
PHYSICAL REVIEW E FEBRUARY 1997VOLUME 55, NUMBER 2
Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel

François Chapeau-Blondeau
Facultédes Sciences, Universite´ d’Angers, 2 boulevard Lavoisier, 49000 Angers, France

~Received 30 September 1996!

A nonlinear system is considered where an aperiodic binary input signal is added to an arbitrarily distributed
noise and compared to a fixed threshold to determine the binary output signal. Noise enhancement of the
transmission of the aperiodic signal via stochastic resonance is demonstrated and studied in this nonlinear
information channel. The characterization developed goes up to the calculation of the information capacity of
the channel, defined as the maximal achievable input-output transinformation occurring when the statistics of
the input signal is matched to the noise. It is then demonstrated that a regime exists where the information
capacity of the channel can be increased by means of an increase of the noise, up to an optimal noise level
where the capacity resonates at a maximum value. The influence on this resonance of the noise distribution is
also studied.@S1063-651X~97!11302-2#

PACS number~s!: 05.40.1j, 02.50.2r, 07.50.Qx, 47.20.Ky
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Stochastic resonance can be described as an effec
noise-enhanced signal transmission that occurs in ce
nonlinear systems. Since its introduction some fifteen ye
ago @1#, this effect has mainly been studied to enhance
transmission of a periodic signal, usually a sinusoid@2,3#.
The interest of such a situation, which has received con
erable attention, is more of a conceptual nature: it shows
the transmission of a ‘‘coherent’’ signal of known form ca
be improved through noise addition, revealing a cont
where the noise ceases to be a nuisance and is turned i
benefit.

Exploiting stochastic resonance to improve the transm
sion of actual useful information requires the implication o
broadband aperiodic signal in place of the periodic sign
Only recently has this type of situation been approac
@4–6#. In this case, a particularly appropriate measure of
effect is provided by information-theoretic quantities such
the input-output transinformation in the presence of
noise. The application of information-theoretic quantities
characterize stochastic resonance is even more recent.
work of @7# defines and studies such a measure in an exp
mental realization of stochastic resonance in signal trans
sion by a neuron, where a transinformation is defined for
analog input encoded in an output spike train. The work
@8# also uses information-theoretic measures, but for stoc
tic resonance with a periodic input signal. Simple thresh
nonlinearities exhibiting stochastic resonance with an ap
odic input are approached with information-theoretic m
sures in@9# where an input-output transinformation is d
fined and related to the transcoding of an analog input into
output spike train by a neuron.

In the present work we deal with stochastic resonanc
this type of threshold nonlinearity. A characterization is d
veloped that goes up to the computation of the informat
capacity of the system, defined as the maximal achieva
input-output transinformation occuring when the input sta
tics is matched to the noise. This capacity is computed in
presence of an arbitrary distribution for the noise. We sh
that the capacity resonates at a maximum value for a s
cient noise level, and study the influence of the noise dis
bution on the resonance.
551063-651X/97/55~2!/2016~4!/$10.00
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We consider a simple threshold system that we desc
as a memoryless nonlinear binary channel. The input to
channel is a random variableX which assumes values 1 or
with probabilities, respectively,p1 andp0512p1 . The ef-
fect of the channel is twofold. First, a noiseN is added to the
inputX to yieldX1N. Second,X1N is compared to a fixed
thresholdu to determine the binary outputY of the channel
according to

If X1N.u
then Y51,
else Y50. ~1!

The noiseN is a continuous~or discrete! random variable
with the statistical distribution functionF(u)5Pr$N<u% and
powerW5E(N2). The successive realizations of the rando
inputX are assumed independent and identically distribut
and this is also the case for the noiseN. The inputX and the
noiseN are statistically independent.

The input-output transition probabilities of this bina
channel are easily derived. For instance, the probabilityp11
5Pr$Y51uX51% is also Pr$X1N.uuX51% which amounts
to Pr$N.u21%512F(u21). With similar rules one ar-
rives at

p115Pr$Y51uX51%512F~u21!, ~2!

p015Pr$Y50uX51%5F~u21!, ~3!

p105Pr$Y51uX50%512F~u!, ~4!

p005Pr$Y50uX50%5F~u!. ~5!

Once the transition probabilities are known, we are in
presence of an asymmetric binary channel for which
input-output transinformationI (X;Y) can be computed from
the entropies as@10#

I ~X;Y!5H~Y!2H~Y/X!. ~6!

The output entropy can be expressed as

H~Y!5h@p11p11~12p00!~12p1!#

1h@~12p11!p11p00~12p1!#, ~7!
2016 © 1997 The American Physical Society
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with the functionh(u)52u log2(u), and the input-output
conditional entropy as

H~YuX!5~12p1!@h~p00!1h~12p00!#

1p1@h~p11!1h~12p11!#. ~8!

Equations~6!, ~7!, and~8! provide an explicit expression
for the transinformationI (X;Y) as a function of the inpu
probability p1 . The derivative ofI (X;Y) relative top1 can
be computed, to yield the valuep1* of p1 that maximizes
I (X;Y) and achieves the information capacityC of the chan-
nel; this value comes out as

p1*5
ap0021

a~p001p1121!
, ~9!

with

a511expF ln~2!
h~p00!1h~12p00!2h~p11!2h~12p11!

p001p1121 G .
(10)

Expression~9! used in Eqs.~7! and ~8! results in an ex-
plicit expression for the information capacityC as the maxi-
mum of the transinformationI (X;Y) that follows in Eq.~6!.
The present derivation shows that, at fixedp1 ,the transinfor-
mation I (X;Y) will depend upon the noise distribution. I
particular, conditions can be found where, at fixedp1 , the
transinformationI (X;Y) can be made to resonate at a ma
mum value as the noise rms amplitude is varied. This
been reported with Gaussian noise in@9#. Here, Eqs.~9! and
~10! further show that the optimal input probabilityp1* maxi-
mizing the transinformationI (X;Y) also bears dependenc
on the noise distribution. There results a ‘‘double’’ depe
dence of the maximum transinformationC, or capacity, with
the noise distribution, that we shall now study.

Influence of the noise power:We first examine, for a
given type of noise distribution~a Gaussian noise, for in
stance!, the variation of the capacityC with the noise power
W5E(N2). Figure 1 represents this variation, whenN is a
zero-mean Gaussian noise, and for different values of
thresholdu. The curves of Fig. 1 clearly show two differen
regimes of operation for the channel. Whenu,1, an input
X51 is alone sufficient to trigger an outputY51. Addition
of the noiseN is then only felt as a degradation of the tran
mission, and accordingly the information capacityC de-
creases from the valueC51 bit as the noise powerW is
increased from the valueW50. In contrast, whenu.1, an
input X51 alone is unable to trigger an outputY51 in the
absence of the noise, and the resulting capacity is zero.
dition of the noiseN then leads to a cooperative effect
which the noise and the inputX cooperate to reach th
thresholdu which controls the triggering of the output. Th
translates into a finite nonzero information capacityC, with a
domain whereC can be increased by increasing the no
powerW. As visible in Fig. 1, there is an optimal nois
powerW where the capacityC reaches a maximum, an
which depends on the value ofu.1.

In the regime whereu.1, the nonmonotonic variation o
C with W can be understood from the variations of the tra
sition probabilities of the channel whenW is increased above
-
s

-

e

-

d-

e

-

zero, as represented in Fig. 2. With a fixed thresholdu.1,
for smallW’s, the noise alone is practically insufficient t
trigger an outputY51, and such an output will occur, with
appreciable probability, only in the presence of an inp
X51. Furthermore, this outcome will first take place with
increasing probability asW is increased. This translates int
an increasing transition probabilityp11 with increasingW,
responsible for the rise ofC in this domain. As the noise
powerW is further increased, the possibility of an inp
X50 being received as an outputY51 will begin to matter,
and from then on will entail a decreasing probabilityp00 and
provoke a gradual decay of the capacityC.

In the regime where the inputX is subliminal~the regime
whereu.1!, the information capacity is strictly zero in th
absence of the noise. Addition of the noise to the chan
then allows a finite nonzero capacity. Moreover, there ex
a range where increasing the power of the noise results i
increased information capacity, up to an optimal noise le
where the capacity is maximized. We are in the presenc
an effect of noise-enhanced information capacity, in whic
sufficient amount of noise becomes an essential ingred
for an optimal transmission, and that we interpret as a fo
of stochastic resonance.

Influence of the noise distribution: One can also examine
the influence of the noise distribution on the noise-enhan
capacity effect, in the presence of a fixed thresholdu.1. We
have chosen four different noises which can be character
by their probability density functionsf (u)5dF/du, among
which are~a! an exponential noise with

f ~u!5
1

sA2
expS 2A2

uuu

s
D , ~11!

~b! a Gaussian noise with

FIG. 1. Information capacityC ~in bits! as a function of the rms
amplitudes5AW of a zero-mean Gaussian noise with powerW.
The 9 curves are obtained for 9 values of the thresholdu, with
successively from the upper curve to the lowest one:u50.8; 0.9;
0.95; 0.99; 1; 1.01; 1.05; 1.1; 1.2. In the regime whereu.1 ~the 4
lowest curves!, there exists a nonmonotonic variation of the capa
ity which increases with the noise power, up to an optimal no
level where the capacity is maximized. The inset shows the opti
probability p1* of Eqs. ~9! and ~10! as a function of the noise rm
amplitudes whenu51.2.
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f ~u!5
1

sA2p
expS 2

u2

2s2D , ~12!

~c! a uniform noise with

f ~u!5 H 1

2A3s
for uP@2A3s,A3s#,

0 otherwise,

~13!

~d! a two-level discrete noise with

f ~u!50.5@d~u1s!1d~u2s!#. ~14!

These four noise distributions possess an identical po
E(N2)5W5s2. With these four distributions, Fig. 3 show
the nonmonotonic variation of the capacityC as a function
of the noise rms amplitudes5AW, whenu51.2. The noise-
enhanced capacity effect is preserved in each case an
clearly dependent upon the noise distribution when ident
noise powers are applied. The strongest effect is obta
with the discrete noise, where the noise power has to
sufficient to allow a finite nonzero capacityC, otherwise
with too small or too large a noise power, the capacityC
directly drops to zero. For this case of the two-level discr
noise, the locations where the capacity drops to zero ca
simply understood from threshold-crossing arguments on
input plus noise, and these locations follow ass50.2 and
s51.2 when the threshold isu51.2. Whens is below 0.2
the channel outputY is always zero, and whens is above 1.2
the outputY is 0 or 1 with equal probabilities, irrespective o
the inputX, leading in both cases to a zero capacity.
optimal range of noise values is necessary for the chann
have access to a nonzero capacity. This is a special ca
the noise-enhanced capacity effect.

The present study extends the scope of stochastic r
nance, understood as an effect of noise-enhanced s
transmission that may occur under various forms. Here,
have computed for a nonlinear channel, the maximal ach
able input-output transinformation when the statistics of
input

FIG. 2. Information capacityC ~in bits! and transition probabili-
ties p11 and p00,as a function of the rms amplitudes5AW of a
zero-mean Gaussian noise with powerW, in a regime withu51.2
where the noise-enhanced capacity effect takes place. The
shows the capacityC ~in bits! as a function of the optimal probabil
ity p1* of Eqs.~9! and ~10!.
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is matched to the noise. We have then demonstrated the
sibility of an enhancement of this information capacity
means of noise addition.

The present model can be relevant to natural systems
are constrained to receive input signals through a fix
threshold that cannot be easily lowered. This is the case w
neurons in the nervous system, and one can devise a sch
where a neuron receives input signals under the form
trains of action potentials@11#, in contrast with the scheme in
@9# where the neuron receives an input signal under the fo
of a continuous analog stimulus. An action potential~AP! is
a stereotyped electric pulse with a duration of a few mi
seconds~ms!. When an input AP impinges on the neuron,
induces a pulselike variation of the membrane poten
known as a postsynaptic potential, and which lasts also o
a duration of a few ms~at least for appropriate neurons!.
Random fluctuations of the membrane potential also ex
which come from stochastic activities of ionic channels
the membrane. These fluctuations act as a noise which
early superposes to the postsynaptic potentials reprodu
the input APs, and altogether they determine the value of
membrane potential. There is then a natural unit of time,
refractory period of a few ms, which fixes a rate at which t
neuron can emit an output AP, each time its membrane
tential reaches a prescribed firing threshold. The magnit
of the postsynaptic potentials is a function of the synap
efficacy of the input pathway. On a low-efficacy input pat
way, the magnitude of the postsynaptic potentials may
insufficient to reach the firing threshold. Addition of th
noise then may bring the necessary assistance to reach
threshold. One can then introduce probabilities of c
occurrence of APs at the input and at the output, and de
an information capacity for the transmission of APs whi
can be expected to benefit from the noise enhancement
described.

The present model of a simple nonlinear channel, whic
exactly calculable and which proves the possibility of no
enhancement of an information capacity, can serve as a
ful tool for further developments of stochastic resonance
its applications.

set

FIG. 3. Information capacityC ~in bits! as a function of the rms
amplitudes5AW of the noise with powerW, in a regime with
u51.2 where the noise-enhanced capacity effect takes place.
different noise distributions with identical powerW are used:~a!
exponential noise of Eq.~11!, ~b! Gaussian noise of Eq.~12!, ~c!
uniform noise of Eq.~13!, and ~d! two-level discrete noise of Eq
~14!.
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