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We discuss classical magnetotransport in a two-dimensional system with strong scatterers. Even in the limit
of very low field, whenw.7<1 (w. is the cyclotron frequencyr is the scattering timesuch a system
demonstrates strong negative magnetoresistance caused by non-Markovian memory effects. A regular method
for the calculation of non-Markovian corrections to the Drude conductivity is presented. A quantitative theory
of the recently discovered anomalous low-field magnetoresistance is developed for the system of two-
dimensional electrons scattered by hard disks of raaiuandomly distributed with concentration For small
magnetic fields the magentoresistance is found to be parabolic and inversely proportional to the gas parameter,
Spuxd p~—(wer)?Ind2. In some interval of magnetic fields the magnetoresistance is shown to be linear
Spxxd p~—we7 In a good agreement with the experiment and numerical simulations. Magnetoresistance satu-
rates forw,7> na?, when the anomalous memory effects are totally destroyed by the magnetic field. We also
discuss magnetotransport at very low fields and show that at such fields magnetoresistance is determined by the
trajectories having a long Lyapunov region.
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I. INTORDUCTION also recent discussiohs of this mechanism Electrons oc-
cupying these orbits do not participate in diffusion. As a
The problem of magnetoresistance in metal and semicornresult, the longitudinal resistance turns out to be proportional
ductor structures has been intensively discussed in literatute the factor 1P, whereP=exp(—2#/ w.7) is the probability
during the past three decades. A large number of both thewf the existance of the circular closed orbit, which avoids
retical and experimental papers on this subject was pulscattererghere o, is the cyclotron frequencys is the scat-
lished. Most of these works were devoted to the case of theering time. Another classical mechanism was presented in
degenerate two-dimensional electron gas where the electrof&ef. 8, where the MR due to non-Markovian dynamics of
move in the plane perpendicular to the magnetic field anaklectrons trapped in some region of space was discussed.
scatter on a random impurity potential. In this situation only  Notwithstanding these developments, the role of classical
the electrons with energy close to the Fermi energy particieffects in magnetotransport was underappreciated for a long
pate in conductance and the usual approach based on tlime. A new boost to the research in this direction was given
Boltzmann equation leads to vanishing magnetoresistance. oy Ref. 9, where it was shown that if electrons move in a
other words, the longitudinal resistanpg, of the sample smooth disorder potential and in a sufficiently strong mag-
does not depend on the magnetic fi@dThis implies that netic fields a phenomenon called “classical localization” oc-
the explanation of the experimentally observBddepen- curs. This phenomenon leads to the exponential suppression
dence of the longitudinal resistance should be sought beyonof the longitudinal resistance: most electrons are trapped in
the Boltzmann theory. localized equipotential trajectories and do not participate in
The intense exploration of this area began from the worldiffusion. This work was followed by a series of works?’
of Altshuler et all where the experimentally observed in discussing different aspects of classical magnetotransport in
two-dimensional(2D) metals and semiconductor structures2D systems. It was showhthat for lower magnetic fields
negative magnetoresistan¢@lR), i.e., decreasing,, with  near the onset of the classical localization the magnetoresis-
increasingB, was explained by quantum interference effectstance is positive, i.e., the longitudinal resistance grows with
It was shown that the magnetic field destroys the negativéncreasing magnetic field. In Refs. 12 and 13 the combina-
weak localization correction to the conductivity, thus result-tion of smooth disorder and strong scatter@mstidoty was
ing in decreasing longitudinal resistance. Since the first pubeonsidered. It was shown that in this system under certain
lication on the subjeéta vast amount of work has been de- conditions there are several regimes of the behavior of mag-
voted to its further exploratiofsee for review Ref. 2 netoresistance depending on the strength of the magnetic
Two years prior to Ref. 1 there appeared a publicdtion field: first the longitudinal resistance decreases with growing
where a classical mechanism of negative magnetoresistanéield, then it saturates and then begins to grow.
was discussed. The mechanism was investigated on the ex- In Refs. 3-14 magnetoresistance was studied in a situa-
ample of a gas of noninteracting electrons scattering on hardon where the magnetic field is classically strong, that is
disks(antidoty. It was shown that with increasing magnetic where the parametg#=w.7 is large. Recently, the region of
field there is an increasing number of closed electron orbitglassically small magnetic fieldg<1 was investigated
which avoid scatterers and therefore are not diffugisee  numerically®>¢for the case of electrons scattering on strong
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scatterers. It was showhthat memory effects due to double
scattering of an electron on the same disk lead to a negative
parabolic magnetoresistan¢: Ref. 3, where these pro-
cesses were not taken into account, exponentially small MR
was predicted The numerical simulation$ discovered a
low-field classical anomaly of the MR. The anomaly was
attributed to the memory effects specific for backscattering
events. The simulations were performed for the 2D Lorenz
gas which is a system of 2D electrons scattering on hard
disks randomly distributed in plane with average concentra- e~ ONol—— ©
tion n. Magnetotransport in this system is characterized by

two dimensionless paramete8=w.7, and the gas param-
eter By=all=2na’. Herea is the disk radiusw, is the cy-
clotron frequency,r=I/vg is the mean free time and
=1/2nais the mean free path. The anomaly was observed i
the caseB<1, By<<1. Both the numerical simulations and
the qualitative consideratioffsindicated that at zero tem-

perature the MR can be expressed in terms of a dimension- )
less functionf(z) via ity, dp, is due to the processes of return to a scatterer after a

single collision on another scatteffsee Fig. 1a)]. The rela-
OPyx B tive correction, dp/p, is proportional to the corresponding
T =~ Bof E) ’ @) backscattering probability, given by the product of

e®'dd dR/I (which is the probability to reach scatterer 2
wherep is the resistivity forB=0. Numerical resulf§ sug-  without collision and scatter in the angi®) and the prob-

FIG. 1. Backscattering process responsible for leading nonana-
lytic contribution to the resistivity aB=0 (a). For B+ 0, the over-
ILlap area,Sz, between two corridors is small at larg@e(b). For ®
=0, S decreases witlB (c). For ®#0 and smallB the values of
S-S for time reversed trajectories have opposite sighgnd(e).

gest thatf(2) ~z asz—0, yielding ability p to return without collisions from 2 to (herel is the
S mean free pags Assuming p=exp(—R/I) and_ integrating
— ~ — . (2)  overintervals 6<®<a/R, a<R<, one obtain¥-23
g *dR (@R
The latter expression is in very good agreement with experi- Splp ~ L l—fo dd e ~ B, In(1/28,). 3

mental measurements of negative linear MR in random anti-

dot arrays® It is anomalous in two senses. First, it has a In Ref. 16 it was shown that the probabilifyis actually
non-analytic dependence on the magnetic field. Second, f&rger than exp-R/1). Indeed, the exponent egR/I) can
does not vanish in the limit of vanishing,, which is nor- ) N e oo expn9 whereé=2aR It represents the prob-
mally regarded as the expansion parameter for the Corre%{bility of the existen’ce of an empty corridgiree of the

;{(I)Orncsaﬁﬁgtpoer grrti’dgr'i?sltzr:aalnEg;ﬁﬂ;ec;:h;? t'ﬁg'g#::c% k:;aii\r/]'centers of the diskof width 2a around the electron trajectory
9 y y ' from 2 to 1. However, the passage of a particle from 1 to 2

would establish Eqc1) and enable one to derive the analyti- ensures the absence of the disks centers in the region of

cal expression for functiof. width 2a around this part of trajectorgfrom 1 to 2. This

In t_h's paper we p_resent a deta|le_d theory _of_the anomal¥educes the scattering probability on the way back. The cor-
and give an expression fdfz) (the brief description of our rect value ofp can be estimated as

results was given in Ref. 37We find that at some interval,
0.05<z=2, function f(z) is linear in agreement with nu- P(R,®) = exp— n(S—- ) =exp—- RI +n(R,P)), (4)
merical simulations and experiment, butzat O crosses over
to a quadratic dependence. Thus, B 0, Eq. (1) yields
Spuxd p~—B%1 By- The limit By—0 should be taken with S(R,®) = 2aR- R?|d|/2 (5)
care. While the smalB expansion seems to be singular as a,

- ; ; L ; the area of the overlap of the two corridgsge Fig. 18)].
function of By, the region ofg where this expansion is valid IS a - a :
shrinks asBy,—0. For z—, f saturates at some constant For example, fqrrb—o, we haveSO—Za}R and p=1, which -
value. Therefore, the full variation afp,/p is of the order reflects the obvious fact that the particle cannot scatter, if it

Bo- In other words, the anomalous MR is strong but it existstraveIS back along the same path. Taking into account the

in a small region of magnetic fields. effect of “empty corridor,” we get

5 *dR (¥R C
i ~J —f do e-<2R">+“%~,30|n(—>, (6)
P a I 0 2B

The mechanism proposed in Ref. 6 is linked to thewhereC is a constant of the order of unity. Thus, 8#0 the
memory effects arising in backscattering events. It has &empty corridor” effect simply changes the constant in the
close relation to the well known nonanalyticity of the virial argument of the logarithm.
expansion of transport coefficieris?which we briefly re- The key idea suggested in Ref. 16 was thatBet O the
call. ForB=0 the leading nonanalytic correction to resistiv- area of the overlap of the two corridoiSs, sharply depends

where

II. QUALITATIVE DISCUSSION OF THE PROBLEM
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on B, resulting in the observed MR. Indeed, it is seen from Gr=0 fort<o,

Fig. 1(b) that for 8= By, 0, resulting in sharp negative _ .

MgR 1) B=Po S g P neg wherevd/ dr —wv X dlov] is the Liouville operator of the

free motion in the magnetic field and describes scattering
P * dR (¥R on the disks. From Eq$) it follows that we need the time
~ f I_J dg e ("% - "), (7)  integral ofGg rather than the whole time-dependent function.
P 0 0 This integral can be written as
The following qualitative explanation of the observed linear fw dt G f = v - vF)G 10
MR was presented in Ref. 16. The valngS; - S,) was esti- o RV:Vor lol) vr wap(TsTo)y  (10)

mated for =0 [see Fig. {c)] to the first order inB as N

-nR3/R.=-R®/2alR,, whereR, is the cyclotron radius. As- Wherea, aq are the angles of velocities and vo, respec-
suming that this estimate also worksé# 0 and expanding tlvely. Here we used the energy conservation, which |mpI|e_s
e"S-e"% to the first order inB, one getsdp,,/p~—I/R; that in scattering processes the absolute value of the velocity
=—w,T. does not change. Using Ed.0), the diffusion coefficient Eq.

In fact, the physical picture of the phenomenon is more(8) can be rewritten as
subtle. The contribution of any trajectory with+ 0 is can-

v
celled to the first order i3 by the contribution of the time- D= 4_FS dr dryda da(,(Ga,aO(r,ro))cos(a - ap).
reversed trajectory, since the valuesSf-S, are opposite ™
for these pathgsee Figs. (d) and Xe)]. The cancellation (1)

does not occur only at very small~ 8. The integration in
Eq. (7) over ¢ < B yields dp,,/ p~—B?I B,. Larger values of

¢ also give a quadratic if8 contribution to the MR. This
contribution is positive and comes from the second orde
term in the expansion a%®-¢€"% in B. It follows from our
results[see Eqs(1) and(62)] that the contribution of small
angles is dominant resulting in a negative parabolic MR. We roox 2 e _

find that the parabolic MR crosses over to linear at very (€+Lo=T~T)G=Ar ~ro)dla= o), (12
small 3= 0.0583,, which explains why the parabolic MR was where
not seen in numerical simulatiofisand experiment® Note

that for very small,8<,8§ contribution of the trajectories Lo=n—-——
with a long Lyaponov regionLyapunov trajectories be- o Rgia
comes important. In the Sec. Ill we focus on the regdn = cosae, +sinae, is the unit vector in the direction of
> B, where the contribution of the Lyapunov trajectories isande— 0. The interaction with disks is written in E¢L2) in
parametrically small. The Lyapunov trajectories will be dis- the form of collision integrat®?The scattering operatofs

cussed in Sec. IV. transform arbitrary functiorf(r , @) as follows:

Since (G, (1)) depends omr—agp andr —rq only, it is
convenient to average over the position of the initial point
nd over the initial angle. Her8 is the area of the sample.
ntegrating Eq.(9) with respect to time the equation f&

=G 4,11 o) is Written as

lll. CALCULATIONS ?*f(r,a):fda'o(a—a')n+f(r,a’),
A. Kinetic equation

In this section we introduce the kinetic equation which is = __ / _ N
the starting point for the calculation of the diffusion coeffi- Tira=-1ra f da’ oa=a)n, (13
cient and the resistivity of the Lorenz gas.

We consider the Lorenz gas at zero temperature, assumirYéhere
that the electrons participating in the conduction have the nt = n*(r,a) = >, &(r -Rta). (14)
Fermi velocityvg. The diffusion coefficienD is given by i

HereR; are the positions of the disk's centers and

D= % f " dtvonn) = % f at f dr dv{Grivvo.  (8)

0 o() = 2|sin £ (15)

2 2
Here Ggr=Gg(V,Vo,r,ro,t) is the retarded Green’s function s the differential cross section of one disk. The vedtor

of the Liouville equation and:--) stands for the averaging depends on angles, «' in the integrals Eq(13),
over the positions of the diské.The equation foiG reads

(n"-n)a

V2(1-n'n)’ (16)

a= aa’a/ =

(2 +v§r - wc[v X %} —'AI'>GR: S(r —rg) v —vg) &),

ot and is pointing from the center of a disk to the scattering

(9)  point at the disk surfacésee Fig. 2. Physically, operatoTAr+
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— Gp a. GT)G-
v A = + a3 ¥ +...

FIG. 3. Expansion of Boltzmann propagat@P in a series in
34 6 ballistic propagatorss.

B. Perturbative expansion

In this section we derive the perturbative expansion for
the average Green’s function in order to take into account
non-Markovian corrections which are absent in the
Boltzmann-Drude picture.

Introduce the operators

FIG. 2. Scattering of a particle on a hard disk.

describes influx of particles to velocity at the pointR;—a,

while operatoﬁ' ~ describes the outflux from velocityat the o A
point R;+a. The averaged value of the* is equal to the ST =T —(TY) (24)

disks concentartion ) . ) S )
which describe the fluctuation of the collision integral with

(N ={(n")=n. (17) respect to its average value. Using these operators the formal

The Boltzmann equation is obtained by averaging thesolution of(12), G=(e+Lo=T =T*)! can be written as the
Liouville equation with respect to the position of the scatter-following series:
ers and neglecting correlations. Indeed, using @d) one

finds that the average collision operators Etp) are given (G)=GB+ X GX(STHGBSTGB+ -, (25
by M v=%t
A whereGB is defined by Eq(19). Here we took into account
(TH(r,a) = ﬂf da’ o(a=a')f(r,a’), that(ST)=0. The first term on the right-hand side of EB5)

gives the Drude-Boltzmann result described in the preceding
section. The rest of the terms in E@5) provide a regular
<-“r—> - _nf da’ o(a-a’)=-11. (18~ Wway for the calculation of correlations, which are absent in
the Boltzmann picture.
In the subsequent analysis of the perturbative expansion
Eqg. (25 we will extensively use the representation of the
Boltzmann propagatdsg in terms of the ballistic propagator

Replacing the collision operators in the Liouville equation
Eqg. (12) with their averages Eq18) one obtains the Boltz-
mann equation

G =(Lo+ 1ML (26)
oG?m(r)-nfda’ ola=-a')(G, , (r)-GE, () . : .

0 @ % 0 This is achieved by expanding the Boltzmann propagator
= 8(r) da - ayp). (199  G°=(Lo+1/1-(T"))™" as a sum over the number of scattering

The Boltzmann-Drude diffusion coefficied, in the ab- events represented by the operafo,

sence of the magnetic field is found from E¢E9) and(11)

B —
as follows. Integrating19) with respect tar and expanding G"=G +G <T+>G MR (27
the Green’s functiorG® in angular harmonics one finds The diagrammatic representation of the expangif is
5 1 . shown in Fig. 3. Each cross in this figure corresponddto
fGa,ao(r)dr = 2—2 | gm0, (200 and each solid line to a ballistic propagaf®t. For future
T m . . . -
reference we write the explicit expression for the ballistic
where Green’s function in zero magnetic field and in weak mag-
netic fields. ForB=0 the ballistic propagator conserves the
. velocity. In this case its kernel is given by
Im=n| deo(e)(1-cogme)). (21
_ _ exp( r/l)
In particular, Crall) = Na=—agdag-alr)=———. (28
L =] = 3 3 29 Herea[r] is the angle of the vectar. Magnetic field rotates
17" 4 7 8na (22 the velocity vector with the cyclotron frequency. For small
magnetic fieldsp<1, we have
is the transport length. Substituting E¢80) and(22) in Eq.
(11) one finds G;,ao(r) = 8a-a[r]-rI2R,)
I exp(—r/l
Do = UFT“ (23) X &(arg— afr ]+ F12R,) p( ep-rl) o,
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N=1 N=2,3,...
P /::\
4 b g \:\
+ + - - - —f

(@) ®)

FIG. 4. Diagrams, corresponding to the process shown in Fig.
1(a). Diagram(a) does not take into account the “empty corridor”
effect and should be renormalized by diagrais

FIG. 6. Electron trajectory for thé—,—) pairing. Electron does
C. Ballistic returns in perturbative expansion not experience any real scattering except as scattering=&. The

In this section we show how the processes of ba”isticdlagram(f,f)glves the probability to pass twice the region around

returns discussed in Sec. Il arise in the perturbative expaHCEOIntR without scattering.

sion Eq.(27). Consider the second term in E®5). This ) ) ) ]

term describes the memory effect due to diffusive returns. Agvithout scattering. To interpret the diagrani$,—) and

discussed in Sec. II, the main contribution comes from re{—,*), note that in the Boltzmann picture, which neglects

turns after a single scattering. This process is described pgorrelations, the following process is allowed. An electron

the diagram shown in Fig.(d). The dashed line corresponds scatte_rsdobn ?h_d'?_( I?nc'jthlatetr on ??S_Sé; trllzr_ou%kz thel region

- STy _ . occupied by this disk without a scatteritgee Fig. ¥ (analo-

o the pairings(sT*4T") (A’u'v_i)’ external wavy lines to gous consideration is valid for diagram shown in Fig.The

the diffusion propagator&®. The internal line corresponds diagrams(+,—) and(—,+) correct the Boltzmann result by

to the Boltzmann propagator ER7) truncated at one scat- subtracting the contribution of such unphysical processes.

tering G(THG". As follows from the qualitative discussion Sec. Il, the
Four combinations of(+,+) at the ends of external processes of ballistic returns after a single scattering give rise

dashed lines in the diagrams shown in Figa)4represent to the leading (nonanalyti¢ correction to the Drude-

four different types of correlation at a given polRt To see  Boltzmann result in zero magnetic field. However, taking

this consider the pairinggi—ﬂgi—v>_ By virtue of Eqs(13) and into account diagrams shown in Fig(a# (describing pro-

14) this pairing is proportional to the density-density corre-CESSES shown in Figs. 5-8 not sufficient for calculation of
I(ati())n fur?ctiong«nf‘r()rll,oal)—n)(n”(rz,az)_n» );or M:i . the low field anomaly of the MR. Actually, diagrams in Fig.

_ : X o 4(a) do not contain the “empty corridor” effect. We will

;;rﬁgses\lijv?ggttfr:ﬁttg:essk: fﬁgitzgggomly distributed over theshow that the correct description of the memory effects, spe-
cific for ballistic returns, requires the renormalization of dia-

((N™(r 1,a,) = N)(N"(r »,a,) — n)) grams 4a) _by diagram_s_ @), in which the internal dashed

lines containg—,—) pairings only. Physically, thélth order

diagram of the type @) represents thdl—1th order term in

the Taylor expansion of the efmnS)) in the qualitative es-

] ) N timate (6). Such renormalization play the key role in the

It is natural to interpret the vectd® as the position of the guantitative description of the anomalous MR.

center of the disk on which a double scattering occurs. How-' | the next section we derive the analytical expression for

ever, this interpretation is valid for diagraf,+) only. As  giagrams 4a). Then we generalize the calculations to ac-

shown in Fig. 5, this diagram corresponds to the situation.ount for the corridor effect and calculation of anomalous
where an electron experiences two real scattering processgfr.

on the disk placed at poiR. The physical interpretation of
other diagrams is more subtle. The diagrém—) (see Fig.

6) does not correspond to any real scattering at pRintt
just allows one to calculate correctly the probability for an
electron to pass twice the region of the sizaround poinR In this section we use the perturbative expansion(E5).

to derive analytically the leading correction to the diffusion
coefficient. This correction is due to the processes described

:nde Sro-R+pua)dri—-R+vay. (30

D. Nonanalytical corrections to the zero-field resistance
neglecting the “empty corridor” effect

FIG. 5. Electron trajectory related to the pairifg,+). An elec-
tron scatters twicgat pointsrq andr,) on the surface of a disk,
placed at poinR. For a fixed position of the backscattering point  FIG. 7. “Unphysical” electron trajectory related to the pairing
(r«=0), the process is parametrized B, and by the scattering (—,+): electron scatters on a disk and after a while passes the
anglesgg, ¢r. region occupied by this disk without scattering.
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Mp,g, = No(m) > fdrldrz

=t

—rzlle—rlll
X <5T§ﬂ[r2](r 2) 5Tuz[—r l],ﬁo(r 1)>T . (33

In derivation of Eq.(33) we took into account that the pair-

ing of collision operatorg ST#(r)ST*(r,)) vanishes forr,
FIG. 8. “Unphysical” electron trajectory related to the pairing —r,| > 2a, which is clear from its physical meaning and also

(+,—): electron passes the region occupied by a disk without scatcan be seen from the delta functions in the fadtar,b) (see

tering and later on scatters on this disk. The diagram related to Sucﬂppendix A). At the same time botln, andr, are of the
trajectory corrects the Boltzmann result by subtracting the probabilyy qer of the mean free pallya. Therefore B,— B1=a[r,]

ity of this unphysical event. It is convenient to parametrize this ~ ~ : :
. ; —a[-r]=m, ando(B,~ B1) = 7. Physically this means that
+ ) - : . -
trajectory by the scattering angles for the,+) process the typical scattering angle in the processes of ballistic return

. ] ) are close tor. Next, we use Eq(33) to evaluate the contri-
by diagram Fig. ). The operator expression of the correc- pytions of different pairingge, v.

tion to the Green’s function related to this diagram is given (1 1) pairing: Consider first the process in whigh=+,

by v=+. Substitute EqgA3) and(33) in Eq. (31) and integrate
o overrg, r,. It is convenient for our purposes to perform this

> GEBSTHG(THG ST'GE, integration for a fixed value of the vect®. Then the delta

p=t functions in Eq(A7) ensure that, andr, lie on the circle of

the radiusa centered in the poing,
where the underbracket stands for the pairings of operators
5T# and 8T”. Substituting this correction into Egl1), and r=R-a,r35, =R-ag.r,- (34)
using Eqs(20) and(21) to integrate over, rq, @, ag we get

The graphical solution of these equations is shown in Fig. 5

UF|t2r (vectorsng,ng, in this figure are the unit vectors in the di-
oD = . f dBodB M5, cO4B ~ Bo), (81)  rections of8 and By, respectively. Sincea is small (a<I)
one has approximately

where ik -
O R - v il iy e
X(8T% o, (r2)Gy, ,(F2 = T-)Na(B2 ~ B) éﬂ‘)”;;gt;%zﬂgr% ?g?ntglley\c:ectgz, r, the integrand in Eq.
XGpg o)1+ =T8T, 5 (r1)). (32

2.2
0= ) [ R g apy cosp- oo
Here we used Eq18) for (T*). Graphically, these calcula- 7
tions are presented in Fig. 9. The pairings
<5Tg,a2(r2)5T21’ﬁ0(r1)>, entering Eq.(32), are given in Ap-
pendix A for four possible combinations @f, v. The pair-
ings only depend on the difference-r,. Therefore in Eq. Introducing new variablegy=p8,—a[-R] and ¢;=o[R]-
(32) one can remove the integral owerand the sample area and taking into account tha#{R]=a[-R]+ 7 and o(-¢)
Sin the denominator and set=0 in the integrand. In other =o(¢), the relative correction to the diffusion coefficient is
words we set the origin of the coordinate system at the backwritten as
scattering pointr.. Next we integrate Eq(32) over the

—2R/I

xo(p=alRDo(a[-R]-fo) g~ (36)

angles_al, ay, B1, Bo- This integration can be e_asily done_ E:_% d_Rd don &2
taking into account angle dependent delta functions entering D, 41 R 0 U e
in G;Z] Bz(r ,) and Gél'al(_rl) [see Eq(28)]. As a result we
geta;=B1=al-1], a,=B,=alr,], and X a(¢r) o(p)COL ¢ + ¢x). (37)
- From Fig. 5 it is seen thap,, ¢ are the scattering angles.
yad RN (+, —) pairing: Next we present calculations far=+,
o by I r; r v=-. Like the calculation of the diagragm-, +), we substi-
o B o B B oa B . tute Eq.(33) and Eq.(A5) into Eq.(31) and integrate ovar;,
r, with the use of Eq(A7). The values of ; andr, should
FIG. 9. Graphical representation of E¢31) and(32). be found from the following equations:
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r2, 02 T2, a2 r2, @

r1:R+aa[_rl]Ya/, I’ZIR —aﬁya[rz]. (38) o 5 . ir,a "
The graphical solution of these equation is presented in Fig. A" 2 i B
8. After integrating out vectons;, r, and the anglg, we get o ™o o

FIG. 10. Dyson equation, describing the renormalization of
backscattering events by the “empty corridor” effédth order term
in the these stairlike diagrams corresponds to(ftie 1)th term in
the Taylor expansion of expS) in Eqg. (4).

2.2
s+ = - el ol f dR dB da’ cogB - o[- R])
A7
—2R/I

X = a[R)olal~R] =)~

(39)

The addition of the diagram Fig(l) to the diagram Fig.

In derivation of this equation we have used E85). It is 4(a) leads to following replacement in E¢82),

convenient to rewrite this equation using as integration vari
ablesgg, ¢f, which are the scattering angles for the process G, 5. (r)Gy (=17 — KG2(rq,ry) (42)
N 5,8, 2 Br.ag 1 B1.Bo 1:12)
(+, +). They are expressed in terms af and B8 as ¢q
=a[-R]-a’, ¢;=a[R]-B. In these variables E¢39) reads where the functioanijgg(rl,rz) can be found from the

dR Dyson equation(see Fig. 10 Since the operatoéT~ does
f —dgo des €M o 5) o o) cod ). not change the velocity angle, one can search the solution of
R the Dyson equation in the form
(40)

_ , e KE62(r 112 = Gy, 5 (1)Gp o (- TOT (1,15, ®), (43)
It is seen from Eq(40) (see also Fig. Bthat the contribution ) ) )
of the procesg+, —) can be parametrized by the anglgs where® is the difference between the backscattering angle
and ¢;, which are the scattering angles for the process ~ andw (see Fig. 11 While substituting Eq(43) in the Dyson
+). Analogous calculations can be easily done for othelquation(which is shown graphically in Fig. 30integrating
types of correlations. over anglesy, o', and using the identity
Summing the different contribution$D=5D""+6D"" Iry—r|
+6D™*+D~ we get the following expression for the dia- Aalra=r]-dr]) = r—5(01[f] —afra])o(ry=r)
gram Fig. 4a): 2

8D*” _ nly
D, 4

(44)
op 6D ) )
; =- D (and analogous identity for vectors,r,) we get
nl “dR e (7 [T I(ry,r c1>:1+f f dr dr’
=—TRe| —e®| degy| desale)aler) (2 ®) S
4l a R 0 0 2 !
dalr]—ofra)dlel-r"]-of~14])
. 2B ( 1 ) X
X(1-€e9)(1-e%)=——In| — . 41 !
(ez)(e)3r12[go (41) rr
X(OT o, )(N) T 5 (rNL(r,r’, @), (45)

This equation is the exact expression for the nonanalytic

correctiort®23to the Drude-Boltzmann resistivity which was \yhere ST-(r) are defined in Appendix A. Further calcula-
qualitatively given in Eq(3). Four terms in the produdfl  tions can be done in two different ways. It is useful from
—e¥)(1-€e¢n=1-dv-¢er+eeo*e correspond to four methodological point of view to discuss both of them. One
types of correlations discussed above. way is to first integrate Eq46) over the angles of the vec-
torsr andr’ (see Fig. 10 The delta functions entering in
. _ _ Eq. (46) ensure that point (see Figs. 10 and 1lies on the

E. “Empty corridor” effects on the zero-field resistance line segment connecting point and the origin and point’

In this section we use the perturbation theory for thelies on the line segment connecting poigtand the origin.
quantitative derivation of the effect of the “empty corridor” This allows to reduce the Dyson equation to the closed rela-
discussed in Sec. II. tion for functionI'(ry,ry, @),

Equation(41) takes into account one pairing of operators

ST# and T*. The terms containindN pairings (N dashed

lines) are typically small ag)). However, there is a series of

diagrams, shown in Fig.(8), whose contribution is of the r @ r.=0

order By (see Ref. 21 The internal dashed lines in this series o
~ ~ r

only contain pairingg 6T 8T). Below we show that the se- ]

ries Fig. 4b) accounts for the effect of the “empty corridor.”  FiG. 11. Pairings(sT-6T) do not change the electron trajec-

More precisely, we prove that thith order term in this tory. Pointr (see Fig. 10lies on the line segment connecting point

series corresponds fd—1 term in the Taylor expansion of r; and the origin and point’ lies on the line segment connecting
the exgnS) in Eq. (4). pointr, and the origin.

I
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h(z)

FIG. 12. Width of the overlap region as a function of a distance

from the origin.

51 2
F(rl!rZ!(I)) = 1 +f dr,f dr<5T;[r2](r)
0 0

X STy g NE(r,r", @), (46)

where the pairing
(ST (N 8Ty (1)) = h(r, ®)8(r =r1'),  (47)

is calculated in Appendix B. Here

PHYSICAL REVIEW B 70, 245307(2004)

h(r,®) = (2a - |®|r)6(2a - |P]r) (48
is shown in Fig. 12. As a result we have
min[rq,ro]
F(rl,r2,®):1+nf dr h(r,®)I(r,r,®). (49)
0

This equation has an evident solution

min[rq,ro]
F(rl,rz,tb):ex;{nf dr h(r,d))). (50)
0

Equation(50) may be derived in an alternative way. This
way allows to understand on the formal basis why one
should renormalize the diagrams in Figayby the(sT 6T")
pairings only. Let us integrate in E@¢46) overr,r’, using
Eq. (A4). Doing this, we get

o IR * 3] el ) el =R = 2 ] al= 1)

r(rl,rz,q>):1+nfda' da”j

R<min[rq,r,]

Xo(alr,] = a")ol(a[ri] - o )\I'(RR,®D).

Here we took into account that(r,r’,®) is a slowly chang-
ing function ofr,r’ (it changes on a scale of the orderlpf
Since Eq. (A4) provides |r-R|~|r'-R|~a, we set
I'(r,r',®)=I'(R,R,®). Next we make use of the identity

f da' o(a-a')8(e[R+a,,]-a) =~RO(@R-|a-oR]|)

(52
to integrate ovewr’,o”. After this integration we get

min[rq,ro]

F(rlerlq)) = 1 +nj R dR (il{[R]

0

X @(@/R-|a[r,] - oR]))

X 6@/R-|a[r{]- ofR])I(RR,D).

(53

Integration overa|R] leads again to Eq50).
From Eq.(35) it follows that we need to know' for ry
~r,~R. Using Eq.(50) we find

R
I'RR®)= exp(nf dr h(r,(b)) =e"SRP)  (5g)
0

where (R, ®) is the overlap between two corridors, given
by Eq.(5). Thenth order term in the Taylor expansion of the

exponential(54) corresponds to a diagram in Figb4 with

n+1 dashed lines. Indeed, tmth order term in the Taylor

R2

(51)

expansion contains integration over coordinates of scat-
terings of the type—, —. What remains to do to get the
resistivity correction is to expresh in Eq. (54) via angles
©o, 5. TO do this, the precision Eq35) is not sufficient.
More specifically, we will need to know the angle between
vectorsr, andr, to the ordera/l. For this purpose it will be
sufficient to make replacementg —r,]= o[-R] and afr,]

=~ a[R] in the arguments of vecto®in Eg. (34). Then the
angle® is calculated agsee Figs. 5-8

P ~ S[codgl2) + cod¢f2)]. (55)

This equation is valid for 6 ¢y<2, 0<¢;<2m [Since
cod¢/2) is not periodic with 2r one should specify the in-
tegration limit§. It worth noting that Eq(55) ensures that
the argument of thé function in Eq.(48) is positive and the
overlap width and overlap area are given by

h(r,®) =2a—|®|r,

R

SO(R,<I>)=J h(r,®)dr = 2aR- |®|R?/2. (56)

0

Summing the diagrams Fig(l#) together with Fig. &),
one gets an exact equation
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NON-MARKOVIAN EFFECTS ON THE TWO-DIMENSIONAL.. PHYSICAL REVIEW B 70, 245307(2004)

op nl “dR _ 2 2
- _ —trRef —e 2R/|f d(,Dof dey O-(QDO)O-(qu)
p 4 a R 0 0

X(1-e#n)e"HR® = % In(z%t), (57)

instead of the qualitative estimate H§).
HereC=1.8 is a numerical coefficient. Thus, addition of  FIG. 13. The magnetic field changes the backscattering angle
the series Fig. #) to Fig. 4a) leads to the following renor- ¢=®+R/R.. The dashedsolid) line in represents electron trajec-

malization: I(1/283,) — In(C/28y). tory for B=0 (B#0). The electron trajectory foB+ 0 is param-
etrized by the scattering angl&s=0.

F. Estimate for neglected diagrams .
G. Anomalous magnetoresistance

In this section we use the derivation presented in the pre- ) ] . .
ceding section to show how to select relevant diagrams. The N this section we ge_nerahze our Calculatlor!s for &e
derivation was based on identit§2). The left-hand side of #0 case assuming th&is small(3<1). The main contri-
this equation is proportional to the impurity cross sectionbution in this case still comes from diagrams in Figea)4
o(a—a’)~a. However, the right-hand side is parameteri-and 4b). Consider for example diagrat+). Let us com-
cally larger ~R, provided thata-a{R]|<a/R. One can Pare the process of double scattering described by this dia-
show that the function similar to the one on the right-handdram for B#0 (see Fig. 13 with the same process fds
side(52) arises each time when one of the ingerr vinthe =0 (See Fig. 3. For fixed pointsry, r;, andr.=0, one can
pairing (5T#ST) is equal to(—). [for a pairing(5T-6T-) we ~ S€€ the foIIov_vmg differences. I_:lrst, the scattering anglgs
have two functions of the typé2) see Eq.(53)]. For the and ‘Pf_ acquire small corrections of the order ﬁ/_RC
case wheru or v equals to(+) we have a differential cross MI/RC_'B<.1' Second, the parts Qf the electron trajectory
sectiono(a-afR]) ~ a instead of functior52). Now we are corresponding to free ends of the picture become curved. The

ready to estimate different types of diagrams. Insertion Opackscatterlng angle increases by the valug/R;

one additional(—, —) pairing into a diagram in Figs. 5-8

gives two additional Green’s functions and, consequently,

multiplier ~1/I? and two functions of the typ€s2) giving a $=D+RR;, (58)
multiplier ~I2. One should also multiply on disk concentra-

tion n and integrate ovetR. Due tog functions in Eq.(52) where® is the value of backscattering angle B0 given

the integration aredR is of the ordeda. Combining all the by Eq.(55). Finally, the overlap area of the corridors changes

multipliers together we havela~ 1. Therefore, addition of because the trajectories become curysee Fig. 13 The
gr;s _|215p:rltrllcr:r? g?(e_s nf:; lg:?rirt% igé;?giﬁ;n:}ggg%aﬁ tocorrections topg and ¢5 lead to small relative corrections to

iativi 2
Indeed, the only difference from the case(ef, —) pairing is the resistivity of the order 98,8 and can be neglected. The

that one should replace one of the functigg) by the cor- same reason allows one to neglect the curvature of the in-

. : ; ching and outgoing parts of the trajectory. Therefore, the
responding cross section. This leads to the change of one g v rel diff is the ch fth | f
the multiplier of the orded by multiplier of the ordera. only relevant difference Is the change of the overlap area o

Following this line of reasoning one could conclude that in—the coridors. The solution of the Dyson equation is analo-
sertion of(+, +) pairing leads to the smallness of the order90US to theB=0 case. The points of intermediate integration

of (a/l)? Actually, the smallness arising from insertion(ef, randr” lie now at the segmentls. of cyclotron cwcl(éﬂ)[n_ r_l
+) pairing is of the order o&/l. Indeed, while the replace- [~ and fromr. tory). The pairing of two operatorsT" is
ment of each of the two functions of the tyfi2) the corre-  Still given by Eq.(47) with the replacemerti(r) — hg(r). For
sponding cross section leads to the relative smallness of thé:Bo<1, the overlap width is calculated as

order(a/l)?, the integration area in this case is not restricted

by angle dependent functions. As a result, the integration hg(x) = (22— |¢r - rIR|)6(2a~|¢r —r?Ry), (59
area,dR ~1?, is larger by a parametéfa compared to the

case of(—, —) pairing. Note that estimates presented abovevhere 6 is the Heaviside step function. Therefore, the only
do not work for the diagrams with one dashed line Figs. 5-8difference from Eq(57) is that one should replacg — S;,
In this case one should integrate over initial and final scatwhere the overlap area is given by

tering angles. One can easily see that integration of(&2).

over anglea leads to the multiplier of the order @ This R

implies that in this case all four pairings;-+), (+-), SB(R,qS):f dr hg(r), (60)
(—+), and(——) are of the same order, afl [see Eq(41)]. 0

Note that the higher order diagrams which are small in the

parameteiB, may turn out to be relevant for the MR at very The value ofdp,,/p is obtained from Eq(57) by replacing
low magnetic field(see Sec. IV. "% to "B-e'9,
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5p nI o] dR _ 2 27
ZExx _ —”Ref —e ZR"J dgoof des o o) o)
p 4 a R 0 0

X (1 —€%0)(1 — ¢ (e"BRP) — "DRD)) (61)

Introducing dimensionless variablésR/l, z=3/ 3, we get
Eq. (1), where functionf(z) is given by

2 2w
f()‘— —e_ZTf d‘Pof dey

xcos(w>sin2(@)sin2(ﬂ>(esz— e%).
2 2 2

(62)
Here
- [as- t_é\)a(l_ -Z)
SZ_ 0 g 2 g 2 [}
_cod¢y/2) +codei/2) zT
g_ 2T + 2 ’ - SZ*)O' (63)
Functionf(z) has the following asymptotics:
0.327 forz— 0,
f(2) = - (64)
0.39-1.34z forz— oe.

In the interval 0.05z=< 2, f(z) can be well approximated by

the linear function

f(z) = 0.034z-0.049 for 0.05=z=<2. (65)

Next we discuss the parabolic asymptotics more carefully.
We will show that in this asymptotic region there are two
contributions of different signs to the magnetoresistance:
negative contribution coming from the trajectories with very
small ® such thaf®|=< g, and a positive contribution com-
ing from larger angles. This considerations will be used in
the next section, discussing trajectories with the lon

Lyapunov region.
First, we write the difference of two exponen&ss

-e" as follows(e" %% - 1)e"% and expand the equation in
the bracket in the Taylor expansion up to the second order,

"B - "D~ ”%<n53+

n2582>
> )

8S=S-S,. (66)

We consider the case<1 (8<f3;). One can easily see that
in this case the expressiora2|¢r-r?/Ry, entering in the
argument off function in Eqg.(59) is positive at all values of

® [we take into account Eq55) and have in mind that
=<I]. Therefore, the differencé3(P)=S;(P)—S(P) is ex-
pressed as

PHYSICAL REVIEW B 70, 245307(2004)

R
55(®) = f dr r(10] - [ + (R-1)/RY)

R3
for & >0,
] &R
| R (R+R®D)®
+——¢0(R+RC<I>) for ® < 0.
6R; 3Re

(67)

To sum the contributions of different electron trajectories, we
take into account that the time reversed trajectories have the
same statistical weight. Indeed, as seen from Figs. 5-8 and
13, time reversion correspond to the changge— 27— ¢4,

¢;— 27— @g. This transformation does not affect the factor
a(@p)o( @) (1-€#0)(1-€*1), entering Eq(61). At the same
time, the angled changes to ¢ under this transformation
[see Eq.(55)]. From Eq.(67) we find the variation of the
overlap area averaged over two time reversed trajectories,

(5D +S-D)  n(R- R.|®))*®
2 - 6R.

O(R=R|®)).

(68)

This expression is of the order ¢/ g, for |®|<R/R.~
and is equal to zero for larger angles. We conclude therefore,
that time reversed contributions do not cancel only in the
region of small angle® < 3. Since the total variation ob
is much larger, of the order g8, [see Eq.(55)], we can
replace the expression on the right-hand side of(E8) by
S-function, writing N(8S(®)+ 8(—P)) /2~ —(B2/24B,)(R*/
I4)8(P). Keeping the leading terms of the order 8% only,

we obtain
ghds(®) 4 gnaS(-®) B R g R
T T g A e
(24B0)° |

2 248, 14
(69

%he second term in this equation comes from the averaging

of the quadratic term in the exponent expansividS’/2

._over two time reversed trajectories. This term is positive and

artly compensates the negative contribution of small angles.

sing Eqs(55), (56), and(61), after some algebra we get the
low-field asymptotic of MR as the sum of the negative and
positive contributions discussed above

2
P B, —~—oszﬁ (70)
p 280 Bo
where numerical coefficierk is given by
in a sin? +
A= 320f J dagpSr aSTACosatf) g

(4 + cosa - cosp)

(72)

IV. CONTRIBUTION OF TRAJECTORIES WITH LONG
LYAPUNOV REGION TO MAGNETORESISTANCE

The equations derived in the preceding section give the
contribution to the MR related to the processes shown in
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Consider the Lyapunov trajectory witth correlated links.
Denote by®,, d4, ...,y the angles between the segments
of the direct and the return paths and by, ...,¢n-1 the
scattering angles between successive correlated links as
shown in Fig. 14. The contribution of such a process has a
sharp dependence on the magnetic field due to the magnetic
field dependence of the overlap of the corridors surrounding
the direct and the return path. This dependence is different
for different segments of the trajectory due to the difference
of the anglesb,. Indeed as we have seen in the preceding

FIG. 14. Electron trajectory with a Lyapunov region, containing Section if ® is the typical angle between the direct and the
N=3 correlated links. return paths then the characteristic scale for the magnetic

field dependence of the overlap of the corridorgis ®. As
Figs. 5-8, the parabolic asymptoti¢g0) starting to work ~©ne can see from E¢55), the typical value of the angie,
when 8 becomes smaller thaf,. Such processes are related iS of the ordergg. The smallest angiéy ~ By corresponds to
to the correlations specific for returns to the initial point afterthe last segment of the trajectory. Therefore it is this segment
one scattering. As we show at this section for very low maglhat should lead to the sharpest dependence of the resistivity
netic fields,3< 32, other correlations come into play. Spe- N the magnetic field. Consider the contribution of the last
cifically, we consider the contribution to the MR of the tra- Segment at small magnetic figkt< 8. For typical trajecto-
jectories containing long Lyapunov regions. Such trajectoriegies with ®y~ By there is a cancellation of the contributions
consist of the direct and the return paths and involve reaff the time reversed paths to the MBee discussion in the
double scatterings on some number of disks as shown in Figreceding section However, for a small fraction of the tra-
14. The divergency between the direct and the return paths i§ctories with®y= g the contribution of the time reversed
characterized by the Lyapunov length. We will call such tra-Paths does not cancel and is proportional to the change of the
jectories “Lyapunov trajectories.” In the diagrammatic seriesoverlap arean(sS(®y)+oS(-®y))/2~ B/ B, The phase
they are presented by the sum of the diagrams shown in Figpace of such trajectories is proportionalatsy. Thus, the
15. Just as in the case discussed above, four different paigontribution of the Lyapunov trajectory witN links to the
ings are allowed at the ends of external dashed lites—), resistivity in the region of small magnetic field is given by
(+, =), (=, +) and (+, +). However, in contrast to the s\ >
diagrams shown in Fig. 4, internal lines of “Lyapunov dia- Pxx _ _ Blﬁﬁ __E B<p, (72)
grams” contain pairings af+, +) type as well as of—, —) P Bo ,Bg Bo
type. Physically(+, +) pairings corresponds to real double where the factorﬂg is due to theNth order of the corre-

scatterltr;gsthln the IBQPUPOV re?I?nd }Ni W.'” E?urll_t such Olla'sponding diagram. As we show below, the coefficient in this
grams 'I¥h eLnum Ot c_orr;eae hm s in F_e ylafunov equation does not depend on the diagram order. It equals
region. The Lyapunov trajectory shown in Fig. corre—llz, thus coinciding with the coefficient in the small angles

s?ondnst td\l:?t'i Trlmerdlagrarr;sd:n Fr'gr'n4 w;ﬁul_ssed Ir? serc. li”’ncontribution to parabolic asymptotic foi=1 [see Eq(70)].
present a particuiar case of diagrams yapunov regiony iq yorth noting that only in the cadé=1, one should take

corresponding téi=1. The correlated links of any Lyapunov into account the contribution of large angles, presented by

trajectory are renormalized by the pairings, —) as was : D
. ~ L . the second term in Eq70). For N>1 such contribution is
discussed already faM=1. The contribution of any diagram parametrically small.

Of.”SECh tﬁ/ be tobtfl1e retSASt'V'%.'S small r‘?g HOWEver, (‘;"S Before presenting rigorous derivation of above state-
Wil be shown below, these diagrams nave a sharp depely,q s \ve consider qualitatively the contributionNth or-
dence on the magnetic field at very small fields. We W'”der diagram for larger magnetic fieI¢Is>B§. At such fields

N . .
show that for3< S, the diagram of the\th order gives a the first order contribution of the time reversed paths to the

Contr!but!on to the parabOI'C MR of the same order as thecorridor effect does not cancel for trajectories with any val-
contribution of the diagrams wittiN=1 already calculated

above ues of® up to the maximal valud)~ﬁ§. Thus, the factor

' Bl B’g‘, which counts the phase space of relevant trajectories
saturates at some constant value of the order of unity and one
has

N
OPsx _
p

Consider now the MR in the interva8) ™' <g<g). In
this interval the Lyapunov trajectories with the number of
double scatterings smaller th&hgive a parabolic contribu-
tion EqQ.(72) to the MR. The trajectories with the number of

FIG. 15. The diagrams corresponding to electron trajectorieglouble scatterings bigger thangive a linear contribution
with long Lyapunov regions. Eq. (73), the main contributiorﬂgﬁ coming from the trajec-

- BByt for B>y (73
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tories withN+1 double scattering. As a result one has thenth link on the direct and return way. In writing E/8)
> we also took into account the renormalization of correlated
OPxx ~— (N —A)— - CN,B’g'ﬁ for Bng <B< ﬂg. links by the(—, —) pairings. As a consequence of this renor-
p 2 Bo malizationnth link, which is passed twicéon the direct and

(74)  return paths comes with the factoe™™" instead ofe 2%/,
What remains to do is to express the final an@le via the

HereCy~ 1 andAis given by Eq(71). ForN>1 the second jnjtial angle ®,. From simple geometric considerations we
term on the right-hand side of E(74) can be neglected and get

we get finally
Ry Ry
B N g2 =—— ... —— .
%XX“‘E% for gy <p<py, N>1. (79 *ale) oley) "
. o ° o Combining Egs(78) and (79) and performing the integral
Equation (74) indicates that at very low magnetic fields, gne gets
which correspond to largil~In B/In By the results of Sec.

(79

[l G. become incorrect and logarithmic renormalization of Opex 1B
the parabolic MR occurs, o 28 for N>1. (80)
% =T ng B_Z (76) V. INTERPRETATION OF THE RESISTIVITY
P 21n By Bo :

CORRECTION IN TERMS OF SMALL CHANGE
Next we present a rigorous derivation of the contribution OF THE EFFECTIVE SCATTERING CROSS SECTION
of the Nth order Lyapunov trajectory foB< ,Bg. As follows , L )
from qualitative considerations presented ababgs<1 for In our caI(_:uIatlo_ns of resistivity corrections we used E_q.
any 0<n=N. Indeed,®,~ B)b,. Since the minimal angle, (8) as a starting point. Here we briefly discuss an alternative

®y is on the order of3 the maximal angle is small compared &PProach based on the accounting of the memory effects in
to unity, ®o~ B/BY<1. Therefore, the direct and return terms of small change of the effective cross section. Consider

paths of the relevant Lyapunov trajectories are very close tgrstlthe +, d+) barl]listic re?grn's Witp givr(]an values of thﬁ
each other. This allows us to characterize a scattering bé"9'€S¢o and ¢r. The contribution of such processes to the
tweenn-1 andn links of the trajectory by one scattering reS|$(t|vJ|rty)(b0th for B=0 and fo_rB#O) contains the fact(_)r
angle ¢, instead of two different scattering angles for direct RE€' " *’=Cod o+ ¢y). Let us introduce now the scattering
and return paths. The dependence on the magnetic fief'9!e¢ for the procesg+,+) considered as a single scatter-
comes from the last link of the trajectory. Expanding N9 On @ complex scatterer. For small valuessgnde; this

D1 ke . . . angle is evidently given byw=m+ ¢+ ¢;. For arbitrary val-
g"nly keeplihlflak?irlstt \t/\éart; done in the preceding section, we ues of gy, ¢ the scattering angle reads

SS(Dy) + 53(— By) ,82 Rﬁ P= Pogep = (7 + @+ @r)(mod 2m).
~ - — o(Dy). 77 . .
" 2 248, 14 APy 7 Such definition ensures thatOp<27. Next we introduce

. . . the integration over this anglefdy, des co +@p) e
To write down the analytical expression fbith order con-  _ (1) [ dg 00 [ deq de; So— glef )_(’i? (P,&nai;g%u(gf) ox-
tribution we should take into account for combinations of ¢ ¢JUPo Pt AP™ Poggp)

(£, %) at the ends of the diagram in Fig. 15. This corre-Pressions can be easily written for the processes-),

sponds to four types of scattering on the impurity 0 in Fig. 14(+’_)’ and(~,+). As aresult, one can write the contribution

. - of four possible types of correlations as follows:
and leads to appearance of the factbre'¢1)(1-€¢1)=|1
-€#12, Here we took into account that direct and return - 4
paths coincide in the first approximation and, as a conse- ReJ depo dor(1 —€#0)(1 —€¥f) - -
quence, scattering angles, ¢; for direct and return paths

are related to each other as followgs;=27—-¢;. The ana- =_f d fd deo( S
lytical expression for MR is given by ¢ oS¢ | deo der(de = ey,

(81)

SpN N _ +olo—m - dle-— - dlp- A
e f dey 0Dy PR, -+~ PRy|1 — €12 (07 = Ao~ bep) = Ao~ 0
p 4| (82
on(fpl)e_Rl/'  Alee™ g %5@ ) The (—,—) process is represented in E®2) by &(¢—).
Rf R,ﬁ 243, 1 N Here we neglected a small differengen the order off3)

(78) between the angle and 7. By virtue of Eq.(82) one can
easily check that the memory effects related to four types of
Here we integrate over distances between disks instead dfllistic returns can be accounted quantitatively in the frame
integration over disks positions. The factard(¢,) comes of the usual Boltzmann equation. One should just replace the
from double scatterings, the factBﬁ from denominators of scattering cross-section on one diske) by the effective
the two Green'’s functions, describing the propagation alongross section
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oert(p) = (@) + do(e), (83 0.00 3
where dog(¢) is the field-dependent correction given by o, 004 -4x10°
< -8x10

1[7dR 2 2 <., L0081

50'8(@) = — _e_ZR”f d()Dof d(Pf 0’(@0) OF 00 01 02 03
4J, R o 0 2
-0.12
XO’(qu)en%[ﬁ(gD— "D@o,wf) + 5(90— 77) e

= (o= @g0) ~ e = @041 (84) o 2 4 e ﬁ/éBo © 2

This correction does not change the total cross section FIG. 16. The value oBp,/ pf, from Egs. (1) and (62) (solid

2m line) shown as a function oB/ 3, together with the results of nu-
f de dog(¢) =0. (85) merical simulationgRef. 16 presented for different values ¢k,
0 (triangles for B,=0.09, boxes forB,=0.06, circles forBy;=0.03.

ta for all numerical curves are shown fBr<0.3. Inset, the
crossover from quadratic to a linear dependencg/ag,~ 0.05.
This crossover was not resolved in numerical simulations.

In other words, the enhancement of cross section caused
processes+,+) and(—,—) is accompanied by the reduction
of the scattering due to thet,—) and (—,+) correlations.

The resistivity correction is proportional to the change of theqantal measurement of the MR in the system of antidot

inverse transport length, arrays® agrees qualitatively with our predictions. The ex-
2 perimentally observed MR was linear in magnetic field in a
5(—) = nf de(1 - cosep) Sog(p) wide region of fields. This region corresponds to the interval
ly 0 of magnetic fields, where our results can be approximated by
2m linear dependencgsee Eq(2)]. The magnetic fields used in
-n f de cose dog(). (86)  experiment were relatively strong, and the parabolic
0 asymptotic was not achieved. The quantitative comparison
; : with the experimen® is more difficult due to several rea-
%?”,:AQRI_EQS'(SZ)’ (83), and(86) one can easily get Eq61) sons. First of all, in the structures, used in experiment, be-

Finally we note that this approach is easily generalized fof’fid.es antido'ts there were also short range scatterers. Our pre-
calculation of the contribution of the trajectories having long/iminary estimates show that accounting for a short range

Lyapunov region. For such trajectories one should replacdiSOrder can change the results of the calculations. Second,
the anglesp, and ¢ in Eq. (82) by ¢; ande! = 27— ¢, (see the antidot distribution was not fully chaotic in the experi-
. 1

Sec. V). For very smallg such thatﬂg"'l</5’<ﬁ§ and N ment. To be more specific, the antidots were randomly

>1, the magnetic field induced correction to the scatterin oved from the regular square Iat?ice distribution_ by shifts
cross-section is expressed in a simple form on the order of 30—40% of the lattice constant. Finally, the

antidots did not have equal sizes, the uncertainty of the size
Sog(¢) — doo() 282In B co(¢/2) being on the order of 50%. In spite of this, a very good
2a =~ 98,1 B, o= - I guantitative agreement with the experiment can be achieved
by appropriate choice of the antidot siaén the uncertainty
(87) interval (see also discussion of the experiment in Ref). 16
Note also that generalization of the theory for the case when
antidot sizes vary is straightforward. What must to be done is

to average pairing$51’“5?“> with the distribution function

In the preceding sections we derived analytical theory ofor the antidots sizes. This leads to the following modifica-
the low-field anomaly in the magnetoresistance, caused byjon of the obtained formulas: one should change
sharp dependence of the memory effects specific for backy(pg)o(¢;) — o(@p) o) in Eq. (57) and hg—hg in Eq.
scattering events on the magnetic field. Next we compare oykg) Here over line means averaging over antidot sizes. We

calculations with the results of simulations and with experi-do not present here corresponding calculations, since the dis-
ment. Note first that there is a parametrically small nonatripytion function of antidot sizes is not known for

nomalous correction to Eq1) due to returns after multiple experiment?®

scatterings. This correction is given'By Next we briefly discuss several interesting unsolved prob-

Spl Ip ~ - 0.28,%. Iems. I_\Iote first that_ above consideration of Lyap_unov trajec-
x 0 tories is valid, provided thal<1/3,. Indeed, while calcu-

To compare the results of simulatidfsvith the theoretical lating the Nth order diagrams we neglected small

results in a wider region of parametes3,, we substract contributions of(+,—) and(—,+) pairings on the all corre-

Spy/p from the numerical curves. Theoretical and lated links. Accounting of such pairings is rather tricky and is

numerical® results are plotted in Fig. 16, in the universal out of scope of this paper. We expect, however, that such

units, Spy/ pBo Versusz= B/ Bo. It is seen, that the theoretical correlations may lead to a factor on the order(bfcgo)N

and numerical results are in very good agreement. Experic~ 1) in Eq. (79). Therefore, folN>1/8, the contribution

VI. DISCUSSION
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of Lyapunov diagrams might beconld dependent. This non-Markovian correlations related to ballistic returns is pre-

gives a low-field limit for our theory sented. A method of diagrammatic expansion of the Liouville
1By equation is developed which allows us to describe analyti-
B> By (88) cally the effects of “empty corridor” on ballistic returns. The
We conclude that the behavior of the MR in the lingit —analytical expressions for anomalous MR in different inter-
_.0 remains so far unclear. vals of magnetic fields are derivgdee Eqs(1), (62), (64),

In our calculations we fully neglected quantum effects.@nd(74)]. The MR at very low magnetic fields was shown to
Such effects should decrease the “effect of empty corridor® determined by the contribution of electron trajectories
due to the diffraction on the edges of the disks. In the situab@ving long Lyapunov region. An interpretation of the
tions where the magnetic field is not very smgt> g2, the ~ memory effects in te_rms_ of _smaII change of the_ effective
neglecting of the diffraction effects is justifieddt VAgl (\¢ scattering cross section is discussed. The_analytlcal re;ults
is a Fermi wavelengdh This criterion ensures that diffraction '€ Shown to be in very good agreement with the numerical
effects on the edges of the disks are not relevant at the scaldinulations and experiment.
of the order ofl. In the opposite cas@<<VAgl, the diffrac-
tion should destroy the “corridor effect,” thus suppressing ACKNOWLEDGMENTS
the anomalous MR. For small magnetic fields, wites B, The authors thank M. I. Dyakonov for insightful discus-
the criterion for negligibility of the diffraction becomes gjgns and R. Jullien for providing us with the numerical data.
strongera> VAL, wherel ~11n(1/B)/In(1/B) is the char- \ye are also grateful to I. V. Gornyi and D. G. Polyakov for
acteristic size of the Lyapunov region. Another quantum efyseful comments. The work was partially supported by

fect which can be especially important from the point of RFBR, grant of Russian Scientific School, and by pro-
view of the possible experimental realizations is the wealkyrammes of the RAS.

localization phenomena. The weak localization correction to

the conductivity also has an anomalous dependence on the APPENDIX A

magnetic field. Moreover, the interpretation of the memory _ _ _ o _

effects in terms of small change of effective cross section This Appendix contains the explicit expressions for the
discussed in Sec. V is very close to the interpretation of weaRairings(sT#3T"). Using Eqs(13), (18), and(24), kernels of

localization phenomenon developed in Ref. 26. Similar tOoperatorsﬁ'*, 5]'—, entering in Eq(32) can be written as
discussion in Sec. V, the coherent enhancement of back-

scattering amplitude caused by weak localization, is accom- 8T, w=ola=a')(n*=n),
panied by reduction of coherent scattering in other direc-
tions, the total cross section does not change. The 5T, == da=a')oT,, (A1)

competition of the non-Markovian and the weak localization

effects might result in new interesting phenomena. The studyhere

of such competition in a system with spin-orbit interaction

can be especially interesting, because, in contrast to the weak

localization correction, the “corridor effect” is not very sen-

sitive to spin-orbit coupling. The detailed analysis of the , . .

quantum effects is a challenging problem which will be ad-The functionsn™ and n™ in Eq. (A1) depend on vectors

dressed elsewhere. a(n’,n) and a(n”,n) correspondingly[see Egs.(14) and
We did not investigate the temperature dependence of thgl6)]. The pairings of operatorT# and 6T” can be calcu-

phenomenon. This dependence is related to the scattering lgted with the use of Eqg30), (A1), and(A2). As a result

phonons(or electron-electron scatteringieglected in our we have

calculations. It worth noting that importance of the electron- . .

phonon scattering is expected to increase with decreasing <é‘|’5]az(r2)é“l'alﬁo(rl)>

magnetic field. Indeed, the potential of the electron-phonon _ _ _ _ _

interaction depends on time, therefore restricting the maxi- = 0B aolar= B Bpay = Ayp)  (AI)

mal length of a trajectory with the Lyapunov regibr<L ~ ~

whereL,~ vg 7y, and 7, is the temperature dependent char-  (8T(r2) 8T (r1))

acteristic time of the electron-phonon scattering. This implies

that at small magnetic fields one should replace the logarith- = J da’ do” o(B— a')o(By— &) I@g.ar, 85, o),

mic factor InNB)/In(B,), entering Eq(76) by a temperature ' o

dependent coefficient of the order lof;/1. (A4)

6T, = f do”’ o(a=a")(nN"=n). (A2)

VII. SUMMARY (8T0,(12) 8T (1))

We propose a theory of the negative anomalous MR in a
system with strong scatterers. It is shown that the anomaly in =o(B- ay) f da’ o(By=a')I(=aga,8p,a),
the MR arises due to suppression of “empty corridor effect”
by magnetic field. A detailed description of different types of (A5)
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~ ) pendent delta function by integration over the anglelt is
(0T4(ra) 6T, 5 (r1)) = o(ar = Bo) f da’ o(B~-a') clear that the integral is vanishing foy—RY|>a. To calcu-
late the integral for smalldy—R’| note that by virtue of Eq.
XJAg,0r, = Bay ) (A6) (16 |da/da’|=|d(axn)/da’'|=c(a~a’) and therefore the

integral of they dependent delta function cancels the scatter-

Here functionJ emerges as a result of pairings @h*—n) ing cross section in EqA2). As a result we get

X (n”-n)) [see Eq(30)] and is given by
STL(r) =1/ -2 8(x-R - a,)6 ~ 1/ - >, 58(x- R 6.
J(a,b):nde Sr,-R-a)d(r,-R-b). (A7) ! ‘

(B1)
Here 6, is a unit step function which is equal to unity when
APPENDIX B ly-R/|<a and vanishes otherwise. Using E&1) we can
write for backscattering angles close #o(® ~a/l),
To caIcuIate(ET;[rz](r)5T;[_,1](r’)) we first do the inte- B )
gral on the right-hand side of E¢A2). Integral of the term (BT o1 (1) 8T o (1)) = nh(x, @) &(x = x')
containing average densityis trivial and reduces to 1/1In ~ nh(r,®)8(r - 1) (B2)
the integral containingh™ it is convenient to introduce or- ' '
thogonal coordinatex andy such thatx axis is collinear where
with the velocity of the incident particle and write the delta _
function entering the definitioril4) of n~ as &r-R;-a) hr,®) = (22~ |®[r) 6(2a - |P|r)
=8y-R/-ay) 8(x-R‘-a,). We proceed by lifting they de- is shown in Fig. 12.
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