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Annals of Mathematics, 144 (1996), 167-180

Divergence of decreasing
rearranged Fourier series

By T. W. KORNER

Abstract

There exists a square integrable function whose Fourier sum, when taken
in decreasing order of magnitude of the coefficients, diverges unboundedly al-
most everywhere.

1. Introduction

In this paper we identify T with [0, 1) in the usual way. If we seek to store
and reconstruct a function f: T — C by using its Fourier coefficients, it is
natural to use them in decreasing order of magnitude and to consider

Z f(u) exp(2miut),
|f(w)[>n
rather than the traditional

Z f(u) exp(2miut).

[ul<N

This must surely be the best strategy under almost all circumstances, but the
following example, which answers a question raised orally by Carleson and by
Coifman, shows that it requires some justification.

THEOREM 1. There exists a real f € L*(T) such that

lim sup Z F(u) exp(2miut)| = oo,
" 1 fwizn

for almost all t € T.

Theorem 1 strengthens a well-known result on the rearrangement of Fourier
series.
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THEOREM 2. There ezists a real f € L?(T) and a bijection o: Z — Z

such that
N

li]{,n sup| > fo(u)) exp(2mio(u)t)| = oo

—0 y=—N
for almost all t € T.

This theorem was first stated by Kolmogorov. A proof of Kolmogorov’s
statement was sketched by Zahorskii, given in detail by Ulyanov, and much
simplified by Olevskii. The reader who consults [3] will find an excellent bib-
liography.

2. A modified Olevskil system

Our construction is a modification of the one used by Olevskii in his proof
of Theorem 2.
Let us write

I'={(pg) €2 1<p<29,0<q}
and, if N is a positive integer,
I'y={(pg)€Z: 1<p<29, 0<¢< N}
Olevskil introduces an order < on I' as follows. We set
E(p, q) = [(p - 1)2_q)p2_q)

and ~

Xp,q(t) =1 fOI‘tGE~'(2p—].,q-|-l),

XP,Q(t) =-1 fOI‘ te E(Qp)q + 1))

Xp,g(t) =0 _otherwise.

Olevskii orders the elements (p,q) € T in the order of increase of the central
zero (2p — 1)27771 of Xpq; i.e. he writes (p,q) < (¢,¢) if (2p — 1)2771 <
(2 —1)27771 If (p,q) < (¢, ¢) and (p,q) # (¢',¢), then we write (p,q) <
(P',q'). As usual, we write |F| for the Lebesgue measure of F.

We can now state Olevskii’s basic lemma.

LeEMMA (Olevskii). For any k > 0 we can find No(k) with the following
property: For any N > No(k) we can find a real number b with 0 < b < 1, and
b(p,q) with b(p,q) = b or b(p,q) =0 [(p,q) € Tn], and a subset ® of T'n such
that, by writing F = Up.g)ce E(r,n), we have:

0| Y @@ <1 forallte o)),
(p,9)eTN
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.e ~ -1 =
(i) max| 3 bpa)pq(t) > w7 forall t¢ F,
(2,g) =2

(iil) |F| < k.

Proof. The proof is given in [3]. O

Unfortunately I cannot see how to build anything as elegant as Olevskii’s
E(p,q) and Xp,q from trigonometric polynomials with the appropriate proper-
ties. Instead we use the following modified version.

LEMMA 4. Given any n > 0 and any integer N > 0 we can find real
trigonometric polynomials P4, real L? functions ®p,q, and sets E(p,q) which
are finite unions of intervals [(p,q) € I'n+1] and a function k: [0,1) — {-1,1}
having the properties set out below.

(i) E(2p—1,4q+1)NE(2pq+1)=0, E2p—1,4q+1)UE(2p,q+1) = E(p,q)
for all (p,q) € Ty,

(ii) |E(p,q)| =279 for all (p,q) € T'ny1,
If (p,q) € Ty we set

Xpq(t) =1 forte E(2p—1,4q+1),
Xpq(t) =—-1  forte E(2p,q+1),
Xp,qg(t) =0 otherwise.

Then, for all (p,q) € T'n,
(iii) k(2)(Ppg(t) + dpq(t)) = Xp,q(t) for all t € [0,1),
(iv) ||¢p,q||2 <n,

(v) If (9,9),(',d') € Ty and (p,q) # (P',d), then at most one of f’p,q(u) and
Py g(u) can be nonzero for each u € Z,

(Vl) If (paQ)a(p/aql) € FNa (P,Q) < (p,,q,) a’nd Pp,q(u) 75 Oa then
|Ppyq(u)| > |pp’,q’(“)|

for allu € Z,

(vii) By 4(0) =0 for all (p,q) € Ty.

In the rest of this section we will show how Lemma 4 implies Theorem 1.
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LEMMA 5. For any 6§ > 0 we can find a real trigonometric polynomial
P and a measurable subset G of T = [0,1) such that:

() |P(t)| <1 forall t¢ G,

. A . -1
(ii) max| Z P(u) exp(2miut)| > 6 for allt ¢ G,
[P(w)|2n

(iii) |G| <6,
(iv) P(0) =0,

(v) 1Pl £ 1.

Proof. Clearly we may suppose § < 1. Take k = §/4, N = Ny(k), and
define b, b(p,q) and ® as in Lemma 3. Let n = 272(N+2)§. Now take P, ,
¢p,q» E(p,q) and k as in Lemma 4. Set F = Up,geaE(p, q). Using the obvious
parallelism between the systems (E(p, q), Xp,q) and (E(p,q), Xp,q), revealed by
conditions (i) and (ii) and the definition of x4 of Lemma 4, we see that:

Z b(p, @) Xp,q(t)| <1 forallte|0,1),

(p,g)€lN

)’

> b(p,@)xpg(t)| > k7 forallt ¢ F,

(pyg) XA

e/
" o

(i)’ |F] < &,
By condition (iv) of Lemma 4
Ppqllz < n = 2-2(N+2)

and so, by Tchebychev’s inequality, we can find a measurable set F, 4 with
|Fp,ql <27N=2§ such that

|bpg(t)] < 27N
for all t ¢ Fj, 4. Thus, if we set

G=FU |J F
(p,q)EEFN

then we obtain

(iif) 1G] <6,
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whilst, using condition (iii) of Lemma 4,

|k(t) Ppg(t) — Xp,g(t)] < 27N71

for allt ¢ G.
We now set

Pt)=271 Y b(p,q)Ppg(t).

(pq)€TN

The corresponding statements for the P, , tell us that P is a real trigonometric
polynomial with P(0) = 0. If we set

H(t) = 27! Z b(p,q Xp,q(t)

(p)Q)GFN

then we know from condition (i)’ that |H|]2 < 27!. But

H=kP+27% Y b, q)¢pe

(pq)€lN
S0
[Pl = [kPlla=|lH-2"% Y b(p,q)¢plle
(p,9)€lN
< JHlz+27% Y lldpgllz <1,

and condition (v) holds. Similarly,
POI<IHGI+270 3 [épa(t) <1
for all t ¢ G, and condition (ii) holds.
Finally, we observe that, if
Ap',q) = min{lf’p/,q/ (w)l: pp’,q’ (u) # 0}
and
n(v',q") = 270A(, ),

then, by using conditions (v) and (vi) of Lemma 4, we have

Z Ppg(t)|-

(2,9)2(?',q’)

Z P(u) exp(2miut)

|P(w)|>n(p q')

Almost exactly the same arguments as those of the previous paragraph tell us

that
Z A p,q(t) 2 Z Xp,q(t) -
(,9)2(?',q") (P9)2(®',q")
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for all t ¢ G, and so, by using condition (ii) of Lemma 3, we see that
> : -1, -1 _
max| Z P(u) exp(2miut)| > 27k 1
|P(w)|2n
for all t ¢ G, and condition (ii) follows. O

Once we have Lemma 4, the rest of the proof is routine. One way of
completing it runs as follows.

LEMMA 6. For any integer M > 1, Lemma 5 holds with the additional

condition
(vi) P(r) =0 for |r| < M.

Proof. Replace the P(t) of Lemma 5 by P(Mt). |
We can now prove Theorem 1.

Proof of Theorem 1. Let Ny =1 and 6p = 1. By using Lemma 6, we can
inductively construct a sequence of real trigonometric polynomials P, of degree
N, a sequence of measurable sets Gy, and a sequence of 6, with 27" > 6, > 0
such that, for each n > 0,

(Dn 1Prll2 < 8n-1/2,

(ii)n max Z B, (u) exp(2miut)| > 2" for all t ¢ Gy,
bz

(i), |Gn| <277,
(iv)n Pn(u) = 0 for all |u| < Np_1,
(V) 6n = min{|P,(u)|: Pn(u) # 0}.

Condition (i), tells us that || P,||2 < 27™71, and so, by standard theorems
of measure theory, 3%° ; P, converges in L? to a real function f € L? with

fw) =Y Pa(w).
n=1

It is easy to check that f has the required properties. a

3. Building blocks

In this section we produce the building blocks for the construction of the
modified Olevskii system of Lemma 4.
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Let us write 6, for the Dirac measure at . The following result and the
probabilistic argument used to prove it go back to Salem and Zygmund in [4].
(A particularly happy example of the use of the idea will be found in [2].)

LEMMA 7. For any € > 0 we can find an no(e) with the following
property. If n > ng and n > m > 1, then, given m distinct points x1, £2,...Tm
in T with nz; =0 (i.e. xj =r;/n with n—1>r; > 0 an integer), we can find
¢j € {—1,1} such that, by writing

m—1
p=Y" (b,

r=0
with 6, the Dirac measure at x, we have
|io(u)] < n2te
for all u e Z.

Proof. Let X,, X2, ..., X,, be independent random variables with
Pr(X; =1) =Pr(X; = —1) = 1/2. If we set

m—1
7= Xjba,
r=0

then, for each u € Z,

m—1

7(u) = Z X exp(—2miuz;);

=0

hence 7(u) is the sum of m independent symmetric random variables Y; =
X exp(—2miuz;) with |Y;| = 1. Simple estimates (see, for example, the dis-
cussion of Rademacher series in §9.2 of [1]) show that, provided only that n is

large enough,
1

1
~ > -+€ el
Pr(|#(u)| > n2™°) < o

for each u, and so
Pr(|7(u)| < nite forall 0 <u < n— 1)>1- né% = —;—
Since 7(u) is periodic with period n,
Pr(|7(u)| < nZte for all u) > %

Since anything with a strictly positive probability must have an instance, the
result follows. O

We can now produce our basic building block.
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LEMMA 8. For any € > 0 we can find an ny(e) such that if n > ny(e)
the following result holds:

Let E be the union of intervals of the form [r/n,(r +1)/n). Then we can
find a real trigonometric polynomial Q, a real L? function 1, and a function
K: [0,1) - {-1,0,1} such that:

(i) K=Q+1,

(i) 1Qllz <1,

(iif) [[¥ll2 < n,

(iv) n~3+ > |Q(u)| > n~2~° whenever Q(u) # 0,

(v) Q(w) =0 if Ju| < n'~ or [u| > nlte,

(vi) K is constant on [r/2n,(r +1)/2n) for all integers r,

(vii) K(t) = =K(t+1/2n) for t € [r/n,(2r +1)/2n) and all integers T,
(viii) |K(t)|=1forte E, K(t)=0 fort ¢ E.

Proof. Set n = ¢/3. If 1, 3, ...are the distinct points of the form r/n

with [r/n, (r +1)/n) C E, then, provided only that n is large enough, we can
find a u of the form given in the lemma with

[Au)| < n3*7
for all u € Z. We set
T = (80 — 61/2n) * 14,
and observe that
[#(w)] < 207,
Define H: R — R by
H(t)=1ift € [0,1), H(t) = 0 otherwise,

and choose an infinitely differentiable function G such that |G — H||2 < g/4,
IGlli <1, and G(t) = 0 for t ¢ [0,1). If m is a strictly positive integer we
define h: T — R and g: T — R by h(t) = H(2mt) and g¢(t) = G(2m¢t) for
0<t< 1 andset k=7xh, f=71x%g. We observe that, by construction,
k(t) € {—1,0,1} for all t € T and k obeys conditions (vi), (vii), and (viii). We
note further that, by construction,

|k — fll2 <e/4 and || f|l2 < 1.
If N is a strictly positive integer, to be chosen later,

lg™lleo < Bym™
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for some constant By, and so
13(@)] < g™ loolul™ < BjymN|u| =N
for all integers u # 0. Since f(u) = #(u)§(u) it follows that
|F@)| < ByynN 30| =N
for some constant B}, and all integers u # 0. If we write

S(t) = Z f(u) exp(2miut),

|u|<nl+n

then

i

> @

[u|>ni+n
# 2N+1+2n|, 12N
< Z Byn M|
[u|Znttn
< B;(/_nZN+1+2nn—(1+n)(2N—1) =B} n2-n(2N-3)

IS — £l3

for some constant BY;. In particular, by choosing N as a function of  we can

ensure that
1S = fll2 < C(n)n~2

for some C(n) depending only on 7. It follows that, provided only that n is
large enough,
1S = fllz < e/4.

Let
A={ueZ [u <n'°} and A'={uez: |S(u) <n 3}
Then simple estimates show that

> B@P < ISP+ Y 1S@)P

u€AUA’ u€A u€N’
< (2T + DanTHT L (201 4 1)n 2 S

as n — 0o. Thus, if we set
Q)= 3 S(u)exp(2miut),
u@AUA/
then it follows that
1Q — Sll2 <e/2,

and so

1@ — Kll2 < 1@ = Sll2+ IS = fllz+ If — Kll2 < e,

provided only that n is large enough.
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If we set ¢ = K — @, then conditions (i),(ii), (iii), (iv), and (v) can now
be read off and the proof is complete. O

It will be helpful to have the following simple estimate set out explicitly.

LEMMA 9. Let f: T — R be continuously differentiable. Then, if g: T
— R is an L? function, and gnm(t) = g(mt),

201floll 2 , ||f’||§o>
m m?2

I fomlB < (nfn% ; ol

Proof. Observe that

9 =l pr+y/me 9
Ifgnl} = 3 [ £t gme)? e
’ r=0 Jr/m
m—1 (r+1)/m
< Y s @7 [ glmbRer
r=0 t€fr/m,(r+1)/m) r/m
m—1
< sup f(t)m " lgl}
r=0 t€[r/my(r+1)/m)
1
< [ U@+ 17 om™) delal3
< I3+ 217 ool Fllm™ + [1/1Em™2)llgl3
as required. O

4. The construction of the modified Olevskil system

We prove Lemma 4 by means of the induction set out in the next lemma.
LEMMA 10. For any integer N > 0 we can find an(p,q) with
3/4 > an(p,q) > 1/4 for all (p,q) € T'n

such that an(p,q) < an(p',q') whenever (p,q) < (v',d') [(p,9),(P',¢') € Tn] and
the following is true:

For any nn > 0 we can find an po(nn) such that, if ny > po(nn) and
ny is a power of 2, then we can find real trigonometric polynomials Py, 4 N,
real L? functions ¢pqn [(p,q) € Tn], and sets E(p,q) which are finite unions
of intervals of the form [r/n%,(r + 1)/n8) [(p,g) € I'n41] and a function
kn: [0,1) — {—1,1} having the properties set out below.

i)y E(2p—1,g+1)NE(2p,g+1) =0, E(2p—1,q+1)UE(2p,q+1) = E(p,q)
for all (p,q) € Ty,
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(ll)N |E(p’q)| =271 fOT all (paq) € FN+la
If (p,q) € TN, then we set

Xpq(t) =1 forte E(2p—1,g+1),
Xp,q(t) = —1 forte E(2p,g+1),
Xp,q(t) =0 otherwise.

Then, for all (p,q) € T'n,
(i)n k() (PpgN(t) + bp,g,N(t) = Xpg(t) for all t € [0,1),
(V)N lpgnllz < 1w,

W~ If (p,g),(r'd) € T and (p.g) # (¢/,q), then at most one of Ppyn(u)
and Py ¢ n(u) can be nonzero for each u € Z,

(V)N If Ppgn(u) #0, then

—an(p,q)—nN <| )2

ny (u) | < n&aN(qu)'*’ﬂN ,

4N
(viii)y If (p,q) € T'n, then Pp,q,N(u) =0ifu=0 orif |ul >n¥

(ix)N || Ppg,Nll2 < 1+nn for all (p,g) € Tn.

If we take nv 41 < ming, o) £y ) laN+1(D, @) —an+1(P', ¢')| /4, then Lemma
4 can be read off directly from the N + 1 case of Lemma 10. Since the case
N =0 of Lemma 10 is easy (take ag(1,0) = 1/2 and use Lemma 8), the proof
of Theorem 1 will be complete if we can show that case N + 1 of Lemma 10
follows from case N; this we shall now do.

Proof. Suppose that case N holds. Set

5N+1 = min |aN(p’ q) - aN(p/’ q,)|/4’
(p,9)#(',q")
and
an1(pg) = §+ e if (p,q) € 'y,
ant12p-LN+1) = 1+ “—NJ”N%)—*SNt for 1 <p<2¥,
an+1(2p, N +1) = +MM for 1 <p <2V,

It is easy to check that the an4+1(p,q) have the properties set out in the first
paragraph of the lemma.
Now set ny+1 = n%;. Since the E(p, N +1) are finite unions of intervals of

the form [r/n%;, (r+1)/n%;), Lemma 8 (with appropriate choice of n as a power

of 2 close in value to n?\?fl“(p ’N+1)) tells us that, provided only that ny1

is sufficiently large, we can find real trigonometric polynomials P, N41 N+1,
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real L? functions ¢, v+1,8+1 [(p,q) € T'n], and a function Kpn+1: [0,1) —
{-1,0,1} such that:

1) KpN+1 = PpN+1,N+1 + Op N+1,N+1,
2) || Ppny1,N+1ll2 <1,

(
(
(3) llgp,N+1,N+1ll2 < vt
(4

_ N+1 - N+1
) n aN+1(p DN 1By Ne1n41(w)| > n O‘q“(” D=4 whenever

Pp,N+1,N+1(U) #0,

(8) Bpnvrinr(u) = 0 if Juf < npp®TEDTING oy >
2aN+1(P,N+1)+7IN+1
Nyt

(6) Kpn+1 is constant on [r/n3,,, (r 4+ 1)/n%_,) for all integers r,
(7) |Kpn4+1(t)] =1 for t € E(p, N+ 1) and K, ny+1(t) = 0 otherwise.

Now apply Lemma 8 with £ = [0,1), n = ny4; and € = ny. Provided
only that ny4; is large enough, we can find a real trigonometric polynomial
Q«, a real L? function v, and a function K,: [0,1) — {—1,1} such that:

(1) Ki=Qu+
(i) [|@«ll2 <1,
(iii) [[¢«ll2 < nw,
() madi™ 21Qu(w)] 2 n 4" whenever Q. (u) £0,
(v) Qu(u) = 0if [u| < n'=™ or |u| > nltv,
(vi) K is constant on [r/(2nn41), (1 +1)/(2ny41) for all integers r,

(vii) Ki(t) = —K«(t +1/2nn41) for ¢ € [r/nn41,(2r +1)/(2nn41)) and all
integers r.

We now set Q(t) = Qu(nk,1t/2), ¥(t) = Yu(nlyy1t/2), and K(t) =
K. (n},1t/2). We set
PpgN+1(t) = Q) Fpg,n ()
for all (p,q) € Tny1. Observe that if w = u + vnly,/2 with |u| < n}?, then

P,q,N+l(w) PognN (U)Q*(U)a

but B, 4 n+1(w) = 0 otherwise. Thus (using (iv), V)N, (Vi)n, (4), and (5))
conditions (v)y41, (vi)n+41, and (vii)y will hold, provided that we take ny
sufficiently small and ny; sufficiently large.
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Next we set kny1(t) = kn(t)K(t). If (p,q) € I'yv then we now define
¢p,g,N+1 Dy the formula

bpaN+1(t) = knt1(t)Xpq(t) — Ppgn+1(t),

so that condition (iii)y4; is satisfied automatically. If (p,q) € I'n41 \ I'v s0
that ¢p ny+1,n+1 has already been determined, then we define

Xp,N+1(t) = Kp ny1kn+1(t)

so that, by condition (1),

Xp,N+1(t) = kn+1 () (Po,v+1,8+1(t) + dp N+1,8+1(2)),
and, again, condition (iii) x4 is satisfied automatically.
To maintain consistency we must define
E2p-1,N+2) = {t: xpn+1(t) =1}
E(2p,N +2) {t: xp,n+1(t) = —1}.
Conditions (6), (7), (vii), and the definition of K in terms of K, show at once
that v
E(Qp— LN+ 2) UE(2paN + 2) = {t: |K ,N+1(t)| = 1} = E(paN+ l)a
|E(2p— 1, N +2)| = |[E(2p, N +2)| = 3|E(p, N + 1)] = 2~V +2),

and that the E(p, N +2) are finite unions of intervals of the form [r/n% ., (r+
1)/n8;,1)- Since the E(p, q) with (p,q) € ['y41 are those of case N we see that
all the conditions of case N + 1 involving the E(p,q) with (p,q) € I'n4o are
satisfied.

We have now verified all the condition of case N + 1 with the exception of
(iv)n+41 and (ix)y+1. Conditions (2) and (3) show that (iv)y4+1 and (ix)n41
hold for (p,q) = (p, N + 1) so we need only check (iv)y4+1 and (ix)n4; for
(p,q) € T'y. To check (iv)n+1, we observe that by our definitions, condition
(iii) i, condition (i), and the definitions of K and v,

PpaN+1(t) = kn+1(E)Xp,g(t) — Ppgn+1(t)
= kn(O)E(t)xpaq(t) — Q(t)Ppg,nN(t)
= kn(t)K(t)(kN(t)(Ppg,N(t) + bpgn(t))) — Q(t) Ppgn(t)
= K(t)pqn(t) + Ppgn(t)(K(t) — Q1))
= K()bp,gn(t) + PpgnE)¥(?)

Thus, by using (iv)y, we obtain

¢paN+1ll2 < |DpgNll2 + | PogNYll2 < v + (| Ppg N9 ll2-

Now, trivial estimates using (viii)y and the fact that (provided 7y is suffi-
ciently small) |P,q n(u)| < 1 for all u, show that [|P)  ylleo < n3). Thus by
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Lemma 10 with f = P4 N, g = %, and m = n};, /2 we know that, provided
only that ny41 is large enough, we have (using (ix)y and (iii))

¢pgn+1llz < v + (1 Bpgnllz + Dlidllz < mv + (2 +785)0w-

Thus, if gy is small enough, then (iv)y+1 follows for all (p, q) € I'n, as required.

Condition (ix)y+1 can be verified (provided ny+1 is large enough and
nn small enough) by another application of Lemma 9, thus concluding the
demonstration. d
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