in relativistic cosmolog
and has later been generalized to the class of scalar-te
theories in which a Brans-Dicke-like scalar describes
gravitational field together with the metric tensor, and co
pling functions appear in scalar-tensor gravity instead of c
pling constants. In versions of these theories motivated
high energy physics the Brans-Dicke-type scalarf is al-
lowed to self-interact through a potentialV(f). The gravita-
tional sector of scalar-tensor theories is described by the
tion

SST5E d4xA2gF f ~f!

2
R2

v~f!

2
gab¹af¹bf2V~f!G .

~1.8!

Scalar-tensor gravity has been studied in relation to inflat
resulting in various extended@10# and hyperextended@11#
inflationary scenarios. Added interest comes from the f
that a gravitational scalar field is an essential ingredien
modern high energy theories unifying gravity with the oth
fundamental interactions~in particular string theories! @8#,
from certain similarities between scalar-tensor and str
theories@8#, and from the fact that the low-energy limit o
the bosonic string theory is a Brans-Dicke theory with p
rameterv521 @12#.

In this paper nonlinear gravity and scalar-tensor theo
are considered simultaneously as special cases of the g
alized gravity theory described by the action

S5E d4xA2gF1

2
f ~f,R!2

1

2
v~f!gab¹af¹bf2V~f!G .

~1.9!

We neglect matter contributions to the action because
want to study situations in which the scalarf dominates the
dynamics of the universe, such as during inflation in
early universe or in a late era in which a quintessence sc
field has come to dominate. The action contains the R
scalarR but no other curvature invariant. In addition to th
simplification that accompanies it, this choice is motivat
by the fact that in the homogeneous and isotropic cosm
gies that we consider all the quadratic invariants of the R
mann tensor can be expressed in terms ofR. The action~1.9!
includes as special cases Brans-Dicke theory, scalar-te
theories, induced gravity, quadratic Lagrangians, the the
of a scalar field coupled nonminimally to the Ricci scal
general relativity with or without a minimally coupled scal
field and a cosmological constant, and the theory of phan
fields.
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In the literature, slow-roll inflation in the context of gen
eralized gravity is often considered. It is interesting to det
mine whether de Sitter spaces are actually solutions of
theory and whether they are attractors for the orbits of
solutions. This issue is crucial for understanding inflation
generalized gravity because the slow-roll approximation
meaningless unless there is a de Sitter attractor in ph
space.

Another independent motivation comes from the rec
discovery@13# that the present expansion of the universe
accelerated, which has led cosmologists to postulate the
istence of a new form of energy calledquintessenceor dark
energywith the exotic equation of stateP,2r/3. Indeed,
there are claims of evidence for a very negative pressurP
,2r, a fact that, if confirmed, has interesting implicatio
for the future of the universe—it could lead to a Big R
singularity in a finite future@14# ~see Sec. VI for a discus
sion!. An obvious candidate for dark energy is the cosm
logical constant associated with de Sitter space. Howe
the cosmological constant carries with it two embarrass
problems:~1! the well-known cosmological constant prob
lem @15# of why the value ofrL predicted by quantum field
theory is 120 orders of magnitude larger than the ene
density of the universe; and~2! the cosmic coincidence prob
lem of why the dark energy is beginning to dominate t
cosmic dynamics right now when there are galaxies and
man observers to notice it. These problems are only sol
by an enormous amount of fine-tuning. For these reas
theoretical models of quintessence explore different aven
Among the many models proposed, modifications of Einst
gravity including nonlinear corrections to the Einstei
Hilbert action have been proposed, in both the Einste
Hilbert @16–23# and the Palatini form of the variational prin
ciple @24–26#. Such models do not usually admit
Minkowski solution that would be useful to study the wea
field limit of the theory—a de Sitter space is used instead
this purpose. Moreover, quintessence models that do not
in a Big Rip often evolve to a de Sitter phase in the futu
Thus, both classes of models—either invoking a scalar fi
as dark energy~in general relativity or in scalar-tensor grav
ity!, or advocating nonlinear corrections to gravity, exhi
aspects related to the existence of de Sitter solutions.

In a different context, it is interesting to examine the s
bility of general relativity with respect to small deviation
from Einstein’s theory due to quantum corrections. This
the approach adopted, e.g., in Ref.@27#.

The purpose of the present paper is to establish condit
under which de Sitter solutions exist in the generaliz
theory described by the action~1.9!, and to study their sta-
bility with respect to inhomogeneous perturbations. O
main motivation is to establish a firm foundation for th
slow-roll approximation to de Sitter-type inflation in thes
theories.

The issues of existence and stability of de Sitter solutio
have been addressed in the literature only for special case
the general theory~1.9! and usually only for spatially homo
geneous perturbations. This limitation is probably due to
fact that inhomogeneous perturbations are in general ga
dependent and they must be analyzed in the context o
covariant and gauge-invariant formalism. The latter is s
stantially more complicated than the analysis of tim
7-2
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dependent homogeneous perturbations. In the present p
the covariant and gauge-invariant formalism of Barde
Ellis-Bruni-Hwang-Vishniac is employed to study stabilit
This formalism has been used before to analyze the stab
of de Sitter solutions in the theory of a scalar field coup
nonminimally to the curvature@6,7#, and the stability of Ein-
stein space in general relativity@28#. Following the same line
of reasoning, it is also interesting to consider the stability
Minkowski space solutions of the theory.

An independent motivation for the study of de Sitt
space arises from the idea that the universe could have o
nated in a de Sitter state, thus avoiding the initial big ba
singularity and evolving into an inflationary phase. Var
tions of this idea include the possibility of a Minkowski@29–
32# or an Einstein space@33,28# as a possible initial state. W
include Minkowski space in our analysis as a special cas
de Sitter space.

The plan of this paper is as follows. In Sec. II we su
marize the field equations of the generalized theory and
derive the conditions for the existence of de Sitter solutio
Section III addresses the issue of stability with respec
inhomogeneous perturbations using a covariant and ga
invariant approach. Section IV discusses the existence
stability of Minkowskian solutions of generalized gravit
while Sec. V contains a discussion and the conclusions.
use units in which the speed of lightc51 and 8pG51,
where G is Newton’s constant, the metric signature is2,
1,1,1, and h[gab¹a¹b denotes d’Alembert’s operato
For ease of comparison with previous works, the other c
ventions follow Refs.@34,35#.

II. GENERALIZED GRAVITY, FIXED POINTS,
AND DE SITTER SOLUTIONS

Variation of the action~1.9! leads to the field equations o
generalized gravity@35#

Gab5
1

F FvS ¹af¹bf2
1

2
gab¹

cf¹cf D
2

1

2
gab~RF2 f 12V!1¹a¹bF2gabhF G , ~2.1!

hf1
1

2v S dv

df
¹cf¹cf1

] f

]f
22

dV

df D50, ~2.2!

where

F[
] f

]R
. ~2.3!

For a FLRW metric of curvature indexK, given by the line
element

ds252dt21a2~ t !F dr2

12Kr 2
1r 2~du21sin2 u dw2!G

~2.4!
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in comoving coordinates (t,r ,u,w), the field equations as
sume the form

H25
1

3F S v

2
ḟ21

RF

2
2

f

2
1V23HḞ D2

K

a2
, ~2.5!

Ḣ52
1

2F
~vḟ21F̈2HḞ !1

K

a2
, ~2.6!

f̈13Hḟ1
1

2v S dv

df
ḟ22

] f

]f
12

dV

df D50, ~2.7!

whereH[ȧ/a is the Hubble parameter, an overdot deno
differentiation with respect to the comoving timet and the
Ricci curvature isR56(Ḣ12H21K/a2). Only two equa-
tions in the set~2.5!–~2.7! are independent.

There is now substantial evidence that the universe
flat spatial sections@36# and therefore from now on we re
strict ourselves to the spatially flat caseK50. In this case
one can chooseH andf as dynamical variables—this is no
possible if KÞ0, in which case one must consider as d
namical variable the scale factora appearing in the field
equations through the terms6K/a2 instead ofH. However
whenK50 these terms disappear anda appears only in the
combinationH5ȧ/a and in its time derivatives~in nonlinear

gravity the field equations are of fourth order andḦ and Ĥ
appear in the field equations!. The phase space picture of th
dynamical system depends on the specific form of the fu
tions f (f,R), v(f), andV(f). However, for any choice of
f ,v, andV, the fixed points of the system~if they exist! are
given by

~H,Ḣ,Ḧ,Ĥ,f,ḟ !5~H0,0,0,0,f0,0!, ~2.8!

whereH0 andf0 are constants, i.e., they are de Sitter spa
with constant scalar field@37#. The conditions for the exis-
tence of de Sitter fixed point solutions are obtained by s
stituting Eq.~2.8! in Eqs. ~2.5! and ~2.7!, which yields the
two conditions

6H0
2F02 f 012V050 ~2.9!

and

f 0822V0850, ~2.10!

where

F0[
] f

]RU
(f0 ,R0)

, ~2.11!

f 0[ f ~f0 ,R0!, ~2.12!

V0[V~f0!, ~2.13!

V08[
dV

df U
f0

, ~2.14!
7-3
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f 08[
] f

]f U
(f0 ,R0)

, ~2.15!

and R0512H0
2. There are two independent conditions~2.9!

and ~2.10! for the existence of de Sitter solutions becau
only two equations in the set~2.5!–~2.7! are independent.

Let us consider a few examples of specific gravity the
ries. Equation~2.9! generalizes the condition

6H0
2F02 f 012L50 ~2.16!

found in Ref.@27# for the nonlinear gravity theories given b
the choice

f51, f 5 f ~R!, V5L5const ~2.17!

~there is only one condition in this case because the sc
field is not a dynamical variable!. Note that not all general
ized gravity theories admit de Sitter solutions. For examp
nonlinear theories withf (R)5ARn, A5constant,n.2 and
f50, V50 do not satisfy Eq.~2.9! @27#.

In general relativity with a cosmological constantL.0
and without scalar Eq.~2.9! produces the familiar de Sitte
solutions

~H0 ,f0!5S 6AL

3
,0D . ~2.18!

If a minimally coupled scalar is present, de Sitter space
achieved if

V0.0, H056AV0

3
, and V0850. ~2.19!

In the theory of a nonminimally coupled scalar field corr
sponding to

f ~f,R!5R~12jf2!, v51, ~2.20!

wherej is a dimensionless coupling constant, Eqs.~2.9! and
~2.10! reduce to the conditions for the existence of de Si
fixed points previously found in Refs.@5–7#,

H0
2~12jf0

2!5
V0

3
, ~2.21!

12jH0
2f01V0850. ~2.22!

Recently the higher derivative theory of gravity described

f ~f,R!5R2
m2

R
, f[1, v50, V50, ~2.23!

where m21/2 is a length scale, has attracted attention a
model theory for the acceleration of the universe that d
not require dark energy@16–26#. In this theory the correction
to the Einstein-Hilbert Lagrangian is small at large curv
tures, but becomes important as the universe expands
R→0. The conditions~2.9! and~2.10! for the existence of de
Sitter solutions reduce to
04403
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A m

A3
. ~2.24!

Note that this theory does not admit a Minkowski space
lution corresponding toH[0.

III. PERTURBATIONS

If de Sitter fixed points exist for the dynamical syste
~2.5!–~2.7! with K50, the problem arises whether the
fixed points are attractors in phase space or are unstabl
stability analysis is required to answer this question. T
approaches to this problem available in the literature@38–
40,27,6,7,41,28# are limited to special cases of generaliz
gravity theories and, usually, to homogeneous perturbatio
The consideration of more general inhomogeneous pertu
tions is complicated by the gauge-dependence of this kin
cosmological perturbations. A gauge-independent anal
requires the use of a covariant and gauge-invariant form
ism, which has been used before to study the stability
de Sitter solutions against inhomogeneous perturbation
the special case of the theory described by Eq.~2.20! @6,7#.
Another problem addressed in the literature with a gau
independent approach is the stability of the Einstein unive
in general relativity with a nonminimally coupled scalar fie
@28#.

We proceed by using the covariant and gauge-invar
formalism of Bardeen@42,3# further developed by Ellis,
Bruni, Hwang, and Vishniac@43,44#. A version for general-
ized theories of gravity is given in Refs.@35,34#. The metric
perturbations are defined by

g0052a2~112AY!, ~3.1!

g0i52a2BYi , ~3.2!

gi j 5a2@hi j ~112HL!12HTYi j #, ~3.3!

where the scalar harmonicsY are the eigenfunctions of th
eigenvalue problem

¹̄i ¹̄iY52k2Y. ~3.4!

Herehi j is the three-dimensional metric of the FLRW bac
ground and the operator¹ī is the covariant derivative asso
ciated with hi j , while k is an eigenvalue. The vector an
tensor harmonicsYi andYi j are defined by

Yi52
1

k
¹īY, ~3.5!

Yi j 5
1

k2
¹ī ¹j̄Y1

1

3
Yhi j . ~3.6!

We use Bardeen’s@42# gauge-invariant potentialsFH and
FA and the Ellis-Bruni@43# variableDF defined by
7-4
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FH5HL1
HT

3
1

ȧ

k S B2
a

k
ḢTD , ~3.7!

FA5A1
ȧ

k S B2
a

k
ḢTD1

a

k F Ḃ2
1

k
~aḢT!˙G ,

~3.8!

Df5df1
a

k
ḟS B2

a

k
ḢTD . ~3.9!

Equations analogous to Eq.~3.9! define the gauge
independent variablesDF,D f , and DR. To first order the
perturbations evolve according to the equations@35#

Df̈1S 3H1
ḟ

v

dv

df
DDḟ1F k2

a2
1

ḟ2

2

d

df S 1

v

dv

df D
2

d

df S 1

2v

] f

]f
2

1

v

dV

df D GDf5ḟ~ḞA23ḞH!

1
FA

v S ] f

]f
22

dV

df D1
1

2v

]2f

]f]R
DR, ~3.10!

DF̈13HDḞ1S k2

a2
2

R

3 D DF1
F

3
DR1

2

3
vḟDḟ

1
1

3 S ḟ2
dv

df
12

] f

]f
24

dV

df DDf5Ḟ~ḞA23ḞH!

1
2

3
~FR22 f 14V!FA , ~3.11!

ḦT1S 3H1
Ḟ

F
D ḢT1

k2

a2
HT50, ~3.12!

2ḞH1S H1
Ḟ

2F
DFA5

1

2
S DḞ

F
2H

DF

F
1

v

F
ḟDf D ,

~3.13!

S k

aD 2

FH1
1

2 S v

F
ḟ21

3

2

Ḟ2

F2D FA

5
1

2 H 3

2

ḞDḞ

F2
1S 3Ḣ2

k2

a2
2

3H

2

Ḟ

F D DF

F
1

v

F
ḟDḟ

1
1

2F
F ḟ2

dv

df
2

] f

]f
12

dV

df
16vḟS H1

Ḟ

2F
D GDfJ ,

~3.14!

FA1FH52
DF

F
, ~3.15!
04403
F̈H1HḞH1S H1
Ḟ

2F
D ~2ḞH2ḞA!1

1

2F
~ f 22V2RF!FA

52
1

2
FDF̈

F
12H

DḞ

F
1~P2r!

DF

2F

1
v

F
ḟDḟ1

1

2F S ḟ2
dv

df
1

] f

]f
22

dV

df DDfG , ~3.16!

whereDḞ[d(DF)/dt, etc.,

DR56F F̈H14HḞH1
2

3

k2

a2
FH2HḞA

2S 2Ḣ14H22
k2

3a2D FAG , ~3.17!

and the effective energy density and pressure of the sc
are given by

r5
1

F
Fvḟ2

2
1

1

2
~RF2 f 12V!23HḞ1¹cFcG , ~3.18!

P5
1

F
Fvḟ2

2
1

1

2
~ f 2RF22V!1F̈12HḞ2

2

3
¹cFcG .

~3.19!

Here Fc[hc
d¹dF is the spatial projection of the gradien

of F. In the de Sitter background~2.8! the gauge-invariant
variables reduce, to first order, to

Df5df, DR5dR, DF5dF, D f 5d f , ~3.20!

and the equations they obey reduce, to first order, to

Df̈13H0Dḟ1F k2

a2
2

1

2v0
~ f 0922V09!GDf5

f fR

2v0
DR,

~3.21!

DF̈13H0DḞ1S k2

a2
24H0

2D DF1
F0

3
DR50,

~3.22!

ḦT13H0ḢT1
k2

a2
HT50,

~3.23!

2ḞH1H0FA5
1

2
S DḞ

F0
2H0

DF

F0
D , ~3.24!

FH52
1

2

DF

F0
, ~3.25!

FA1FH52
DF

F0
, ~3.26!
7-5
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F̈H13H0ḞH2H0ḞA23H0
2FA

52
1

2

DF̈

F0
2H0

DḞ

F0
1

3H0
2

2

DF

F0
, ~3.27!

with

DR56F F̈H14H0ḞH1
2

3

k2

a2
FH2H0ḞA

1S k2

3a2
24H0

2D FAG , ~3.28!

and where

f fR[
]2f

]f]RU
(f0 ,R0)

, f RR[
]2f

]R2U
(f0 ,R0)

,

f 09[
]2f

]f2U
(f0 ,R0)

. ~3.29!

The comparison of Eqs.~3.25! and ~3.26! yields

FH5FA52
DF

2F0
~3.30!

which, substituted in Eq.~3.28!, leads to

DR56F F̈H13H0ḞH1S k2

a2
24H0

2D FHG . ~3.31!

Equations~3.21! and ~3.23! do not change form, while the
remaining equations reduce to identities. The decoupling
scalar, vector, and tensor modes is not apparent in the
malism used, with the exception of tensor modes descri
by the perturbationHT . This quantity obeys Eq.~3.23!,
which is decoupled from the other modes. We do not c
sider vector modes described by the quantityB since, as
proven in Ref.@35#, vorticity modes cannot be generated
generalized gravity when matter contributions are abs
~i.e., when the scalar field or nonlinear corrections toR
dominate!. The vector modeB effectively disappears from
the gauge-invariant variablesDf and FA5FH5
2DF/(2F0) defined by mixing scalar modes andB. More
naively, other authors refer to these facts by saying that
vector perturbations can be gauged away. For this reaso
the following we consider explicitly only scalar and tens
perturbations.

A. Stability with respect to tensor perturbations

The evolution of tensor perturbations is regulated by E
~3.23!, where a(t)5a0eH0 t. By introducing the auxiliary
variable

u[aHT ~3.32!
04403
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and using conformal timeh defined bydt5a dh and the
standard relation

eH0 t52
1

a0H0h
~3.33!

valid in de Sitter space, Eq.~3.23! is reduced to the forma
Schrödinger equation

d2u

dh2
1S k22

2

h2D u~h!50. ~3.34!

Let us consider the expanding (H0.0) de Sitter spaces
~2.8!. We are interested in the late time evolution of pert
bations, corresponding tot→1` and h→02. In this re-
gime, the general solution of the asymptotic equation

d2u

dh2
2

2

h2
u~h!50 ~3.35!

is

u~h!5
C1

h
1C2h2 ~3.36!

for hÞ0, whereC1,2 are integration constants. Then

HT52H0~C11C2h3!, ~3.37!

and the gauge-invariant tensor perturbation does not g
whenh→02. Hence, expanding de Sitter spaces are alw
stable with respect to tensor perturbations.

Let us consider also the contracting (H0,0) de Sitter
spaces~2.8!. In this caset→1` corresponds toh→1`
and the asymptotic solutions of Eq.~3.34! are free waves
e6 ikh, hence the amplitude of the tensor perturbations

HT5
e6 ikh

a0
euH0u t ~3.38!

diverges whent→1`. As a conclusion, contracting de Si
ter spaces are always unstable with respect to tensor pe
bations.

B. Stability with respect to scalar perturbations

At a first glance it might seem that we are left with on
one equation~3.21! to determine the perturbationsDf and
FH5FA52DF/(2F0), but this is not the case since on
can Taylor-expand the coupling functionf (f,R) obtaining

DF

F0
5

f fR

F0
Df1

f RR

F0
DR. ~3.39!

Equations~3.30! and ~3.39! then yield

DR5
22F0

f RR
FH2

f fR

f RR
Df, ~3.40!

while Eq. ~3.21! becomes
7-6
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Df̈13H0Dḟ1F k2

a2
2

1

2v0
S f 0922V092

f fR
2

f RR
D GDf

1
F0

v0

f fR

f RR
FH50. ~3.41!

The comparison of Eqs.~3.40! and ~3.28! yields

F̈H13H0ḞH1S k2

a2
24H0

21
F0

3 f RR
D FH1

f fR

6 f RR
Df50.

~3.42!

In the rest of this section we consider the case in wh
f RRÞ0. This restriction leaves out linear theories of gravi
including general relativity, which are discussed in the n
section.

We have now the system~3.41! and ~3.42! for Df and
FH , which can be simplified by switching to the variablesv
andw defined by

FH[
v
a

, Df[
w

a
, ~3.43!

and by using conformal timeh instead oft. In terms of these
new variables it is

d2v

dh2
1S k21

a

h2D v1
b

h2
w50, ~3.44!

d2w

dh2
1S k21

g

h2D w1
d

h2
v50, ~3.45!

where

a5
F0

3 f RRH0
2

26, ~3.46!

b5
f fR

6 f RRH0
2

, ~3.47!

g5
1

2v0
S 2V092 f 091

f fR
2

f RR
D 22, ~3.48!

d5
F0

v0H0
2

f fR

f RR
. ~3.49!

The system~3.44! and~3.45! can be linearized around th
conformal timeh0 at which the perturbations originate an
then rewritten as the first order system

v8[x, ~3.50!

w8[y, ~3.51!

x852S k21
a

h0
2D v2

b

h0
2

w, ~3.52!
04403
h
,
t

y852S k21
g

h0
2D w2

d

h0
2 v. ~3.53!

This can be written in compact form as

S v8

w8

x8

y8

D 5M̂S v

w

x

y

D , ~3.54!

where the matrixM̂ is

M̂51
0 0 1 0

0 0 0 1

2S k21
a

h0
2D 2

b

h0
2

0 0

2
d

h0
2

2S k21
g

h0
2D 0 0

2 .

~3.55!

A stability analysis for this system~see Appendix A! yields
the result that de Sitter space is stable if any one of
following conditions is satisfied:

~i! if b1>0 andc1>0, it must bek>k1 for stability,
~ii ! if b1.0 andc1,0, it must bek>max$k1 ,k3%,
~iii ! if b150 andc1>0, it must bek>k1,
~iv! if b150 andc1,0, it must bek>max$k1 ,k4%,
~v! if 22<b1,0 andc1.b1

2/4, it must bek>k1,
~vi! if 22<b1,0 and 0,c1,b1

2/4, it must bek1<k
<k5 ~this inequality can be satisfied only ifk5
.k1) or k>max$k1 ,k6%,

~vii ! if 22<b1,0 and c1,0, it must be k
>max$k1 ,k7%,

~viii ! if b1,22 and c1,0, it must be k
>max$k1 ,k2 ,k7%,

~ix! if b1,22 and 0,c1<b1
2/4, it must be

max$k1 ,k2%<k<k7 ~when k7.k1 ,k2) or k
>max$k1 ,k2 ,k6%,

~x! if b1,22 and c1.b1
2/4, it must be k

>max$k1 ,k2%.
The parametersb1 ,c1 and the critical wave vectorski are

defined in terms of the values of the coupling functions a
parameters by

b15
1

h0
2 F 1

2v0
S 2V092 f 091

f fR
2

f RR
D 1

F0

3 f RRH0
2

28G22,

~3.56!
7-7
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c15
1

4h0
4 F 1

2v0
S 2V092 f 091

f fR
2

f RR
D 281

F0

3 f RRH0
2G 2

2
1

h0
2 F F0

3 f RRH0
2

1
1

2v0
S 2V092 f 091

f fR
2

f RR
D 28G

1
F0f fR

2

6v0f RR
2 H0

4h0
4

, ~3.57!

k15H 1

2h0
2 F 1

2v0
S f 0922V092

f fR
2

f RR
1

F0f fR
2

3H0
4f RR

2 D
182

F0

3 f RRH0
2G J 1/2

, ~3.58!

k25H 1

2h0
2 F 1

2v0
S f 0922V092

f fR
2

f RR
D 182

F0

3H0
2f RR

G J 1/2

,

~3.59!

k35A2b11Ab1
224c1

2
, ~3.60!

k45uc1u1/4, ~3.61!

k5,65Aub1u6Ab1
224c1

2
, ~3.62!

k75Aub1u1Ab1
214uc1u

2
. ~3.63!

The effective Jeans wavelengthsl i52p/ki are deter-
mined by the values off (f,R),V, and v at the point
(f0 ,R0) and by the value of the initial conformal timeh0.
The conditions for stability, when expressed in terms off ,V
and v0 ,h0 are not particularly illuminating—they becom
more meaningful when specific forms of these functions
adopted. Although the classification of the stability regio
seems involved, once the generalized gravity theory is sp
fied, the values of the parametersb1 andc1 are completely
fixed and only one of the cases contemplated in the list ab
applies. Therefore this list contains complete conditions
check at a glance whether de Sitter space is stable ag
inhomogeneous perturbations in general theories of grav

As an example consider the theory described by

f 5R1eR2, f51, v51, V5L.0, ~3.64!

where e is a small positive constant~general relativity is
recovered in the limite→0). One has

f 0512H0
2~1112eH0

2!, F051124eH0
2 , V05L,

~3.65!

V085 f 085 f 095 f fR5 f ff50, f RR52e ~3.66!
04403
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and H05AL/3 as in general relativity. Sincea5(2eL)21

22 andb5g5d50, Eqs.~3.44! and ~3.45! reduce, in the
limit e→0, to

v91S k21
1

2eLh0
2D v50, ~3.67!

w91k2w50, ~3.68!

which constitute decoupled equations for the variablesv and
w with positive ~angular! frequency squared and hence d
scribe oscillatory perturbations associated with stability of
Sitter space. The small correctioneR2 to the Einstein-Hilbert
Lagrangian does not destabilize de Sitter space. Naively,
correction ‘‘reinforces’’ the effects ofR. If, however,e were
allowed to be negative, the effect ofeR2 would be the op-
posite and it would tend to destabilize de Sitter space. Th
evident in Eq.~3.67! when e,0 and the term containinge
dominates fore→0, making the effective frequency square
of v negative and introducing exponential solutions asso
ated with instability.

IV. SCALAR-TENSOR THEORIES

We now restrict the stability analysis to scalar-tens
theories, for which the couplingf (f,R) is linear in R and
f RR50 — this case was not contemplated in Sec. III. Havi
already established that contracting de Sitter spaces ar
ways unstable with respect to tensor perturbations, we o
need to consider an expanding de Sitter background~2.8!
with H0.0. It is straightforward to derive the first orde
evolution equations for the perturbations. Equations~3.30!,
~3.39!, and~3.40! yield

FH52
1

2

f fR

F0
Df ~4.1!

while Eqs.~3.31! and ~4.1! lead to

DR52
3 f fR

F0
FDf̈13H0Dḟ1S k2

a2
24H0

2D DfG .

~4.2!

In conjunction with Eq.~3.21! this yields

Df̈13H0Dḟ1F k2

a2
2

S f 09

2
2V091

6 f fR
2

F0
H0

2D
v0S 11

3 f fR
2

2v0F0
D G Df50

~4.3!

if 1 13 f fR
2 /(2v0F0)Þ0. In the case in which 1

13 f fR
2 /(2v0F0)50, instead, Eq.~3.21! yields either the

trivial solution Df50 or f 0922V0958v0H0
2 @46#.

We look for solutions of the asymptotic form of Eq.~4.3!
at late times satisfying the ansatz

Df5eest, ~4.4!
7-8
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wheree and s are constants, withs satisfying the algebraic
equation

s213H0s1c50, ~4.5!

with

c52

S f 09

2
2V091

6 f fR
2

F0
H0

2D
v0S 11

3 f fR
2

2v0F0
D . ~4.6!

The roots

s65
23H06A9H0

224c

2
~4.7!

of Eq. ~4.6! are such thatRe(s2),0, while the sign of
Re(s1) depends on the sign ofc. If c>0 thenRe(s1)<0
and there is stability. If insteadc,0 thenRe(s1).0 and the
de Sitter space~2.8! is unstable. The condition for the stabi
ity of de Sitter space in a scalar-tensor theory described
the action~1.8! is then

S f 09

2
2V091

6 f fR
2

F0
H0

2D
v0S 11

3 f fR
2

2v0F0
D <0. ~4.8!

A. Nonminimally coupled scalar field

As a particular case of scalar-tensor gravity we consi
the theory of a nonminimally coupled scalar field given
the choice~2.20! of the coupling functions, yielding

F0512jf0
2 , f 08522jR0f052V08 ,

f fR522jf05
V08

6H0
2

, f 095
2V08

f0
, ~4.9!

where Eq.~2.10! has been used. If the effective gravitation
coupling of the theory

Geff[
G

128pGjf2
~4.10!

is positive@which happens for any negative value ofj or, if
j.0, for ufu,(8pGj)21/2], then the denominator on th
left-hand side of Eq.~4.8! is also positive and the stabilit
condition of de Sitter space reduces to

V092
f 09

2
2

6 f fR
2 H0

2

F0
>0. ~4.11!

Upon use of Eq.~4.9!, this condition is written as

V09> f ~x!
V08

f0
, ~4.12!
04403
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where

x5jf0
2 , f ~x!5

123x

12x
. ~4.13!

Equation~4.12! coincides with the stability condition found
in Refs. @6,7# when f0Þ0 @45#. If the effective coupling
~4.10! is instead negative, the stability condition is given
~4.12! with the direction reversed.

In the casef050 one has f 05R0512H0
2 ,F051,f 08

5 f fR50,f 09522jR0, and the condition for the stability o
de Sitter space becomes

V09112jH0
2>0. ~4.14!

Using Eq.~2.9!, this assumes the form

V0914jV0>0, ~4.15!

the stability condition found in Refs.@6,7# for f050. Equa-
tion ~4.8! generalizes to arbitrary scalar-tensor theories
stability conditions already known for nonminimally couple
scalar field theory, which are recovered as a special cas

B. General relativity

In Einstein gravity with a minimally coupled scalar,

v5F051, f 0512H0
2 , f 085 f 095 f fR5 f RR50,

~4.16!

and the de Sitter space obtained ifH05AV0/3, V0850 is
stable ifV09>0, in particular if the potential has a minimum
at f0. Hence in this case the concavity of the scalar fie
potential is the stabilizing factor, while its convexity wou
instead cause instability.

If the scalar is absent the de Sitter space obtained tha
to a positive cosmological constant is automatically guar
teed to be stable with respect to inhomogeneous pertu
tions. It is well known that this space is also stable w
respect to large anisotropic perturbations, with the excep
of highly positively curved Bianchi IX models, as describe
by the cosmic no-hair theorems@47#.

C. Phantom field

The superstring-inspired theory of a phantom field w
negative kinetic energy corresponds tof (f,R)5R andv5
21. The conditions for the existence of de Sitter solutio
are

H0
25

V0

3
, V0850, ~4.17!

while the condition for stability reduces toV09<0. Thus, de
Sitter fixed points (H0 ,f0) are attractors ifV09 has a maxi-
mum atf0. Due to the negative sign of its kinetic energy th
phantom fieldf ‘‘falls up’’ and settles in the maximum of
the potential. de Sitter attractors have been found in su
accelerating models of dark energy, thus avoiding evolut
of the universe in a Big Rip singularity in the future@49–51#.
7-9



lu
vi
be

a
ex
b

ha

to
he

b
io
in
rb

ns
ty

n,
-
g

e
a

t
e
t
s

as-
sid-

e

p-
e if

VALERIO FARAONI PHYSICAL REVIEW D 70, 044037 ~2004!
V. MINKOWSKI SPACE AND ITS STABILITY

Generalized gravity often admits Minkowski space so
tions. In general, flat space solutions in generalized gra
are physically nontrivial and correspond to a balance
tween gravity and the scalar fieldf formally acting as a
material source. In nonlinear gravity theories where this b
ance cannot be achieved, a Minkowski solution may not
ist. This is the case, for example, of the theory described
Eq. ~2.23!.

It has been suggested that the present universe could
originated from Minkowski space@30,31# or from a static
Einstein space@33,28#. To pursue this idea it is necessary
ascertain the stability of Minkowski or Einstein space. T
stability of Einstein spaces is a long-standing issue@38–40#
and it has recently been revisited in general relativity
considering inhomogeneous and anisotropic perturbat
@28#. Here we consider the stability of Minkowski space
generalized gravity with respect to inhomogeneous pertu
tions.

The conditions for the existence of Minkowski solutio
~with H050) of the field equations of generalized gravi
are

f 022V050, ~5.1!

f 0822V0850. ~5.2!

A positive value off 0, which describes a realistic situatio
can be balanced in Eq.~5.1! by a negative cosmological con
stantL, which is familiar to high energy physicists workin
with anti-de Sitter space.

In order to study the stability of Minkowski space on
needs the linearized equations for the gauge-invariant v
ables

Df̈1Fk22
1

2v0
~ f 0922V09!GDf5

f fR

2v0
DR, ~5.3!

DF̈1k2DF1
F0

3
DR50, ~5.4!

ḦT1k2HT50, ~5.5!

ḞH52
1

2

DḞ

F0
, ~5.6!

FA1FH52
DF

F0
. ~5.7!

Equation ~5.6! yields again FH52DF/(2F0)5FA ,
while Eq. ~3.28! reduces to

DR56~F̈H1k2FH!. ~5.8!

Again, we consider scalar and tensor modes and drop
vector modes which cannot be generated in the absenc
matter@35#. Inspection of Eq.~5.5! allows one to conclude a
once that Minkowski space is always stable against ten
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perturbations, which decouple from the other modes. To
sess stability with respect to scalar perturbations, one con
ers the analogue of Eqs.~3.41! and ~3.42!, which are

d2v

dt2
1S k21

F0

3 f RR
D v1

f fR

6 f RR
w50, ~5.9!

d2w

dt2
1Fk21

1

2v0
S 2V092 f 091

f fR
2

f RR
D Gw1

F0

v0

f fR

f RR
v50

~5.10!

in the casef RRÞ0, where the variablesv andw introduced
in Eq. ~3.43! now coincide withFH5FA and Df, respec-
tively.

The system~5.9! and ~5.10! can be reformulated as th
first order system

v8[x, ~5.11!

w8[y, ~5.12!

x852S k21
F0

3 f RR
D v2

f fR

6 f RR
w, ~5.13!

y852
F0f fR

v0f RR
v1Dw, ~5.14!

where

D52Fk21
1

2v0
S 2V092 f 091

f fR
2

f RR
D G . ~5.15!

In compact form,

S v8

w8

x8

y8

D 5N̂S v

w

x

y

D , ~5.16!

where

N̂5S 0 0 1 0

0 0 0 1

2S k21
F0f fR

3 f RR
D 2

f fR

6 f RR
0 0

2
F0f fR

v0f RR
D 0 0

D . ~5.17!

A stability analysis for this linear system, presented in A
pendix B, leads to the result that Minkowski space is stabl
4c2<b2

2 and one of the following conditions is satisfied:
~i! b250, c2<0, andk>max$k8 ,k10%,
~ii ! b2,0, c2,0, andk>max$k8 ,k13%,
~iii ! b2.0 andc2>0,
7-10
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~iv! b2.0, c2,0, andk>k9,
where

b25
1

2v0
S 2V092 f 091

f fR

f RR
D1

F0f fR

3 f RR
, ~5.18!

c25
F0f fR

6v0f RR
~2V092 f 09!, ~5.19!

k85Aub2u
2

, ~5.20!

k95A2b21Ab2
224c2

2
, ~5.21!

k105uc2u1/4, ~5.22!

k135Aub2u1Ab2
214uc2u

2
. ~5.23!

Consider as examples general relativity and the the
described by

f 5R1eR2, f51, v51, V50. ~5.24!

General relativity is recovered by lettinge→0. One has, for
both theories,

f 050, F051, V05V085 f 085 f 095 f fR5 f ff5 f RR50.
~5.25!

Equations~3.39! and ~3.30! yield DF50 andFH5FA50.
Equation~3.31! then yieldsDR50 and Eq.~5.3! becomes

Df̈1k2Df50. ~5.26!

Equations~5.26! and ~5.5! describe the evolution of scala
and tensor inhomogeneous perturbations of Minkow
space, which are effectively decoupled. It is obvious fro
these equations that Minkowski space is stable since the
quency squared is positive in each of these equations.

Let us consider now the class of scalar-tensor gra
theories, which havef (f,R)5 f (f)R and f RR50. One must
consider Eqs.~4.2! and ~4.3!, which become

DR52
3 f 08

f 0
~Df̈1k2Df!, ~5.27!

Df̈1F k21
f 0~2V092 f 09!

2 f 013 f 08
GDf50. ~5.28!

The stability of a scalar perturbation depends on its wa
length and is achieved if

k>k145F f 0~ f 0922V09!

2 f 013 f 08
G 1/2

, ~5.29!
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when the argument of the square root is positive~or for any
wavelength if the latter is negative or zero!.

VI. DISCUSSION AND CONCLUSIONS

Motivated by inflation, quintessence, and quantum grav
corrections to the low-energy gravitational action, we ha
derived conditions for the existence and linear stability of
Sitter solutions in a very general theory, including scal
tensor gravity, induced gravity, nonlinear gravity, 1/R correc-
tions to the Einstein-Hilbert action, nonminimally couple
scalar field theory, general relativity with or without a min
mally coupled scalar and a cosmological constant, and ph
tom fields. Our analysis does not depend on the specific f
of the coupling functions and the conditions for the existen
and stability of de Sitter solutions are, in this respect, v
general. Minkowski space is studied as a special case o
Sitter space. The phase space picture of the theory dep
in an essential way on the form of the coupling functions a
the scalar field potentialV(f) but, in a spatially flat FLRW
universe, the dynamical variables are alwaysH and f. Al-
though the field equations are of fourth order in nonline
theories of gravity, and hence the dimensionality of the ph
space depends crucially on the form off (f,R), the fixed
points of the dynamical system are always de Sitter spa
with constant scalar field. It is for this reason that the con
tions for the existence of de Sitter space and for its stab
can be expressed by inequalities valid for any choice of
coupling functions and the values of the free parameters

Equations~2.9! and ~2.10! are necessary and sufficien
conditions for the existence of de Sitter fixed points. No
that the existence of these de Sitter solutions is not autom
cally guaranteed in generalized gravity. Equations~2.9! and
~2.10! reduce to conditions previously obtained in spec
cases of generalized gravity~nonminimally coupled scala
field theory@6,7# or theories withf 5ARn @27#!.

When de Sitter fixed points exist, their stability again
linear inhomogeneous perturbations and their attractor
havior are assessed by using a covariant and gauge-inva
formalism originally developed to study perturbations
FLRW spaces. It is established that expanding~respectively,
contracting! de Sitter spaces are always stable~respectively,
unstable! with respect to tensor perturbations. Scalar pert
bations may threaten the stability of expanding de Si
spaces, which are the ones of interest for inflationary a
quintessence scenarios of the real universe. For nonlin
theories of gravity~with f RRÞ0), Sec. III B provides the
desired stability conditions, while Sec. V describes the s
bility of Minkowski space. For linear gravity theories wit
f RR50, including scalar-tensor gravity and general relat
ity, the stability conditions for de Sitter space are given
Eq. ~4.8!, while the stability of Minkowski space is dete
mined by Eq.~5.28!. In the particular case of nonminimall
coupled scalar field theory, these conditions reproduce th
already known from a previous analysis@6,7#.

The analysis presented here can be generalized fur
First, it is well known that there can be attractors in pha
space that are inflationary but are not fixed points. This is
case of power-law inflationa(t)5a0 tp with p.1, which is
7-11
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an attractor solution of Brans-Dicke cosmology when
only form of matter present is a cosmological constant. E
tended inflationary scenarios@10# are based on the presen
of this attractor. Power-law inflation is also an attractor
scalar-tensor theories generalizing Brans-Dicke gravity@8#
and in many nonlinear theories@48#. Hence, in general, the
fixed points do not provide the complete phase space pict
Second, we restricted our attention to inhomogeneous pe
bations. Although more general than the case of homo
neous perturbations usually studied in the literature, it wo
be interesting to generalize the stability analysis to an
tropic and to nonlinear perturbations. Finally, we conside
only four spacetime dimensions but quantum gravity ext
sions of general relativity would call for a more gene
analysis in arbitrary spacetime dimension.

The stability conditions derived here can be applied to
investigation of the Big Rip singularity in the future. It ha
been pointed out that the present expansion of the univ
may be superaccelerated, i.e.,Ḣ.0, which is equivalent to
an effective equation of state parameterw[P/r,21 for
the dark energy dominating the dynamics of the univers
redshifts z<1 @14#. Superacceleration cannot be achiev
with a canonical, minimally coupled scalar field in Einste
gravity @8,14#. If the universe really superaccelerates~which
is not yet established due to the error in the observatio
determination of the parameterw) it runs the risk of ending
in a Big Rip singularity in a finite future@14#. This kind of
singularity is different from the Big Bang or the Big Crunc
because the universe expands explosively while the en
density of dark energy diverges instead of getting dilut
due to the peculiar equation of stateP,2r @8,14#. If the
equation of state of the dark energy is constant withw
5const,21, the Big Rip is unavoidable. However, a tim
dependent effective equation of state withw5w(t) is more
realistic and in this case scenarios have been propose
which the Big Rip is avoided. At present, there are in t
literature superaccelerating models in which the Big Rip
unavoidable@14# and others in which a late time de Sitt
attractor withḢ50 exists which stops superacceleration a
avoids the Big Rip@49–51#. It is in this context that the
stability conditions derived here can play a role: these c
ditions help assessing the stability of de Sitter spaces
deciding whether a late time de Sitter attractor exists t
attracts the orbits of the solutions of the field equations
phase space, thus avoiding the Big Rip. A generic statem
about the fate of the universe requires the knowledge of
attraction basin of an attractor, and this issue can only
addressed in a specific theory with the form of the poten
V(f) fixed. However, the conditions for the existence of
Sitter attractors provide an answer about the possibility
avoiding the Big Rip at least for initial conditions lying in
certain attraction basin to be determined.

The stability conditions derived in this paper will be a
plied elsewhere to specific models of inflation and dark
ergy.
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APPENDIX A: STABILITY ANALYSIS
FOR DE SITTER SPACE

The stability of the system~3.54! is assessed by studyin
the sign of the real part of the eigenvaluesl of the matrix
M̂ . The characteristic equation Det(M̂2l Î ), whereÎ is the
identity matrix, reduces to

l41B1l21C150, ~A1!

where

B152k21
a

h0
2

1
g

h0
2

, ~A2!

C15S k21
a

h0
2D 1S k21

g

h0
2D 2

bd

h0
4

. ~A3!

The squares of the roots are given by

l6
2 5

2B16AD1

2
, ~A4!

D15B1
224C1 . ~A5!

Let us consider the casesC1.0, C150, andC1,0 sepa-
rately.

1. 0ËC1ÏB1
2Õ4

Note that one cannot haveB150 in this case. IfB1.0,
thenl6

2 ,0 and the rootsl6 6 of Eq. ~A1! are purely imagi-
nary, i.e., Re(l)50 and de Sitter space is neutrally stable

If B1,0 thenl6
2 .0 and all four eigenvaluesl6 6 are

real, with two of them positive and two negative. The po
tive ones give rise to instability.

2. C1ÌB1
2Õ4 „D1Ë0…

If B1Þ0, then

l6
2 5

2B16 iAuD1u
2

[reiu6 ~A6!

and

l6 656Arei (u6/2). ~A7!

In this case two rootsl have positive real part and de Sitte
space is unstable.

If B150 andC1.0 one hasl6
2 56 iAC1 and

l6656
C1

1/4

A2
~16 i !. ~A8!

The roots with positive real part are associated with insta
ity of de Sitter space.
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3. C1Ä0

In this case Eq.~A1! gives l1
250 or l2,3

2 52B1. If B1

.0 the rootsl2,3 are purely imaginary, corresponding
oscillating perturbations and to stability. If insteadB1,0
there is a real positive root associated with instability. IfB1
5C150 thenl50 and de Sitter space is neutrally stable

4. C1Ë0

In this case

l25
2B16AB1

214uC1u
2

. ~A9!

The lower sign produces two imaginary roots, while the u
per sign gives two real positive roots associated with ins
bility.

As a summary, de Sitter space is stable if

0<C1<
B1

2

4
and B1>0 ~A10!

and unstable otherwise.
The conditions for stability can be formulated in terms

effective Jeans wavelengths and of the values of the coup
functions and parameters of the theory. The inequalityC1
>0 is equivalent to

2k2h0
21a1g2bd>0, ~A11!

which can be expressed as

k>k1[H 1

2h0
2 F 1

2v0
S f 0922V092

f fR
2

f RR
1

F0f fR
2

3H0
4f RR

2 D
182

F0

3 f RRH0
2G J 1/2

. ~A12!

The inequalityB1>0 is equivalent to

2k2h0
21a1g>0, ~A13!

or

b1121k2>0, ~A14!

where

b15
1

h0
2 F 1

2v0
S 2V092 f 091

f fR
2

f RR
D 1

F0

3 f RRH0
2

28G22.

~A15!

Equation~A14! is satisfied for anyk if b112>0 or, if b1
,22, by wave vectorsk such that

k>k2[H 1

2h0
2 F 1

2v0
S f 0922V092

f fR
2

f RR
D 182

F0

3H0
2f RR

G J 1/2

5Aub112u. ~A16!
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The inequalityC1<B1
2/4 is equivalent to

k41Fa1g

h0
2

22Gk21
~a1g!2

4h0
4

2
~a1g!

h0
2

1
bd

h0
4

>0,

~A17!

which can be written as

w~k![k41b1k21c1>0, ~A18!

where

c15
1

4h0
4 F 1

2v0
S 2V092 f 091

f fR
2

f RR
D 281

F0

3 f RRH0
2G 2

2
1

h0
2 F F0

3 f RRH0
2

1
1

2v0
S 2V092 f 091

f fR
2

f RR
D 28G

1
F0f fR

2

6v0f RR
2 H0

4h0
4

. ~A19!

To identify the values of the wave vectork that satisfy the
inequality~A18! one studies the sign ofw(k) by distinguish-
ing several cases:

~i! b1>0 andc1>0: the inequality~A18! is satisfied for
any value ofk.

~ii ! b1>0 andc1,0: the curve representingw(k) starts
negative atk50 and is always increasing, crossin
the k-axis at a pointk3. The functionw(k) becomes
positive fork.k3, where

k35A2b11Ab1
224c1

2
. ~A20!

~iii ! b150; then, if c1>0, w(k).0 for any value ofk
>0; if c1,0 thenw(k)>0 for k>k45uc1u1/4.

~iv! b1,0; the curve representingw(k) starts from the
value c1 at k50, decreases for 0,k,Aub1u/2, reaches a
minimum atk5Aub1u/2, and then is always increasing fo
k.Aub1u/2. If c1.0 and the minimum is non-negative, the
w(k)>0 for any value ofk and the equationw(k)50 has no
real roots. This happens ifc1.b1

4/4.
If instead c1.0 but the minimum ofw(k) is negative

there are two real roots of the equationw(k)50 andw is
positive for 0,k,k5 and fork.k6, and negative otherwise
This situation occurs ifc1<b1

2/4 and the critical wave vec
tors are

k5,65Aub1u6Ab1
224c1

2
. ~A21!

Finally, if c1,0, the curve representingw(k) is negative for
0<k,k7 and positive for

k.k75Aub1u1Ab1
214uc1u

2
. ~A22!
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By setting together the three conditions for stabilityC
>0, B>0, andC<B2/4 one obtains that, in order for d
Sitter space to be stable with respect to scalar perturbati
the latter must have wave vectors in one of the followi
intervals:

~i! if b1>0 andc1>0, it must bek>k1 for stability,
~ii ! if b1.0 andc1,0, it must bek>max$k1 ,k3%,
~iii ! if b150 andc1>0, it must bek>k1,
~iv! if b150 andc1,0, it must bek>max$k1 ,k4%,
~v! if 22<b1,0 andc1.b1

2/4, it must bek>k1,
~vi! if 22<b1,0 and 0,c1,b1

2/4, it must bek1<k
<k5 ~note that this inequality can be satisfied only
k5.k1 ,k2) or k>max$k1 ,k6%,

~vii ! if 22<b1,0 and c1,0, it must be k
>max$k1 ,k7%,

~viii ! if b1,22 and c1,0, it must be k
>max$k1 ,k2 ,k7%,

~ix! if b1,22 and 0,c1<b1
2/4, it must be

max$k1 ,k2%<k<k7 or k>max$k1 ,k2 ,k6%,
~x! if b1,22 and c1.b1

2/4, it must be k
>max$k1 ,k2%.

APPENDIX B: STABILITY ANALYSIS
FOR MINKOWSKI SPACE

The stability of the system~5.16! is determined by the
real part of the eigenvaluesl of N̂. The characteristic equa
tion Det(N̂2l Î ) is

l41B2l21C250, ~B1!

where

B25k21
F0f fR

3 f RR
2D, ~B2!

C252Dk22
F0f fR

3 f RR
S D1

f fR

2v0f RR
D . ~B3!

The squares of the roots are given by

l6
2 5

2B26AD2

2
, D25B2

224C2 . ~B4!

Let us consider the casesC2.0, C250, andC2,0, sepa-
rately.

1. 0ËC2ÏB2
2Õ4

Note that one cannot haveB250 in this case. IfB2.0,
then l6

2 ,0, the rootsl6 6 of Eq. ~B1! are purely imagi-
nary, and Minkowski space is neutrally stable.

If B2,0 thenl6
2 .0 and all the four eigenvalues are rea

with two of them positive and two negative—the positi
ones make Minkowski space unstable.
04403
s,

2. C2ÌB2
2Õ4

If B2Þ0, then

l6
2 5

2B26 iAuD2u
2

[reiu6 ~B5!

and

l6 656Arei (u6/2). ~B6!

In this case two rootsl6 6 have positive real part and
Minkowski space is unstable.

If B250 and C2.0 one hasl6 656221/2C1/4(16 i ).
Two roots have positive real part, corresponding to insta
ity.

3. C2Ä0

In this case Eq.~B1! gives l250 or l252B2. If B2
.0 the roots are purely imaginary, corresponding to os
lating perturbations and to stability. If insteadB2,0 there is
a real positive root associated with instability. IfB25C2
50 thenl50 and Minkowski space is neutrally stable.

4. C2Ë0

In this case

l25
2B26AB2

214uC2u
2

. ~B7!

The lower sign produces two imaginary roots, while the u
per sign gives two real roots, one of which is positive and
associated with instability.

To summarize, Minkowski space is stable if

0<C2<
B2

2

4
and B2>0 ~B8!

and unstable otherwise.
Let us express the conditions above in terms of the c

pling functions and of the wave vectork. The inequalityC2
>0 is equivalent to

c~k![k41b2k21c2>0, ~B9!

where

b25
1

2v0
S 2V092 f 091

f fR

f RR
D1

F0f fR

3 f RR
, ~B10!

c25
F0f fR

6v0f RR
~2V092 f 09!. ~B11!

The inequalityB2>0 is equivalent to

k21
b2

2
>0, ~B12!

which is always satisfied ifb2>0, and is satisfied only for
perturbations with wave vectors such that
7-14
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k>k85Aub2u
2

~B13!

whenb2,0. The inequalityC2<B2
2/4 is equivalent to

4c2<b2
2 . ~B14!

Note that in this case the wave vector drops out and this
requirement on the theory of gravity independent of
wavelength of the inhomogeneous perturbation. Next,
studies the sign ofc(k) as in Appendix A, with the following
result:

~i! b2>0 andc2>0, thenc(k)>0 for any value ofk.
~ii ! b2>0 andc2,0, it is c(k)>0 for

k>k95A2b21Ab2
224c2

2
. ~B15!

~iii ! b250, if c2>0 thenc(k).0 for any value ofk;
~iv! if c2,0 thenc(k)>0 for k>k105uc2u1/4.
~v! b2,0, if c2.b2

2/4, thenc(k).0 for anyk.
ys

n-

.
d

tt.
g,

c
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If 0 ,c2<b2
2/4, then c(k).0 for 0,k,k11 and for k

.k12, where

k11,125Aub2u6Ab2
224c2

2
. ~B16!

Finally, if c2,0, c(k) is positive for

k.k135Aub2u1Ab2
214uc2u

2
. ~B17!

The stability of Minkowski space is assured by imposi
that the three inequalities~B9!, ~B12!, and~B14! hold simul-
taneously. It must be 4c2<b2

2, plus one of the following
conditions must hold:

~i! b250, c2<0, andk>max$k8 ,k10%,
~ii ! b2,0, c2,0, andk>max$k8 ,k13%,
~iii ! b2.0 and 0<c2<b2

2/4,
~iv! b2.0, c2,0, andk>k9.
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