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We discuss classical magnetotransport in a two-dimensional system with strong scatterers. Even in the limit
of very low field, whenvct!1 (vc is the cyclotron frequency,t is the scattering time) such a system
demonstrates strong negative magnetoresistance caused by non-Markovian memory effects. A regular method
for the calculation of non-Markovian corrections to the Drude conductivity is presented. A quantitative theory
of the recently discovered anomalous low-field magnetoresistance is developed for the system of two-
dimensional electrons scattered by hard disks of radiusa, randomly distributed with concentrationn. For small
magnetic fields the magentoresistance is found to be parabolic and inversely proportional to the gas parameter,
drxx/r,−svctd2/na2. In some interval of magnetic fields the magnetoresistance is shown to be linear
drxx/r,−vct in a good agreement with the experiment and numerical simulations. Magnetoresistance satu-
rates forvct@na2, when the anomalous memory effects are totally destroyed by the magnetic field. We also
discuss magnetotransport at very low fields and show that at such fields magnetoresistance is determined by the
trajectories having a long Lyapunov region.
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I. INTORDUCTION

The problem of magnetoresistance in metal and semicon-
ductor structures has been intensively discussed in literature
during the past three decades. A large number of both theo-
retical and experimental papers on this subject was pub-
lished. Most of these works were devoted to the case of the
degenerate two-dimensional electron gas where the electrons
move in the plane perpendicular to the magnetic field and
scatter on a random impurity potential. In this situation only
the electrons with energy close to the Fermi energy partici-
pate in conductance and the usual approach based on the
Boltzmann equation leads to vanishing magnetoresistance. In
other words, the longitudinal resistancerxx of the sample
does not depend on the magnetic fieldB. This implies that
the explanation of the experimentally observedB depen-
dence of the longitudinal resistance should be sought beyond
the Boltzmann theory.

The intense exploration of this area began from the work
of Altshuler et al.1 where the experimentally observed in
two-dimensional(2D) metals and semiconductor structures
negative magnetoresistance(MR), i.e., decreasingrxx with
increasingB, was explained by quantum interference effects.
It was shown that the magnetic field destroys the negative
weak localization correction to the conductivity, thus result-
ing in decreasing longitudinal resistance. Since the first pub-
lication on the subject1 a vast amount of work has been de-
voted to its further exploration(see for review Ref. 2).

Two years prior to Ref. 1 there appeared a publication3

where a classical mechanism of negative magnetoresistance
was discussed. The mechanism was investigated on the ex-
ample of a gas of noninteracting electrons scattering on hard
disks (antidots). It was shown that with increasing magnetic
field there is an increasing number of closed electron orbits
which avoid scatterers and therefore are not diffusive(see

also recent discussions4–7 of this mechanism). Electrons oc-
cupying these orbits do not participate in diffusion. As a
result, the longitudinal resistance turns out to be proportional
to the factor 1−P, whereP=exps−2p /vctd is the probability
of the existance of the circular closed orbit, which avoids
scatterers(herevc is the cyclotron frequency,t is the scat-
tering time). Another classical mechanism was presented in
Ref. 8, where the MR due to non-Markovian dynamics of
electrons trapped in some region of space was discussed.

Notwithstanding these developments, the role of classical
effects in magnetotransport was underappreciated for a long
time. A new boost to the research in this direction was given
by Ref. 9, where it was shown that if electrons move in a
smooth disorder potential and in a sufficiently strong mag-
netic fields a phenomenon called “classical localization” oc-
curs. This phenomenon leads to the exponential suppression
of the longitudinal resistance: most electrons are trapped in
localized equipotential trajectories and do not participate in
diffusion. This work was followed by a series of works,10–17

discussing different aspects of classical magnetotransport in
2D systems. It was shown11 that for lower magnetic fields
near the onset of the classical localization the magnetoresis-
tance is positive, i.e., the longitudinal resistance grows with
increasing magnetic field. In Refs. 12 and 13 the combina-
tion of smooth disorder and strong scatterers(antidots) was
considered. It was shown that in this system under certain
conditions there are several regimes of the behavior of mag-
netoresistance depending on the strength of the magnetic
field: first the longitudinal resistance decreases with growing
field, then it saturates and then begins to grow.

In Refs. 3–14 magnetoresistance was studied in a situa-
tion where the magnetic field is classically strong, that is
where the parameterb=vct is large. Recently, the region of
classically small magnetic fieldsb!1 was investigated
numerically15,16 for the case of electrons scattering on strong
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scatterers. It was shown15 that memory effects due to double
scattering of an electron on the same disk lead to a negative
parabolic magnetoresistance(in Ref. 3, where these pro-
cesses were not taken into account, exponentially small MR
was predicted). The numerical simulations16 discovered a
low-field classical anomaly of the MR. The anomaly was
attributed to the memory effects specific for backscattering
events. The simulations were performed for the 2D Lorenz
gas which is a system of 2D electrons scattering on hard
disks randomly distributed in plane with average concentra-
tion n. Magnetotransport in this system is characterized by
two dimensionless parameters:b=vct, and the gas param-
eter b0=a/ l =2na2. Herea is the disk radius,vc is the cy-
clotron frequency,t= l /vF is the mean free time andl
=1/2na is the mean free path. The anomaly was observed in
the caseb!1, b0!1. Both the numerical simulations and
the qualitative considerations16 indicated that at zero tem-
perature the MR can be expressed in terms of a dimension-
less functionfszd via

drxx

r
= − b0fS b

b0
D , s1d

wherer is the resistivity forB=0. Numerical results16 sug-
gest thatfszd,z asz→0, yielding

drxx

r
, − uvcut. s2d

The latter expression is in very good agreement with experi-
mental measurements of negative linear MR in random anti-
dot arrays.18 It is anomalous in two senses. First, it has a
non-analytic dependence on the magnetic field. Second, it
does not vanish in the limit of vanishingb0, which is nor-
mally regarded as the expansion parameter for the correc-
tions to the Drude-Boltzmann picture. This intriguing behav-
ior calls for a rigorous analytical theory of the effect, which
would establish Eq.(1) and enable one to derive the analyti-
cal expression for functionf.

In this paper we present a detailed theory of the anomaly
and give an expression forfszd (the brief description of our
results was given in Ref. 17). We find that at some interval,
0.05&z&2, function fszd is linear in agreement with nu-
merical simulations and experiment, but atz→0 crosses over
to a quadratic dependence. Thus, forb→0, Eq. (1) yields
drxx/r,−b2/b0. The limit b0→0 should be taken with
care. While the smallb expansion seems to be singular as a
function of b0, the region ofb where this expansion is valid
shrinks asb0→0. For z→`, f saturates at some constant
value. Therefore, the full variation ofdrxx/r is of the order
b0. In other words, the anomalous MR is strong but it exists
in a small region of magnetic fields.

II. QUALITATIVE DISCUSSION OF THE PROBLEM

The mechanism proposed in Ref. 6 is linked to the
memory effects arising in backscattering events. It has a
close relation to the well known nonanalyticity of the virial
expansion of transport coefficients,19–23 which we briefly re-
call. For B=0 the leading nonanalytic correction to resistiv-

ity, dr, is due to the processes of return to a scatterer after a
single collision on another scatterer[see Fig. 1(a)]. The rela-
tive correction,dr /r, is proportional to the corresponding
backscattering probability, given by the product of
e−R/l dF dR/ l (which is the probability to reach scatterer 2
without collision and scatter in the angledF) and the prob-
ability p to return without collisions from 2 to 1(herel is the
mean free pass). Assuming p=exps−R/ ld and integrating
over intervals 0,F,a/R, a,R,`, one obtains19–23

dr/r , E
a

` dR

l
E

0

a/R

dF e−2R/l , b0 lns1/2b0d. s3d

In Ref. 16 it was shown that the probabilityp is actually
larger than exps−R/ ld. Indeed, the exponent exps−R/ ld can
be written as exps−nSd, whereS=2aR. It represents the prob-
ability of the existence of an empty corridor(free of the
centers of the disk) of width 2a around the electron trajectory
from 2 to 1. However, the passage of a particle from 1 to 2
ensures the absence of the disks centers in the region of
width 2a around this part of trajectory(from 1 to 2). This
reduces the scattering probability on the way back. The cor-
rect value ofp can be estimated as

psR,Fd = exps− nsS− S0dd = exps− R/l + nS0sR,Fdd, s4d

where

S0sR,Fd = 2aR− R2uFu/2 s5d

is the area of the overlap of the two corridors[see Fig. 1(a)].
For example, forF=0, we haveS0=2aR and p=1, which
reflects the obvious fact that the particle cannot scatter, if it
travels back along the same path. Taking into account the
effect of “empty corridor,” we get

dr

r
, E

a

` dR

l
E

0

a/R

dF e−s2R/ld+nS0 < b0 lnS C

2b0
D , s6d

whereC is a constant of the order of unity. Thus, forB=0 the
“empty corridor” effect simply changes the constant in the
argument of the logarithm.

The key idea suggested in Ref. 16 was that forBÞ0 the
area of the overlap of the two corridors,SB, sharply depends

FIG. 1. Backscattering process responsible for leading nonana-
lytic contribution to the resistivity atB=0 (a). For BÞ0, the over-
lap area,SB, between two corridors is small at largeB (b). For F
=0, SB decreases withB (c). For FÞ0 and smallB the values of
SB−S0 for time reversed trajectories have opposite signs(d) and(e).
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on B, resulting in the observed MR. Indeed, it is seen from
Fig. 1(b) that for b*b0, SB→0, resulting in sharp negative
MR,

drxx

r
, E

0

` dR

l
E

0

a/R

df e−2R/lsenSB − enS0d. s7d

The following qualitative explanation of the observed linear
MR was presented in Ref. 16. The valuensSB−S0d was esti-
mated for f=0 [see Fig. 1(c)] to the first order inB as
−nR3/Rc=−R3/2alRc, whereRc is the cyclotron radius. As-
suming that this estimate also works atfÞ0 and expanding
enSB−enS0 to the first order inB, one getsdrxx/r,−l /Rc
=−vct.

In fact, the physical picture of the phenomenon is more
subtle. The contribution of any trajectory withfÞ0 is can-
celled to the first order inB by the contribution of the time-
reversed trajectory, since the values ofSB−S0 are opposite
for these paths[see Figs. 1(d) and 1(e)]. The cancellation
does not occur only at very smallf,b. The integration in
Eq. (7) over f,b yields drxx/r,−b2/b0. Larger values of
f also give a quadratic inb contribution to the MR. This
contribution is positive and comes from the second order
term in the expansion ofenSB−enS0 in B. It follows from our
results[see Eqs.(1) and (62)] that the contribution of small
angles is dominant resulting in a negative parabolic MR. We
find that the parabolic MR crosses over to linear at very
smallb<0.05b0, which explains why the parabolic MR was
not seen in numerical simulations16 and experiment.18 Note
that for very smallb,b0

2 contribution of the trajectories
with a long Lyaponov region(Lyapunov trajectories) be-
comes important. In the Sec. III we focus on the regionb
.b0

2 where the contribution of the Lyapunov trajectories is
parametrically small. The Lyapunov trajectories will be dis-
cussed in Sec. IV.

III. CALCULATIONS

A. Kinetic equation

In this section we introduce the kinetic equation which is
the starting point for the calculation of the diffusion coeffi-
cient and the resistivity of the Lorenz gas.

We consider the Lorenz gas at zero temperature, assuming
that the electrons participating in the conduction have the
Fermi velocityvF. The diffusion coefficientD is given by

D =
1

2
E

0

`

dtkvs0dvstdl =
1

2
E

−`

`

dtE dr dvkGRlvv0. s8d

Here GR=GRsv ,v0,r ,r 0,td is the retarded Green’s function
of the Liouville equation andk¯l stands for the averaging
over the positions of the disks.24 The equation forGR reads

S ]

]t
+ v

]

]r
− vcFv 3

]

]v
G − T̂DGR = dsr − r 0ddsv − v0ddstd,

s9d

GR = 0 for t , 0,

wherev] /]r −vcfv3] /]vg is the Liouville operator of the

free motion in the magnetic field andT̂ describes scattering
on the disks. From Eq.(8) it follows that we need the time
integral ofGR rather than the whole time-dependent function.
This integral can be written as

E
0

`

dt GRsv,v0,r ,r 0,td =
dsv − vFd

vF
Ga,a0

sr ,r 0d, s10d

where a, a0 are the angles of velocitiesv and v0, respec-
tively. Here we used the energy conservation, which implies
that in scattering processes the absolute value of the velocity
does not change. Using Eq.(10), the diffusion coefficient Eq.
(8) can be rewritten as

D =
vF

4pS
E dr dr 0 da da0kGa,a0

sr ,r 0dlcossa − a0d.

s11d

Since kGa,a0
sr ,r 0dl depends ona−a0 and r −r 0 only, it is

convenient to average over the position of the initial point
and over the initial angle. HereS is the area of the sample.
Integrating Eq.(9) with respect to time the equation forG
=Ga,a0

sr ,r 0d is written as

se + L̂0 − T̂− − T̂+dG = dsr − r 0ddsa − a0d, s12d

where

L̂0 = n
]

]r
−

1

Rc

]

]a
,

n=cosaex+sinaey is the unit vector in the direction ofv
ande→0. The interaction with disks is written in Eq.(12) in

the form of collision integral.20,25The scattering operatorsT̂±

transform arbitrary functionfsr ,ad as follows:

T̂+fsr ,ad =E da8ssa − a8dn+fsr ,a8d,

T̂−fsr ,ad = − fsr ,ad E da8 ssa − a8dn−, s13d

where

n± = n±sr ,ad = o
i

dsr − Ri ± ad. s14d

HereRi are the positions of the disk’s centers and

sswd =
a

2
Usin

w

2
U s15d

is the differential cross section of one disk. The vectora
depends on anglesa, a8 in the integrals Eq.(13),

a = aa,a8 =
sn8 − nda

Î2s1 − n8nd
, s16d

and is pointing from the center of a disk to the scattering

point at the disk surface(see Fig. 2). Physically, operatorT̂+

NON-MARKOVIAN EFFECTS ON THE TWO-DIMENSIONAL… PHYSICAL REVIEW B 70, 245307(2004)

245307-3



describes influx of particles to velocityv at the pointRi −a,

while operatorT̂− describes the outflux from velocityv at the
point Ri +a. The averaged value of then± is equal to the
disks concentartion

kn+l = kn−l = n. s17d

The Boltzmann equation is obtained by averaging the
Liouville equation with respect to the position of the scatter-
ers and neglecting correlations. Indeed, using Eq.(17) one
finds that the average collision operators Eq.(13) are given
by

kT̂+lfsr ,ad = nE da8 ssa − a8dfsr ,a8d,

kT̂−l = − nE da8 ssa − a8d = − 1/l . s18d

Replacing the collision operators in the Liouville equation
Eq. (12) with their averages Eq.(18) one obtains the Boltz-
mann equation

L̂0Ga,a0

B sr d − nE da8 ssa − a8dsGa8,a0

B sr d − Ga,a0

B sr dd

= dsr ddsa − a0d. s19d

The Boltzmann-Drude diffusion coefficientD0 in the ab-
sence of the magnetic field is found from Eqs.(19) and(11)
as follows. Integrating(19) with respect tor and expanding
the Green’s functionGB in angular harmonics one finds

E Ga,a0

B sr ddr =
1

2p
o
m

lmeimsa−a0d, s20d

where

lm
−1 = nE dw sswds1 − cossmwdd. s21d

In particular,

l1 = l tr =
3l

4
=

3

8na
s22d

is the transport length. Substituting Eqs.(20) and(22) in Eq.
(11) one finds

D0 =
vFl tr

2
. s23d

B. Perturbative expansion

In this section we derive the perturbative expansion for
the average Green’s function in order to take into account
non-Markovian corrections which are absent in the
Boltzmann-Drude picture.

Introduce the operators

dT̂± = T̂± − kT̂±l s24d

which describe the fluctuation of the collision integral with
respect to its average value. Using these operators the formal

solution of (12), Ĝ=se+ L̂0−T̂−−T̂+d−1 can be written as the
following series:

kĜl = ĜB + o
m,n=±

ĜBkdT̂mĜBdT̂nlĜB + ¯ , s25d

whereGB is defined by Eq.(19). Here we took into account

that kdT̂l=0. The first term on the right-hand side of Eq.(25)
gives the Drude-Boltzmann result described in the preceding
section. The rest of the terms in Eq.(25) provide a regular
way for the calculation of correlations, which are absent in
the Boltzmann picture.

In the subsequent analysis of the perturbative expansion
Eq. (25) we will extensively use the representation of the
Boltzmann propagatorGB in terms of the ballistic propagator

Ĝ− = sL̂0 + 1/ld−1. s26d

This is achieved by expanding the Boltzmann propagator

GB=sL0+1/l −kT̂+ld−1 as a sum over the number of scattering

events represented by the operatorkT̂+l,

GB = G− + G−kT̂+lG− + ¯ . s27d

The diagrammatic representation of the expansion(27) is

shown in Fig. 3. Each cross in this figure corresponds tokT̂+l
and each solid line to a ballistic propagatorG−. For future
reference we write the explicit expression for the ballistic
Green’s function in zero magnetic field and in weak mag-
netic fields. ForB=0 the ballistic propagator conserves the
velocity. In this case its kernel is given by

Ga,a0

− sr d = dsa − a0ddsa0 − afr gd
exps− r/ld

r
. s28d

Hereafr g is the angle of the vectorr . Magnetic field rotates
the velocity vector with the cyclotron frequency. For small
magnetic fields,b!1, we have

Ga,a0

− sr d < dsa − afr g − r/2Rcd

3dsa0 − afr g + r/2Rcd
exps− r/ld

r
. s29d

FIG. 2. Scattering of a particle on a hard disk.

FIG. 3. Expansion of Boltzmann propagatorGB in a series in
ballistic propagatorsG.
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C. Ballistic returns in perturbative expansion

In this section we show how the processes of ballistic
returns discussed in Sec. II arise in the perturbative expan-
sion Eq. (27). Consider the second term in Eq.(25). This
term describes the memory effect due to diffusive returns. As
discussed in Sec. II, the main contribution comes from re-
turns after a single scattering. This process is described by
the diagram shown in Fig. 4(a). The dashed line corresponds

to the pairingskdT̂mdT̂nl sm ,n= ± d, external wavy lines to

the diffusion propagatorsĜB. The internal line corresponds
to the Boltzmann propagator Eq.(27) truncated at one scat-

tering Ĝ−kT̂+lĜ−.
Four combinations of(6,6) at the ends of external

dashed lines in the diagrams shown in Fig. 4(a) represent
four different types of correlation at a given pointR. To see

this consider the pairingkdT̂mdT̂nl. By virtue of Eqs.(13) and
(14) this pairing is proportional to the density-density corre-
lation function ksnmsr 1,a1d−ndsnnsr 2,a2d−ndl for m=±, n
=±. Assuming that disks are randomly distributed over the
sample we get for these functions

ksnmsr 1,a1d − ndsnnsr 2,a2d − ndl

= nE dR dsr 2 − R + ma1ddsr 1 − R + na2d. s30d

It is natural to interpret the vectorR as the position of the
center of the disk on which a double scattering occurs. How-
ever, this interpretation is valid for diagram(1,1) only. As
shown in Fig. 5, this diagram corresponds to the situation
where an electron experiences two real scattering processes
on the disk placed at pointR. The physical interpretation of
other diagrams is more subtle. The diagram(2,2) (see Fig.
6) does not correspond to any real scattering at pointR. It
just allows one to calculate correctly the probability for an
electron to pass twice the region of the sizea around pointR

without scattering. To interpret the diagrams(1,2) and
(2,1), note that in the Boltzmann picture, which neglects
correlations, the following process is allowed. An electron
scatters on a disk and later on passes through the region
occupied by this disk without a scattering(see Fig. 7) (analo-
gous consideration is valid for diagram shown in Fig. 8). The
diagrams(1,2) and (2,1) correct the Boltzmann result by
subtracting the contribution of such unphysical processes.

As follows from the qualitative discussion Sec. II, the
processes of ballistic returns after a single scattering give rise
to the leading (nonanalytic) correction to the Drude-
Boltzmann result in zero magnetic field. However, taking
into account diagrams shown in Fig. 4(a) (describing pro-
cesses shown in Figs. 5–8) is not sufficient for calculation of
the low field anomaly of the MR. Actually, diagrams in Fig.
4(a) do not contain the “empty corridor” effect. We will
show that the correct description of the memory effects, spe-
cific for ballistic returns, requires the renormalization of dia-
grams 4(a) by diagrams 4(b), in which the internal dashed
lines contains(2,2) pairings only. Physically, theNth order
diagram of the type 4(b) represents theN−1th order term in
the Taylor expansion of the exps−nS0d in the qualitative es-
timate (6). Such renormalization play the key role in the
quantitative description of the anomalous MR.

In the next section we derive the analytical expression for
diagrams 4(a). Then we generalize the calculations to ac-
count for the corridor effect and calculation of anomalous
MR.

D. Nonanalytical corrections to the zero-field resistance
neglecting the “empty corridor” effect

In this section we use the perturbative expansion Eq.(25)
to derive analytically the leading correction to the diffusion
coefficient. This correction is due to the processes described

FIG. 4. Diagrams, corresponding to the process shown in Fig.
1(a). Diagram(a) does not take into account the “empty corridor”
effect and should be renormalized by diagrams(b).

FIG. 5. Electron trajectory related to the pairing(1,1). An elec-
tron scatters twice(at pointsr 1 and r 2) on the surface of a disk,
placed at pointR. For a fixed position of the backscattering point
sr * =0d, the process is parametrized byR, and by the scattering
anglesw0, w f.

FIG. 6. Electron trajectory for the(2,2) pairing. Electron does
not experience any real scattering except as scattering atr * =0. The
diagram(2,2) gives the probability to pass twice the region around
point R without scattering.

FIG. 7. “Unphysical” electron trajectory related to the pairing
(2,1): electron scatters on a disk and after a while passes the
region occupied by this disk without scattering.
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by diagram Fig. 4(a). The operator expression of the correc-
tion to the Green’s function related to this diagram is given
by

where the underbracket stands for the pairings of operators

dT̂m and dT̂n. Substituting this correction into Eq.(11), and
using Eqs.(20) and(21) to integrate overr , r 0, a, a0 we get

dD =
vFl tr

2

4p
E db0 db Mb,b0

cossb − b0d, s31d

where

Mb,b0
=

1

S o
m,n=±

E dr * dr 1 dr 2 da1 da2 db1 db2

3kdTb,a2

m sr 2dGa2,b2

− sr 2 − r *dnssb2 − b1d

3Gb1,a1

− sr * − r 1ddTa1,b0

n sr 1dl. s32d

Here we used Eq.(18) for kT̂+l. Graphically, these calcula-
tions are presented in Fig. 9. The pairings
kdTb,a2

m sr 2ddTa1,b0

n sr 1dl, entering Eq.(32), are given in Ap-
pendix A for four possible combinations ofm, n. The pair-
ings only depend on the differencer 1−r 2. Therefore in Eq.
(32) one can remove the integral overr * and the sample area
S in the denominator and setr * =0 in the integrand. In other
words we set the origin of the coordinate system at the back-
scattering pointr * . Next we integrate Eq.(32) over the
anglesa1, a2, b1, b2. This integration can be easily done
taking into account angle dependent delta functions entering
in Ga2,b2

− sr 2d and Gb1,a1

− s−r 1d [see Eq.(28)]. As a result we
get a1=b1=af−r 1g, a2=b2=afr 2g, and

Mb,b0
< nsspd o

m,n=±
E dr 1 dr 2

3 kdTb,afr 2g
m sr 2ddTaf−r 1g,b0

n sr 1dl
e−r2/le−r1/l

r2r1
. s33d

In derivation of Eq.(33) we took into account that the pair-
ing of collision operatorskdTmsr 1ddTnsr 2dl vanishes forur 1

−r 2u.2a, which is clear from its physical meaning and also
can be seen from the delta functions in the factorJsa,bd (see
Appendix A). At the same time bothr1 and r2 are of the
order of the mean free pathl @a. Therefore,b2−b1=afr 2g
−af−r 1g<p, andssb2−b1d<p. Physically this means that
the typical scattering angle in the processes of ballistic return
are close top. Next, we use Eq.(33) to evaluate the contri-
butions of different pairingsm, n.

(1,1) pairing: Consider first the process in whichm=+,
n=+. Substitute Eqs.(A3) and(33) in Eq. (31) and integrate
over r 1, r 2. It is convenient for our purposes to perform this
integration for a fixed value of the vectorR. Then the delta
functions in Eq.(A7) ensure thatr 1 andr 2 lie on the circle of
the radiusa centered in the pointR,

r 1 = R − aaf−r 1g,b0
, r 2 = R − ab,afr 2g. s34d

The graphical solution of these equations is shown in Fig. 5
(vectorsnb,nb0

in this figure are the unit vectors in the di-
rections ofb and b0, respectively). Sincea is small sa! ld
one has approximately

r 1 < r 2 < R. s35d

This accuracy is sufficient for the calculation of the diagram
in Fig. 4(a) (since we calculate it in the lowest order ina/ l).
Upon integrating out the vectorsr 1, r 2 the integrand in Eq.
(31) depends onR. Finally we get

dD++ =
vFl tr

2n2sspd
4p

E dR db db0 cossb − b0d

3ssb − afRgdssaf− Rg − b0d
e−2R/l

R2 . s36d

Introducing new variablesw0=b0−af−Rg and w f =afRg−b
and taking into account thatafRg=af−Rg+p and ss−wd
=sswd, the relative correction to the diffusion coefficient is
written as

dD++

D0
= −

nltr
4l
E dR

R
dw0 dw f e−2R/l

3ssw fdssw0dcossw0 + w fd. s37d

From Fig. 5 it is seen thatw0, w f are the scattering angles.
(1, 2) pairing: Next we present calculations form=+,

n=−. Like the calculation of the diagram(1, 1), we substi-
tute Eq.(33) and Eq.(A5) into Eq.(31) and integrate overr 1,
r 2 with the use of Eq.(A7). The values ofr 1 and r 2 should
be found from the following equations:

FIG. 8. “Unphysical” electron trajectory related to the pairing
(1,2): electron passes the region occupied by a disk without scat-
tering and later on scatters on this disk. The diagram related to such
trajectory corrects the Boltzmann result by subtracting the probabil-
ity of this unphysical event. It is convenient to parametrize this
trajectory by the scattering angles for the(1,1) process.

FIG. 9. Graphical representation of Eqs.(31) and (32).
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r 1 = R + aaf−r 1g,a8, r 2 = R − ab,afr 2g. s38d

The graphical solution of these equation is presented in Fig.
8. After integrating out vectorsr 1, r 2 and the angleb0 we get

dD+− = −
vFl tr

2n2sspd
4p

E dR db da8 cossb − af− Rgd

3ssb − afRgdssaf− Rg − a8d
e−2R/l

R2 . s39d

In derivation of this equation we have used Eq.(35). It is
convenient to rewrite this equation using as integration vari-
ablesw0, w f, which are the scattering angles for the process
(1, 1). They are expressed in terms ofa8 and b as w0
=af−Rg−a8, w f =afRg−b. In these variables Eq.(39) reads

dD+−

D0
=

nltr
4l
E dR

R
dw0 dw f e−2R/lssw fdssw0dcossw fd.

s40d

It is seen from Eq.(40) (see also Fig. 8) that the contribution
of the process(1, 2) can be parametrized by the anglesw0
and w f, which are the scattering angles for the process(1,
1). Analogous calculations can be easily done for other
types of correlations.

Summing the different contributionsdD=dD+++dD+−

+dD−++dD−− we get the following expression for the dia-
gram Fig. 4(a):

dr

r
= −

dD

D

=
nltr
4l

ReE
a

` dR

R
e−2R/lE

0

2p

dw0E
0

2p

dw f ssw0dssw fd

3s1 − eiw0ds1 − eiwfd =
2b0

3
lnS 1

2b0
D . s41d

This equation is the exact expression for the nonanalytic
correction19–23to the Drude-Boltzmann resistivity which was
qualitatively given in Eq.(3). Four terms in the products1
−eiw0ds1−eiwfd=1−eiw0−eiwf +eisw0+wfd correspond to four
types of correlations discussed above.

E. “Empty corridor” effects on the zero-field resistance

In this section we use the perturbation theory for the
quantitative derivation of the effect of the “empty corridor”
discussed in Sec. II.

Equation(41) takes into account one pairing of operators

dT̂m and dT̂n. The terms containingN pairings (N dashed
lines) are typically small asb0

N. However, there is a series of
diagrams, shown in Fig. 4(b), whose contribution is of the
orderb0 (see Ref. 21). The internal dashed lines in this series

only contain pairingskdT̂−dT̂−l. Below we show that the se-
ries Fig. 4(b) accounts for the effect of the “empty corridor.”
More precisely, we prove that theNth order term in this
series corresponds toN−1 term in the Taylor expansion of
the expsnS0d in Eq. (4).

The addition of the diagram Fig. 4(b) to the diagram Fig.
4(a) leads to following replacement in Eq.(32),

Ga2,b2

− sr 2dGb1,a1

− s− r 1d → Kb1,b2

a1,a2sr 1,r 2d, s42d

where the functionKb1,b2

a1,a2sr 1,r 2d can be found from the

Dyson equation(see Fig. 10). Since the operatordT̂− does
not change the velocity angle, one can search the solution of
the Dyson equation in the form

Kb1,b2

a1,a2sr 1,r 2d = Ga2,b2

− sr 2dGb1,a1

− s− r 1dGsr1,r2,Fd, s43d

whereF is the difference between the backscattering angle
andp (see Fig. 11). While substituting Eq.(43) in the Dyson
equation(which is shown graphically in Fig. 10), integrating
over anglesa ,a8, and using the identity

dsafr 2 − r g − afr gd =
ur 2 − r u

r2
dsafr g − afr 2gdusr2 − rd

s44d

(and analogous identity for vectorsr 8 ,r 1) we get

Gsr1,r2,Fd = 1 +E
r,r2

E
r8,r1

dr dr 8

3
dsafr g − afr 2gddsaf− r 8g − af− r 1gd

rr 8

3kdTafr 2g
− sr ddTaf−r 1g

− sr 8dlGsr,r8,Fd, s45d

where dTa
−sr d are defined in Appendix A. Further calcula-

tions can be done in two different ways. It is useful from
methodological point of view to discuss both of them. One
way is to first integrate Eq.(46) over the angles of the vec-
tors r and r 8 (see Fig. 10). The delta functions entering in
Eq. (46) ensure that pointr (see Figs. 10 and 11) lies on the
line segment connecting pointr 1 and the origin and pointr 8
lies on the line segment connecting pointr 2 and the origin.
This allows to reduce the Dyson equation to the closed rela-
tion for functionGsr1,r2,Fd,

FIG. 10. Dyson equation, describing the renormalization of
backscattering events by the “empty corridor” effect.Nth order term
in the these stairlike diagrams corresponds to thesN−1dth term in
the Taylor expansion of expsnS0d in Eq. (4).

FIG. 11. PairingskdT̂−dT̂−l do not change the electron trajec-
tory. Pointr (see Fig. 10) lies on the line segment connecting point
r 1 and the origin and pointr 8 lies on the line segment connecting
point r 2 and the origin.
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Gsr1,r2,Fd = 1 +E
0

r1

dr8E
0

r2

drkdTafr 2g
− sr d

3dTaf−r 1g
− sr 8dlGsr,r8,Fd, s46d

where the pairing

kdTafr 2g
− sr ddTaf−r 1g

− sr 8dl < hsr,Fddsr − r8d, s47d

is calculated in Appendix B. Here

hsr,Fd = s2a − uFurdus2a − uFurd s48d

is shown in Fig. 12. As a result we have

Gsr1,r2,Fd = 1 +nE
0

minfr1,r2g

dr hsr,FdGsr,r,Fd. s49d

This equation has an evident solution

Gsr1,r2,Fd = expSnE
0

minfr1,r2g

dr hsr,FdD . s50d

Equation(50) may be derived in an alternative way. This
way allows to understand on the formal basis why one

should renormalize the diagrams in Fig. 4(a) by thekdT̂−dT̂−l
pairings only. Let us integrate in Eq.(46) over r ,r 8, using
Eq. (A4). Doing this, we get

Gsr1,r2,Fd = 1 +nE da8 da9E
R,minfr1,r2g

dR
dsafR + aafr 2g,a8g − afr 2gddsaf− R − aaf−r 1g,a9g − af− r 1gd

R2

3ssafr 2g − a8dssafr 1g − a9dGsR,R,Fd. s51d

Here we took into account thatGsr ,r8 ,Fd is a slowly chang-
ing function ofr ,r8 (it changes on a scale of the order ofl).
Since Eq. (A4) provides ur −Ru,ur 8−Ru,a, we set
Gsr ,r8 ,Fd<GsR,R,Fd. Next we make use of the identity

E da8 ssa − a8ddsafR + aa,a8g − ad < Rusa/R− ua − afRgud

s52d

to integrate overa8 ,a9. After this integration we get

Gsr1,r2,Fd = 1 +nE
0

minfr1,r2g

R dR dafRg

3usa/R− uafr 2g − afRgud

3usa/R− uafr 1g − afRgudGsR,R8,Fd.

s53d

Integration overafRg leads again to Eq.(50).
From Eq.(35) it follows that we need to knowG for r1

< r2<R. Using Eq.(50) we find

GsR,R,Fd = expSnE
0

R

dr hsr,FdD = enS0sR,Fd, s54d

whereS0sR,Fd is the overlap between two corridors, given
by Eq.(5). Thenth order term in the Taylor expansion of the
exponential(54) corresponds to a diagram in Fig. 4(b) with
n+1 dashed lines. Indeed, thenth order term in the Taylor

expansion containsn integration over coordinates ofn scat-
terings of the type2, 2. What remains to do to get the
resistivity correction is to expressF in Eq. (54) via angles
w0,w f. To do this, the precision Eq.(35) is not sufficient.
More specifically, we will need to know the angle between
vectorsr 1 andr 2 to the ordera/ l. For this purpose it will be
sufficient to make replacementsaf−r 1g<af−Rg and afr 2g
<afRg in the arguments of vectorsa in Eq. (34). Then the
angleF is calculated as(see Figs. 5–8)

F <
a

R
fcossw0/2d + cossw f/2dg. s55d

This equation is valid for 0,w0,2p, 0,w f ,2p [since
cossw /2d is not periodic with 2p one should specify the in-
tegration limits]. It worth noting that Eq.(55) ensures that
the argument of theu function in Eq.(48) is positive and the
overlap width and overlap area are given by

hsr,Fd = 2a − uFur ,

S0sR,Fd =E
0

R

hsr,Fddr = 2aR− uFuR2/2. s56d

Summing the diagrams Fig. 4(b) together with Fig. 4(a),
one gets an exact equation

FIG. 12. Width of the overlap region as a function of a distance
from the origin.
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dr

r
=

nltr
4l

ReE
a

` dR

R
e−2R/lE

0

2p

dw0E
0

2p

dw f ssw0dssw fd

3s1 − eiwfdenS0sR,Fd =
2b0

3
lnS C

2b0
D , s57d

instead of the qualitative estimate Eq.(6).
HereC<1.8 is a numerical coefficient. Thus, addition of

the series Fig. 4(b) to Fig. 4(a) leads to the following renor-
malization: lns1/2b0d→ lnsC/2b0d.

F. Estimate for neglected diagrams

In this section we use the derivation presented in the pre-
ceding section to show how to select relevant diagrams. The
derivation was based on identity(52). The left-hand side of
this equation is proportional to the impurity cross section
ssa−a8d,a. However, the right-hand side is parameteri-
cally larger ,R, provided thatua−afRgu,a/R. One can
show that the function similar to the one on the right-hand
side(52) arises each time when one of the indexm or n in the
pairing kdTmdTnl is equal to(2). [for a pairingkdT−dT−l we
have two functions of the type(52) see Eq.(53)]. For the
case whenm or n equals to(1) we have a differential cross
sectionssa−afRgd,a instead of function(52). Now we are
ready to estimate different types of diagrams. Insertion of
one additional(2, 2) pairing into a diagram in Figs. 5–8
gives two additional Green’s functions and, consequently,
multiplier ,1/l2 and two functions of the type(52) giving a
multiplier ,l2. One should also multiply on disk concentra-
tion n and integrate overdR. Due tou functions in Eq.(52)
the integration areadR is of the orderla. Combining all the
multipliers together we havenla,1. Therefore, addition of
(2, 2) pairing does not lead to any smallness. In contrast to
this, insertion of(2, 1) pairing leads to smallness,a/ l.
Indeed, the only difference from the case of(2, 2) pairing is
that one should replace one of the functions(52) by the cor-
responding cross section. This leads to the change of one of
the multiplier of the orderl by multiplier of the ordera.
Following this line of reasoning one could conclude that in-
sertion of(1, 1) pairing leads to the smallness of the order
of sa/ ld2 Actually, the smallness arising from insertion of(1,
1) pairing is of the order ofa/ l. Indeed, while the replace-
ment of each of the two functions of the type(52) the corre-
sponding cross section leads to the relative smallness of the
ordersa/ ld2, the integration area in this case is not restricted
by angle dependentu functions. As a result, the integration
area,dR, l2, is larger by a parameterl /a compared to the
case of(2, 2) pairing. Note that estimates presented above
do not work for the diagrams with one dashed line Figs. 5–8.
In this case one should integrate over initial and final scat-
tering angles. One can easily see that integration of Eq.(52)
over anglea leads to the multiplier of the order ofa. This
implies that in this case all four pairings,(11), (12),
(21), and(22) are of the same order, ofa/ l [see Eq.(41)].
Note that the higher order diagrams which are small in the
parameterb0 may turn out to be relevant for the MR at very
low magnetic field(see Sec. IV).

G. Anomalous magnetoresistance

In this section we generalize our calculations for theB
Þ0 case assuming thatB is small sb!1d. The main contri-
bution in this case still comes from diagrams in Figs. 4(a)
and 4(b). Consider for example diagram(11). Let us com-
pare the process of double scattering described by this dia-
gram for BÞ0 (see Fig. 13) with the same process forB
=0 (see Fig. 5). For fixed pointsr 1, r 2, and r * =0, one can
see the following differences. First, the scattering anglesw0
and w f acquire small corrections of the order ofR/Rc
, l /Rc=b!1. Second, the parts of the electron trajectory
corresponding to free ends of the picture become curved. The
backscattering anglef increases by the valueR/Rc

f = F + R/Rc, s58d

whereF is the value of backscattering angle forB=0 given
by Eq.(55). Finally, the overlap area of the corridors changes
because the trajectories become curved(see Fig. 13). The
corrections tow0 andw f lead to small relative corrections to
the resistivity of the order ofb0b2 and can be neglected. The
same reason allows one to neglect the curvature of the in-
coming and outgoing parts of the trajectory. Therefore, the
only relevant difference is the change of the overlap area of
the corridors. The solution of the Dyson equation is analo-
gous to theB=0 case. The points of intermediate integration
r andr 8 lie now at the segments of cyclotron circles(from r 1

to r * and fromr * to r 2). The pairing of two operatorsdT̂− is
still given by Eq.(47) with the replacementhsrd→hBsrd. For
b ,b0!1, the overlap width is calculated as

hBsxd < s2a − ufr − r2/Rcudus2a − ufr − r2/Rcud, s59d

whereu is the Heaviside step function. Therefore, the only
difference from Eq.(57) is that one should replaceS0→SB,
where the overlap area is given by

SBsR,fd =E
0

R

dr hBsrd, s60d

The value ofdrxx/r is obtained from Eq.(57) by replacing
enS0 to enSB−enS0,

FIG. 13. The magnetic field changes the backscattering angle
f=F+R/Rc. The dashed(solid) line in represents electron trajec-
tory for B=0 sBÞ0d. The electron trajectory forBÞ0 is param-
etrized by the scattering anglesB=0.
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drxx

r
=

nltr
4l

ReE
a

` dR

R
e−2R/lE

0

2p

dw0E
0

2p

dw f ssw0dssw fd

3s1 − eiw0ds1 − eiwfdsenSBsR,Fd − enS0sR,Fdd. s61d

Introducing dimensionless variablesT=R/ l, z=b /b0 we get
Eq. (1), where functionfszd is given by

fszd =
3

32
E

0

` dT

T
e−2TE

0

2p

dw0E
0

2p

dw f

3cosSw0 + w f

2
Dsin2Sw0

2
Dsin2Sw f

2
Dsesz − es0d.

s62d

Here

sz =E
0

T

dtS1 −Uzt −
zt2

2
UDuS1 −Uzt −

zt2

2
UD ,

z =
cossw0/2d + cossw f/2d

2T
+

zT

2
, s0 = sz→0. s63d

Function fszd has the following asymptotics:

fszd = H0.32z2 for z→ 0,

0.39 − 1.3/Îz for z→ `.
J s64d

In the interval 0.05&z&2, fszd can be well approximated by
the linear function

fszd < 0.032sz− 0.04d for 0.05& z& 2. s65d

Next we discuss the parabolic asymptotics more carefully.
We will show that in this asymptotic region there are two
contributions of different signs to the magnetoresistance: a
negative contribution coming from the trajectories with very
small F such thatuFu&b, and a positive contribution com-
ing from larger angles. This considerations will be used in
the next section, discussing trajectories with the long
Lyapunov region.

First, we write the difference of two exponentsenSB

−enS0 as followssensSB−S0d−1denS0 and expand the equation in
the bracket in the Taylor expansion up to the second order,

enSB − enS0 < enS0SndS+
n2dS2

2
D ,

dS= SB − S0. s66d

We consider the casez!1 sb!b0d. One can easily see that
in this case the expression 2a− ufr −r2/Rcu, entering in the
argument ofu function in Eq.(59) is positive at all values of
F [we take into account Eq.(55) and have in mind thatr
& l]. Therefore, the differencedSsFd=SBsFd−S0sFd is ex-
pressed as

dSsFd =E
0

R

dr rsuFu − uF + sR− rd/Rcud

=5−
R3

6Rc
for F . 0,

+
R3

6Rc
−

sR+ RcFd3

3Rc
usR+ RcFd for F , 0.6

s67d

To sum the contributions of different electron trajectories, we
take into account that the time reversed trajectories have the
same statistical weight. Indeed, as seen from Figs. 5–8 and
13, time reversion correspond to the changew0→2p−w f,
w f →2p−w0. This transformation does not affect the factor
ssw0dssw fds1−eiw0ds1−eiwfd, entering Eq.(61). At the same
time, the angleF changes to −F under this transformation
[see Eq.(55)]. From Eq.(67) we find the variation of the
overlap area averaged over two time reversed trajectories,

n
dSsFd + dSs− Fd

2
= −

nsR− RcuFud3

6Rc
usR− RcuFud.

s68d

This expression is of the order ofb /b0 for uFu,R/Rc,b
and is equal to zero for larger angles. We conclude therefore,
that time reversed contributions do not cancel only in the
region of small anglesF&b. Since the total variation ofF
is much larger, of the order ofb0 [see Eq.(55)], we can
replace the expression on the right-hand side of Eq.(68) by
d-function, writing nsdSsFd+dSs−Fdd /2<−sb2/24b0dsR4/
l4ddsFd. Keeping the leading terms of the order ofb2 only,
we obtain

endSsFd + endSs−Fd

2
− 1 < −

b2

24b0

R4

l4
dsFd +

b2

s24b0d2

R6

l6
.

s69d

The second term in this equation comes from the averaging
of the quadratic term in the exponent expansionn2dS2/2
over two time reversed trajectories. This term is positive and
partly compensates the negative contribution of small angles.
Using Eqs.(55), (56), and(61), after some algebra we get the
low-field asymptotic of MR as the sum of the negative and
positive contributions discussed above

drxx

r
= −

b2

2b0
+ A

b2

b0
< − 0.32

b2

b0
, s70d

where numerical coefficientA is given by

A = 320E
0

p E
0

p

da db
sin2 a sin2 b cossa + bd

s4 + cosa − cosbd6 < 0.18.

s71d

IV. CONTRIBUTION OF TRAJECTORIES WITH LONG
LYAPUNOV REGION TO MAGNETORESISTANCE

The equations derived in the preceding section give the
contribution to the MR related to the processes shown in
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Figs. 5–8, the parabolic asymptotics(70) starting to work
whenb becomes smaller thanb0. Such processes are related
to the correlations specific for returns to the initial point after
one scattering. As we show at this section for very low mag-
netic fields,b!b0

2, other correlations come into play. Spe-
cifically, we consider the contribution to the MR of the tra-
jectories containing long Lyapunov regions. Such trajectories
consist of the direct and the return paths and involve real
double scatterings on some number of disks as shown in Fig.
14. The divergency between the direct and the return paths is
characterized by the Lyapunov length. We will call such tra-
jectories “Lyapunov trajectories.” In the diagrammatic series
they are presented by the sum of the diagrams shown in Fig.
15. Just as in the case discussed above, four different pair-
ings are allowed at the ends of external dashed lines:(2, 2),
(1, 2), (2, 1) and (1, 1). However, in contrast to the
diagrams shown in Fig. 4, internal lines of “Lyapunov dia-
grams” contain pairings of(1, 1) type as well as of(2, 2)
type. Physically,(1, 1) pairings corresponds to real double
scatterings in the Lyapunov region. We will count such dia-
grams by the numberN of correlated links in the Lyapunov
region. The Lyapunov trajectory shown in Fig. 14 corre-
sponds toN=3. The diagrams in Fig. 4 discussed in Sec. III,
present a particular case of diagrams with Lyapunov region,
corresponding toN=1. The correlated links of any Lyapunov
trajectory are renormalized by the pairings(2, 2) as was
discussed already forN=1. The contribution of any diagram
of such type to the resistivity is small asb0

N. However, as
will be shown below, these diagrams have a sharp depen-
dence on the magnetic field at very small fields. We will
show that forb,b0

N the diagram of theNth order gives a
contribution to the parabolic MR of the same order as the
contribution of the diagrams withN=1 already calculated
above.

Consider the Lyapunov trajectory withN correlated links.
Denote byF0,F1, . . . ,FN the angles between the segments
of the direct and the return paths and byw0, . . . ,wN−1 the
scattering angles between successive correlated links as
shown in Fig. 14. The contribution of such a process has a
sharp dependence on the magnetic field due to the magnetic
field dependence of the overlap of the corridors surrounding
the direct and the return path. This dependence is different
for different segments of the trajectory due to the difference
of the anglesFn. Indeed as we have seen in the preceding
section if F is the typical angle between the direct and the
return paths then the characteristic scale for the magnetic
field dependence of the overlap of the corridors isb,F. As
one can see from Eq.(55), the typical value of the angleFn
is of the orderb0

n. The smallest angleFN,b0
N corresponds to

the last segment of the trajectory. Therefore it is this segment
that should lead to the sharpest dependence of the resistivity
on the magnetic field. Consider the contribution of the last
segment at small magnetic fieldb!b0

N. For typical trajecto-
ries withFN,b0

N there is a cancellation of the contributions
of the time reversed paths to the MR(see discussion in the
preceding section). However, for a small fraction of the tra-
jectories withFN&b the contribution of the time reversed
paths does not cancel and is proportional to the change of the
overlap area nsdSsFNd+dSs−FNdd /2,b /b0. The phase
space of such trajectories is proportional tob /b0

N. Thus, the
contribution of the Lyapunov trajectory withN links to the
resistivity in the region of small magnetic field is given by

drxx
N

r
, − b0

N b

b0

b

b0
N , −

b2

b0
for b , b0

N, s72d

where the factorb0
N is due to theNth order of the corre-

sponding diagram. As we show below, the coefficient in this
equation does not depend on the diagram order. It equals
1/2, thus coinciding with the coefficient in the small angles
contribution to parabolic asymptotic forN=1 [see Eq.(70)].
It is worth noting that only in the caseN=1, one should take
into account the contribution of large angles, presented by
the second term in Eq.(70). For N.1 such contribution is
parametrically small.

Before presenting rigorous derivation of above state-
ments, we consider qualitatively the contribution ofNth or-
der diagram for larger magnetic fieldsb.b0

N. At such fields
the first order contribution of the time reversed paths to the
corridor effect does not cancel for trajectories with any val-
ues ofF up to the maximal valueF,b0

N. Thus, the factor
b /b0

N, which counts the phase space of relevant trajectories
saturates at some constant value of the order of unity and one
has

drxx
N

r
, − bb0

N−1 for b . b0
N. s73d

Consider now the MR in the intervalb0
N+1,b,b0

N. In
this interval the Lyapunov trajectories with the number of
double scatterings smaller thanN give a parabolic contribu-
tion Eq. (72) to the MR. The trajectories with the number of
double scatterings bigger thann give a linear contribution
Eq. (73), the main contributionb0

Nb coming from the trajec-

FIG. 14. Electron trajectory with a Lyapunov region, containing
N=3 correlated links.

FIG. 15. The diagrams corresponding to electron trajectories
with long Lyapunov regions.
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tories withN+1 double scattering. As a result one has

drxx

r
< − SN

2
− ADb2

b0
− CNb0

Nb for b0
N+1 , b , b0

N.

s74d

HereCN,1 andA is given by Eq.(71). ForN@1 the second
term on the right-hand side of Eq.(74) can be neglected and
we get finally

drxx

r
< −

N

2

b2

b0
for b0

N+1 , b , b0
N, N @ 1. s75d

Equation (74) indicates that at very low magnetic fields,
which correspond to largeN, ln b / ln b0 the results of Sec.
III G. become incorrect and logarithmic renormalization of
the parabolic MR occurs,

drxx

r
< −

ln b

2 ln b0

b2

b0
. s76d

Next we present a rigorous derivation of the contribution
of the Nth order Lyapunov trajectory forb!b0

N. As follows
from qualitative considerations presented above,Fn!1 for
any 0ønøN. Indeed,Fn,b0

nF0. Since the minimal angle,
FN is on the order ofb the maximal angle is small compared
to unity, F0,b /b0

N!1. Therefore, the direct and return
paths of the relevant Lyapunov trajectories are very close to
each other. This allows us to characterize a scattering be-
tween n−1 andn links of the trajectory by one scattering
anglewn instead of two different scattering angles for direct
and return paths. The dependence on the magnetic field
comes from the last link of the trajectory. Expanding

ensSB
N−S0

Nd−1, like it was done in the preceding section, we
only keep the first term,

n
dSsFNd + dSs− FNd

2
< −

b2

24b0

RN
4

l4
dsFNd. s77d

To write down the analytical expression forNth order con-
tribution we should take into account for combinations of
(6, 6) at the ends of the diagram in Fig. 15. This corre-
sponds to four types of scattering on the impurity 0 in Fig. 14

and leads to appearance of the factors1−eiw1ds1−eiw18d= u1
−eiw1u2. Here we took into account that direct and return
paths coincide in the first approximation and, as a conse-
quence, scattering anglesw1, w18 for direct and return paths
are related to each other as follows:w1=2p−w18. The ana-
lytical expression for MR is given by

drxx
N

r
= −

nNl tr
4l

E dw1 dF0 d2R1 ¯ d2RNu1 − eiw1u2

3
s2sw1de−R1/l

R1
2 ¯

s2swNde−RN/l

RN
2

b2

24b0

RN
4

l4
dsFNd.

s78d

Here we integrate over distances between disks instead of
integration over disks positions. The factorss2swnd comes
from double scatterings, the factorRn

2 from denominators of
the two Green’s functions, describing the propagation along

thenth link on the direct and return way. In writing Eq.(78)
we also took into account the renormalization of correlated
links by the(2, 2) pairings. As a consequence of this renor-
malizationnth link, which is passed twice(on the direct and
return paths) comes with the factore−Rn/l instead ofe−2Rn/l.
What remains to do is to express the final angleFN via the
initial angle F0. From simple geometric considerations we
get

F0 =
R1

ssw1d
. . .

RN

sswNd
FN. s79d

Combining Eqs.(78) and (79) and performing the integral
one gets

drxx
N

r
= −

1

2

b2

b0
for N . 1. s80d

V. INTERPRETATION OF THE RESISTIVITY
CORRECTION IN TERMS OF SMALL CHANGE

OF THE EFFECTIVE SCATTERING CROSS SECTION

In our calculations of resistivity corrections we used Eq.
(8) as a starting point. Here we briefly discuss an alternative
approach based on the accounting of the memory effects in
terms of small change of the effective cross section. Consider
first the (1, 1) ballistic returns with given values of the
anglesw0 andw f. The contribution of such processes to the
resistivity (both for B=0 and forBÞ0) contains the factor
Reeisw0+wfd=cossw0+w fd. Let us introduce now the scattering
anglew for the process(1,1) considered as a single scatter-
ing on a complex scatterer. For small values ofw0 andw f this
angle is evidently given byw=p+w0+w f. For arbitrary val-
ues ofw0,w f the scattering angle reads

w = ww0,wf
= sp + w0 + w fdsmod 2pd. s81d

Such definition ensures that 0,w,2p. Next we introduce
the integration over this angle:edw0 dw f cossw0+w fd¯
=s−1dedw coswedw0 dw f dsw−ww0,wf

d¯. Analogous ex-
pressions can be easily written for the processes(2,2),
(1,2), and(2,1). As a result, one can write the contribution
of four possible types of correlations as follows:

ReE dw0 dw fs1 − eiw0ds1 − eiwfd ¯

= −E dw coswE dw0 dw fsdsw − ww0,wf
d

+ dsw − pd − dsw − ww0,0d − dsw − w0,wf
dd ¯ .

s82d

The (2,2) process is represented in Eq.(82) by dsw−pd.
Here we neglected a small difference(on the order ofb0)
between the anglew and p. By virtue of Eq. (82) one can
easily check that the memory effects related to four types of
ballistic returns can be accounted quantitatively in the frame
of the usual Boltzmann equation. One should just replace the
scattering cross-section on one disksswd by the effective
cross section

CHEIANOV, DMITRIEV, AND KACHOROVSKII PHYSICAL REVIEW B 70, 245307(2004)

245307-12



seffswd = sswd + dsBswd, s83d

wheredsBswd is the field-dependent correction given by

dsBswd =
1

4l
E

a

` dR

R
e−2R/lE

0

2p

dw0E
0

2p

dw f ssw0d

3ssw fdenSBfdsw − ww0,wf
d + dsw − pd

− dsw − ww0,0d − dsw − w0,wf
dg. s84d

This correction does not change the total cross section

E
0

2p

dw dsBswd = 0. s85d

In other words, the enhancement of cross section caused by
processes(1,1) and(2,2) is accompanied by the reduction
of the scattering due to the(1,2) and (2,1) correlations.
The resistivity correction is proportional to the change of the
inverse transport length,

dS 1

l tr
D = nE

0

2p

dws1 − coswddsBswd

= − nE
0

2p

dw cosw dsBswd. s86d

Using Eqs.(82), (83), and (86) one can easily get Eq.(61)
for MR.

Finally we note that this approach is easily generalized for
calculation of the contribution of the trajectories having long
Lyapunov region. For such trajectories one should replace
the anglesw0 andw f in Eq. (82) by w1 andw18<2p−w1 (see
Sec. IV). For very smallb such thatb0

N+1,b,b0
N and N

@1, the magnetic field induced correction to the scattering
cross-section is expressed in a simple form,

dsBswd − ds0swd
2a

< −
2b2 ln b

9b0 ln b0
Sdsw − pd −

cos2sw/2d
p

D .

s87d

VI. DISCUSSION

In the preceding sections we derived analytical theory of
the low-field anomaly in the magnetoresistance, caused by
sharp dependence of the memory effects specific for back-
scattering events on the magnetic field. Next we compare our
calculations with the results of simulations and with experi-
ment. Note first that there is a parametrically small nona-
nomalous correction to Eq.(1) due to returns after multiple
scatterings. This correction is given by16

drxx8 /r < − 0.2b0b2.

To compare the results of simulations16 with the theoretical
results in a wider region of parametersb ,b0, we substract
drxx8 /r from the numerical curves. Theoretical and
numerical16 results are plotted in Fig. 16, in the universal
units,drxx/rb0 versusz=b /b0. It is seen, that the theoretical
and numerical results are in very good agreement. Experi-

mental measurement of the MR in the system of antidot
arrays18 agrees qualitatively with our predictions. The ex-
perimentally observed MR was linear in magnetic field in a
wide region of fields. This region corresponds to the interval
of magnetic fields, where our results can be approximated by
linear dependence[see Eq.(2)]. The magnetic fields used in
experiment were relatively strong, and the parabolic
asymptotic was not achieved. The quantitative comparison
with the experiment18 is more difficult due to several rea-
sons. First of all, in the structures, used in experiment, be-
sides antidots there were also short range scatterers. Our pre-
liminary estimates show that accounting for a short range
disorder can change the results of the calculations. Second,
the antidot distribution was not fully chaotic in the experi-
ment. To be more specific, the antidots were randomly
moved from the regular square lattice distribution by shifts
on the order of 30–40% of the lattice constant. Finally, the
antidots did not have equal sizes, the uncertainty of the size
being on the order of 50%. In spite of this, a very good
quantitative agreement with the experiment can be achieved
by appropriate choice of the antidot sizea in the uncertainty
interval (see also discussion of the experiment in Ref. 16).
Note also that generalization of the theory for the case when
antidot sizes vary is straightforward. What must to be done is

to average pairingskdT̂mdT̂nl with the distribution function
for the antidots sizes. This leads to the following modifica-
tion of the obtained formulas: one should change
ssw0dssw fd→ssw0dssw fd in Eq. (57) and hB→hB in Eq.
(59). Here over line means averaging over antidot sizes. We
do not present here corresponding calculations, since the dis-
tribution function of antidot sizes is not known for
experiment.18

Next we briefly discuss several interesting unsolved prob-
lems. Note first that above consideration of Lyapunov trajec-
tories is valid, provided thatN,1/b0. Indeed, while calcu-
lating the Nth order diagrams we neglected small
contributions of(1,2) and (2,1) pairings on the all corre-
lated links. Accounting of such pairings is rather tricky and is
out of scope of this paper. We expect, however, that such
correlations may lead to a factor on the order ofs1−cb0dN

sc,1d in Eq. (79). Therefore, forN.1/b0 the contribution

FIG. 16. The value ofdrxx/rb0 from Eqs.(1) and (62) (solid
line) shown as a function ofb /b0 together with the results of nu-
merical simulations(Ref. 16) presented for different values ofb0

(triangles forb0=0.09, boxes forb0=0.06, circles forb0=0.03).
Data for all numerical curves are shown forb,0.3. Inset, the
crossover from quadratic to a linear dependence atb /b0,0.05.
This crossover was not resolved in numerical simulations.
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of Lyapunov diagrams might becomeN dependent. This
gives a low-field limit for our theory

b . b0
1/b0. s88d

We conclude that the behavior of the MR in the limitb
→0 remains so far unclear.

In our calculations we fully neglected quantum effects.
Such effects should decrease the “effect of empty corridor”
due to the diffraction on the edges of the disks. In the situa-
tions where the magnetic field is not very small,b.b0

2, the
neglecting of the diffraction effects is justified ifa@ÎlFl (lF
is a Fermi wavelength). This criterion ensures that diffraction
effects on the edges of the disks are not relevant at the scales
of the order ofl. In the opposite case,a!ÎlFl, the diffrac-
tion should destroy the “corridor effect,” thus suppressing
the anomalous MR. For small magnetic fields, whenb!b0

2,
the criterion for negligibility of the diffraction becomes
stronger,a@ÎlFL, whereL, l lns1/bd / lns1/b0d is the char-
acteristic size of the Lyapunov region. Another quantum ef-
fect which can be especially important from the point of
view of the possible experimental realizations is the weak
localization phenomena. The weak localization correction to
the conductivity also has an anomalous dependence on the
magnetic field. Moreover, the interpretation of the memory
effects in terms of small change of effective cross section
discussed in Sec. V is very close to the interpretation of weak
localization phenomenon developed in Ref. 26. Similar to
discussion in Sec. V, the coherent enhancement of back-
scattering amplitude caused by weak localization, is accom-
panied by reduction of coherent scattering in other direc-
tions, the total cross section does not change. The
competition of the non-Markovian and the weak localization
effects might result in new interesting phenomena. The study
of such competition in a system with spin-orbit interaction
can be especially interesting, because, in contrast to the weak
localization correction, the “corridor effect” is not very sen-
sitive to spin-orbit coupling. The detailed analysis of the
quantum effects is a challenging problem which will be ad-
dressed elsewhere.

We did not investigate the temperature dependence of the
phenomenon. This dependence is related to the scattering by
phonons(or electron-electron scattering) neglected in our
calculations. It worth noting that importance of the electron-
phonon scattering is expected to increase with decreasing
magnetic field. Indeed, the potential of the electron-phonon
interaction depends on time, therefore restricting the maxi-
mal length of a trajectory with the Lyapunov regionL,Lph,
whereLph,vFtph andtph is the temperature dependent char-
acteristic time of the electron-phonon scattering. This implies
that at small magnetic fields one should replace the logarith-
mic factor lnsbd / lnsb0d, entering Eq.(76) by a temperature
dependent coefficient of the order ofLph/ l.

VII. SUMMARY

We propose a theory of the negative anomalous MR in a
system with strong scatterers. It is shown that the anomaly in
the MR arises due to suppression of “empty corridor effect”
by magnetic field. A detailed description of different types of

non-Markovian correlations related to ballistic returns is pre-
sented. A method of diagrammatic expansion of the Liouville
equation is developed which allows us to describe analyti-
cally the effects of “empty corridor” on ballistic returns. The
analytical expressions for anomalous MR in different inter-
vals of magnetic fields are derived[see Eqs.(1), (62), (64),
and(74)]. The MR at very low magnetic fields was shown to
be determined by the contribution of electron trajectories
having long Lyapunov region. An interpretation of the
memory effects in terms of small change of the effective
scattering cross section is discussed. The analytical results
are shown to be in very good agreement with the numerical
simulations and experiment.
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APPENDIX A

This Appendix contains the explicit expressions for the
pairingskdTmdTnl. Using Eqs.(13), (18), and(24), kernels of

operatorsdT̂+, dT̂−, entering in Eq.(32) can be written as

dTa,a8
+ = ssa − a8dsn+ − nd,

dTa,a8
− = − dsa − a8ddTa

−, sA1d

where

dTa
− =E da9 ssa − a9dsn− − nd. sA2d

The functionsn+ and n− in Eq. (A1) depend on vectors
asn8 ,nd and asn9 ,nd correspondingly[see Eqs.(14) and

(16)]. The pairings of operatorsdT̂m and dT̂n can be calcu-
lated with the use of Eqs.(30), (A1), and (A2). As a result
we have

kdTb,a2

+ sr 2ddTa1,b0

+ sr 1dl

= ssb − a2dssa1 − b0dJs− ab,a2
,− aa1,b0

d, sA3d

kdTb
−sr 2ddTb0

− sr 1dl

=E da8 da9 ssb − a8dssb0 − a9dJsab,a8,ab0,a9d,

sA4d

kdTb,a2

+ sr 2ddTb0

− sr 1dl

= ssb − a2d E da8 ssb0 − a8dJs− ab,a2
,ab0,a8d,

sA5d
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kdTb
−sr 2ddTa1,b0

+ sr 1dl = ssa1 − b0d E da8 ssb − a8d

3Jsab,a8,− aa1,b0
d. sA6d

Here functionJ emerges as a result of pairings ofksnm−nd
3snn−ndl [see Eq.(30)] and is given by

Jsa,bd = nE dR dsr 2 − R − addsr 1 − R − bd. sA7d

APPENDIX B

To calculatekdTafr 2g
− sr ddTaf−r 1g

− sr 8dl we first do the inte-
gral on the right-hand side of Eq.(A2). Integral of the term
containing average densityn is trivial and reduces to 1/l. In
the integral containingn− it is convenient to introduce or-
thogonal coordinatesx and y such thatx axis is collinear
with the velocity of the incident particle and write the delta
function entering the definition(14) of n− as dsr −Ri −ad
=dsy−Ri

y−ayddsx−Ri
x−axd. We proceed by lifting they de-

pendent delta function by integration over the anglea8. It is
clear that the integral is vanishing foruy−Ri

yu.a. To calcu-
late the integral for smalleruy−Ri

yu note that by virtue of Eq.
(16) uday/da8u= udsa3nd /da8u=ssa−a8d and therefore the
integral of they dependent delta function cancels the scatter-
ing cross section in Eq.(A2). As a result we get

dTa
−sr d = 1/l − o

i

dsx − Ri
x − axdui < 1/l − o

i

dsx − Ri
xdui .

sB1d

Hereui is a unit step function which is equal to unity when
uy−Ri

yu,a and vanishes otherwise. Using Eq.(B1) we can
write for backscattering angles close top sF,a/ ld,

kdTafr 2g
− sr ddTaf−r 1g

− sr 8dl < nhsx,Fddsx − x8d

< nhsr,Fddsr − r8d, sB2d

where

hsr,Fd = s2a − uFurdus2a − uFurd

is shown in Fig. 12.
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