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Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel
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A nonlinear system is considered where an aperiodic binary input signal is added to an arbitrarily distributed
noise and compared to a fixed threshold to determine the binary output signal. Noise enhancement of the
transmission of the aperiodic signal via stochastic resonance is demonstrated and studied in this nonlinear
information channel. The characterization developed goes up to the calculation of the information capacity of
the channel, defined as the maximal achievable input-output transinformation occurring when the statistics of
the input signal is matched to the noise. It is then demonstrated that a regime exists where the information
capacity of the channel can be increased by means of an increase of the noise, up to an optimal noise level
where the capacity resonates at a maximum value. The influence on this resonance of the noise distribution is
also studied[S1063-651X97)11302-2
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Stochastic resonance can be described as an effect of We consider a simple threshold system that we describe
noise-enhanced signal transmission that occurs in certai@s a memoryless nonlinear binary channel. The input to the
nonlinear systems. Since its introduction some fifteen yearshannel is a random variab¥ which assumes values 1 or O
ago[1], this effect has mainly been studied to enhance thavith probabilities, respectivelyp,; andpy=1—p;. The ef-
transmission of a periodic signal, usually a sinusgd3].  fect of the channel is twofold. First, a noiskis added to the
The interest of such a situation, which has received considnPutX to yield X+N. SecondX+N is compared to a fixed
erable attention, is more of a conceptual nature: it shows thdbresholdd to determine the binary outpdt of the channel
the transmission of a “coherent” signal of known form can according to
be improved through noise addition, revealing a context

. : . . then Y=1,
where the noise ceases to be a nuisance and is turned into a f X+N>6 1)
benefit. else Y=0.

_ Exploiting stochastic resonance to improve the fransmisthe nojseN is a continuousor discret¢ random variable
sion of actual useful information requires the implication of ayith the statistical distribution functiof(u) = PN<u} and
broadband aperiodic signal in place of the periodic signalyower\w=E(N2). The successive realizations of the random
Only recently has this type of situation been approacheg,,tx are assumed independent and identically distributed,
[4—6]. In this case, a particularly appropriate measure of thgynq this is also the case for the noleThe inputX and the
effect is provided by information-theoretic quantities such as,giseN are statistically independent.
the input-output transinformation in the presence of the tpe input-output transition probabilities of this binary

noise. The application of information-theoretic quantities tochannel are easily derived. For instance, the probalplity
characterize stochastic resonance is even more recent. Th—qu{Y:1|x=1} is also PEX+N>6X=1} which amounts

work of [7] defines and studies such a measure in an exper{—0 P{N>#—11=1—F(¢—1). With similar rules one ar-
mental realization of stochastic resonance in signal transmis;es at
sion by a neuron, where a transinformation is defined for an

analog input encoded in an output spike train. The work of p11=PHY=1X=1=1-F(6-1), 2
[8] also uses information-theoretic measures, but for stochas-
tic resonance with a periodic input signal. Simple threshold Por=PrHY=0[X=1}=F(6-1), 3

nonlinearities exhibiting stochastic resonance with an aperi-

odic input are approached with information-theoretic mea- P10=PHY=1X=0}=1-F(0), )
sures in[9] where an input-output transinformation is de- _ Y —l—

fined and related to the transcoding of an analog input into an Poo=P1Y =0X=0}=F(6). ©
output spike train by a neuron. Once the transition probabilities are known, we are in the

In the present work we deal with stochastic resonance ipresence of an asymmetric binary channel for which the
this type of threshold nonlinearity. A characterization is de-input-output transinformatioh(X;Y) can be computed from
veloped that goes up to the computation of the informatiorthe entropies ag10]
capacity of the system, defined as the maximal achievable
input-output transinformation occuring when the input statis- LOGY)=H(Y)—H(Y/X). (6)
tics is matched to the noise. This capacity is computed in thg,, output entropy can be expressed as
presence of an arbitrary distribution for the noise. We show

that the capacity resonates at a maximum value for a suffi- H(Y)=h +(1— 1—
cient noise level, and study the influence of the noise distri- (Y)=h[P1iP1+ (1= Poo)(1-Py)]
bution on the resonance. +h[(1-p1)p1+Podl—p1)], (7)
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with the functionh(u)= —u log,(u), and the input-output
conditional entropy as

H(Y|X)=(1—p1)[h(peoy) +h(1—pgo)]
+pa[h(p1)+h(1—p1p]. (8)

Equations(6), (7), and(8) provide an explicit expression
for the transinformatior (X;Y) as a function of the input
probability p;. The derivative ofl (X;Y) relative top; can
be computed, to yield the valug] of p; that maximizes
[ (X;Y) and achieves the information capadtyof the chan-
nel; this value comes out as

% apg—1

- 9
P1 a(pootpP11—1) ©

with

h(pgo) +h(1—poo) —h(p11) —h(1—p19)

a=1+exp|In(2) Dogt Pri—1

(10)

Expression(9) used in Eqs(7) and (8) results in an ex-
plicit expression for the information capaci@/as the maxi-
mum of the transinformatioh(X;Y) that follows in Eq.(6).
The present derivation shows that, at fiygdthe transinfor-
mation I (X;Y) will depend upon the noise distribution. In
particular, conditions can be found where, at fixed the
transinformation (X;Y) can be made to resonate at a maxi-

mum value as the noise rms amplitude is varied. This ha

been reported with Gaussian noisg ¥. Here, Eqs(9) and
(10) further show that the optimal input probabilip maxi-
mizing the transinformation(X;Y) also bears dependence

on the noise distribution. There results a “double” depen-

dence of the maximum transinformati@) or capacity, with
the noise distribution, that we shall now study.

Influence of the noise powellVe first examine, for a
given type of noise distributioiia Gaussian noise, for in-
stance, the variation of the capacit§ with the noise power
W=E(N?). Figure 1 represents this variation, whisnis a

zero-mean Gaussian noise, and for different values of th

thresholdé. The curves of Fig. 1 clearly show two different
regimes of operation for the channel. Whéd 1, an input
X=1 is alone sufficient to trigger an outp¥t=1. Addition
of the noiseN is then only felt as a degradation of the trans-
mission, and accordingly the information capacty de-
creases from the valuE=1 bit as the noise poweW is
increased from the valu&/=0. In contrast, wherg>1, an
input X=1 alone is unable to trigger an outpdt=1 in the
absence of the noise, and the resulting capacity is zero. A

dition of the noiseN then leads to a cooperative effect in h

which the noise and the inpUX cooperate to reach the
thresholdé which controls the triggering of the output. This
translates into a finite nonzero information capa€lfywith a
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FIG. 1. Information capacitZ (in bits) as a function of the rms
amplitudeo= W of a zero-mean Gaussian noise with power
The 9 curves are obtained for 9 values of the threshlavith
successively from the upper curve to the lowest ofe0.8; 0.9;
0.95; 0.99; 1; 1.01; 1.05; 1.1; 1.2. In the regime wherel (the 4
lowest curvep there exists a nonmonotonic variation of the capac-
ity which increases with the noise power, up to an optimal noise
level where the capacity is maximized. The inset shows the optimal
probability p; of Egs.(9) and (10) as a function of the noise rms
amplitudeo when 6=1.2.

zero, as represented in Fig. 2. With a fixed threshiidL,
for small W's, the noise alone is practically insufficient to
trigger an outputy=1, and such an output will occur, with
appreciable probability, only in the presence of an input
X=1. Furthermore, this outcome will first take place with an
Fncreasing probability a8V is increased. This translates into
an increasing transition probabilify,; with increasingW,
responsible for the rise of in this domain. As the noise
power W is further increased, the possibility of an input
X=0 being received as an outpdt=1 will begin to matter,
and from then on will entail a decreasing probabiliys and
provoke a gradual decay of the capadity

In the regime where the inpt is subliminal(the regime
where 6>1), the information capacity is strictly zero in the
absence of the noise. Addition of the noise to the channel
then allows a finite nonzero capacity. Moreover, there exists
8 range where increasing the power of the noise results in an
increased information capacity, up to an optimal noise level
where the capacity is maximized. We are in the presence of
an effect of noise-enhanced information capacity, in which a
sufficient amount of noise becomes an essential ingredient
for an optimal transmission, and that we interpret as a form
of stochastic resonance.

Influence of the noise distributio®ne can also examine
he influence of the noise distribution on the noise-enhanced
“apacity effect, in the presence of a fixed threshitd.. We
ave chosen four different noises which can be characterized
by their probability density function§(u)=dF/du, among
which are(a) an exponential noise with

domain whereC can be increased by increasing the noise

power W. As visible in Fig. 1, there is an optimal noise
power W where the capacityC reaches a maximum, and
which depends on the value 6f1.

In the regime wher&>1, the nonmonotonic variation of

(11)

f(u)= iﬁ exp( - ﬁg)

C with W can be understood from the variations of the tran-

sition probabilities of the channel whéM is increased above

(b) a Gaussian noise with
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FIG. 2. Information capacitg (in bits) and transition probabili- FIG. 3. Information capacitf (in bits) as a function of the rms

ties p;; and pog,as a function of the rms amplitude= W of a  amplitude o= W of the noise with poweiV, in a regime with
zero-mean Gaussian noise with powsr in a regime with6=1.2  9=1.2 where the noise-enhanced capacity effect takes place. Four
where the noise-enhanced capacity effect takes place. The insgffferent noise distributions with identical pow®&Y are used:(a)
shows the capacit§ (in bits) as a function of the optimal probabil- exponential noise of Eq11), (b) Gaussian noise of Eq12), (c)

ity p7 of Egs.(9) and(10). uniform noise of Eq(13), and (d) two-level discrete noise of Eq.
, (14).
1 u
f(u)= oo ex;{ —ﬁ), (120 is matched to the noise. We have then demonstrated the pos-

sibility of an enhancement of this information capacity by
means of noise addition.

The present model can be relevant to natural systems that
are constrained to receive input signals through a fixed

(c) a uniform noise with

for ue[— \/§a, \/§U], threshold that cannot be easily lowered. This is the case with
f(u)= { 2\30 (13)  neurons in the nervous system, and one can devise a scheme
0 otherwise, where a neuron receives input signals under the form of
trains of action potentialgl1], in contrast with the scheme in
(d) a two-level discrete noise with [9] where the neuron receives an input signal under the form
of a continuous analog stimulus. An action potent/P) is
f(u)=0.98(u+o)+6u—o)]. (149 a stereotyped electric pulse with a duration of a few milli-

secondgms). When an input AP impinges on the neuron, it
These four noise distributions possess an identical powenduces a pulselike variation of the membrane potential
E(N?)=W=¢2. With these four distributions, Fig. 3 shows known as a postsynaptic potential, and which lasts also over
the nonmonotonic variation of the capacfyas a function a duration of a few mgat least for appropriate neurgns
of the noise rms amplitude= W, when6=1.2. The noise- Random fluctuations of the membrane potential also exist,
enhanced capacity effect is preserved in each case andwhich come from stochastic activities of ionic channels in
clearly dependent upon the noise distribution when identicalhe membrane. These fluctuations act as a noise which lin-
noise powers are applied. The strongest effect is obtaineearly superposes to the postsynaptic potentials reproducing
with the discrete noise, where the noise power has to bthe input APs, and altogether they determine the value of the
sufficient to allow a finite nonzero capacity, otherwise membrane potential. There is then a natural unit of time, the
with too small or too large a noise power, the capa€ity refractory period of a few ms, which fixes a rate at which the
directly drops to zero. For this case of the two-level discreteneuron can emit an output AP, each time its membrane po-
noise, the locations where the capacity drops to zero can kential reaches a prescribed firing threshold. The magnitude
simply understood from threshold-crossing arguments on thef the postsynaptic potentials is a function of the synaptic
input plus noise, and these locations follow @ 0.2 and efficacy of the input pathway. On a low-efficacy input path-
0=1.2 when the threshold i8=1.2. Wheno is below 0.2 way, the magnitude of the postsynaptic potentials may be
the channel outpuY is always zero, and whemis above 1.2 insufficient to reach the firing threshold. Addition of the
the outputy is 0 or 1 with equal probabilities, irrespective of noise then may bring the necessary assistance to reach this
the input X, leading in both cases to a zero capacity. Anthreshold. One can then introduce probabilities of co-
optimal range of noise values is necessary for the channel toccurrence of APs at the input and at the output, and define
have access to a nonzero capacity. This is a special case afi information capacity for the transmission of APs which
the noise-enhanced capacity effect. can be expected to benefit from the noise enhancement here

The present study extends the scope of stochastic resdescribed.

nance, understood as an effect of noise-enhanced signal The present model of a simple nonlinear channel, which is
transmission that may occur under various forms. Here, wexactly calculable and which proves the possibility of noise
have computed for a nonlinear channel, the maximal achievenhancement of an information capacity, can serve as a use-
able input-output transinformation when the statistics of theful tool for further developments of stochastic resonance and
input its applications.
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