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Quantum conductance of helical nanowires
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We have calculated the quantum conductancéNdgbld helical metallic nanowires by using recursion-
transfer-matrix method. Whehy, (the pitch of the helix is in a certain range, there appear characteristic
humps and dips with steps ofGl or 2G, (G,=2e?/h) in the conductance. The anomalous conductance
originates from the fact that an energy gap opens due to noncircular cross section and shifts toward higher
energies with decreasirlg, .
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Very recently, the gold nanowires were formed in gold mined to give the above constants. The same afRRaof the
thin films by electron-beam irradiation in an ultrahigh cross section for each wire was assumed, wheris the
vacuum. Transmission electron microscopy images showeaveraged radius. We fixeld to be 0.53 nm as an example.
that they take helical configuratioh®rior to the experimen- Then the Sharvin's numberR/\ )%= 10.3!* and we con-
tal observation, using empirical molecular dynan(igd), it~ firmed there existed ten quantized states below the Fermi
was predicted that even for metals with isotropic atomic podevel.
tentials, the helical structures could be stable when the diam- The HamiltonianﬂHN of the wire is written as
eters are smaller than the critical validglore recent theo-
retical investigation revealed that the helical structures are - 1 .p 25 2o
stabilized as a result of optimization of surface and interior Hiun=5 (Pt Py+P2) +Vin(xy,2), @
(bulk) energies. o

It is well recognized that the conductivity of carbon nano-where (,,py,p,) are the momentum operators and
tubes changes drastically from metallic to semiconductingVyn(X,Y,2) is the effective potential of the helical wire, the
insulating depending on the chirality of a tub€.0n the cross section of which has-fold symmetry. Atomic units
other hand, the conductance of the helical gold nanowireare employed. WheiN is infinitely large (cylinder, eigen-
has not been measured yet. Therefore it is an interestingates of the Hamiltoniai .. can be solved analytically.
problem to clarify whether the similar conductance changeq—hey are specified by a set of quantum numbersn(k,),
take place in metallic nanowires with helical configurations.\yheren, m are the principal and angular momentum quan-

helical nanowires. We will demonstrate later that the quanfinite integerN, however,m is no longer a good quantum

tum conductance shows enhancement and suppression Ggimber.

pending on the pitch of the helik,, but that it never be- We first calculated the quantum conductance numerically
comes insulating. by using recursion-transfer-matrilRTM) method® In the
~ We adopted the jellium model where electrons are cONRTM method, we consider a periodically repeated unit cell
fined in a uniform potential with boundary of the helical in the xy direction each containing the single wire K,y

geometry as shown in .F'g' L In_splte of the simplicity of Due to the periodicity, wave function can be expressed by
such a model, electronic properties of nanostructures have

been successfully investigated, yielding a number of fruitful
informations, for example, the quantized conductance vary-

ing with a unit of G, (=2e?/h), oscillations in the tensile

force as a function of the elongation of the wire, and the

interplay between the size effect and the Landau splitting

under magnetic field-1! The shapes of cross sections were X
approximated by polygons, having-fold symmetry with z
N=5,6,7, and> (cylinden as a reference. According to the

MD simulations for Pb and Al nanowires, structurés y
=5,6,7 were often stabilizedExperimentally, on the other

hand, the thinnest helical gold nanowire was observed to

have sevenfold symmetfyThe helical wire of lengthly FIG. 1. Model of the helical nanowird., is the pitch of the
was connected to jellium electrodes. We used electron derkelix andL,, is the length of the wire. The helical nanowire is

sity (Er=5.53 eV) and the work functionW,=5.47 eV)  connected to jellium electrodes. The shape of the cross section is
of gold s electrons. The potential depthl.0 e\j was deter- assumed to be aN-fold polygon.
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are of order (2r/L\y)?~0.08 eV. We have confirmed that

10 the periods became four times larger than the ones with half
81 of Ly . Thus the oscillations are caused by the finite-size
& i effect due to the existence of the electrodes. In real systems,
N 6_' since two contacts between wire and electrodes are smoother
S 4l than the present model, the interference effect will be sup-
L pressed. The broken lines show maximum conductance val-
2 ues for infiniteL obtained by the Landauer formula, where
g i the interference effects are not considered. There are several
10k characteristic features in the calculated conductance curves;
(i) In case ofN=5, a dip of depth &, appears after the
81 onset of the modes (%,3) only forL;=3.0 nm.(ii) In case
s I of N=6, conductance curve has a hump and a dip of depth
© 6_' 1G, around the modes (%,3) only for Ly=6.0 nm. The
e gl two modes (1* 3) for infinite L are split, while they seem
- to be degenerate for smadll,. (iii) In case ofN=7, all
2 conductance curves coincide with each other, includipg
0 [ =28.2 nm for the thinnest helical gold wire formed so far.
10L In all cases, the wires do not become insulators. In order to
- check the accuracy of the numerical calculations, we have
8- carried out for some cases more detailed calculations with
r 6'_ using twice ofE.,; and/or half ofAz. The results showed no
= i significant changes. The anomalous behaviors stated above
4t are not the artifacts arising from the numerical errors.
- In order to interpret the characteristic features in the cal-
2r culated conductance curves and to generalize the results, we
0 analyzed eigenstates of the Hamiltonidpy in the case of
=1 an infinitely long wire without electrodes. Introducing the
E (eV) new coordinatesx’,y’,z’) defined as
FIG. 2. Conductance curves numerically calculated by the RTM x=x'cosf—y'siné,

method as a function of electron energyf helical nanowires for
several helical pitcheg, of (a) N=5, (b) N=6, and(c) N=7.
Stepwise broken lines show the conductance values for infipjte
estimated by the Landauer formula. Quantum numbars) are
shown for each conductance step.

y=x'sinf+y'cosé,

z=7', 3)

where =Gz with Gy=2#/Ly, the momentum operators

Wy (ry ,z):eikuru; U (G ,2)e'CI, 2 (Px.Py.p,) are transformed as
I
wherek; is the Blochk vector andG; is the reciprocal-lattice Px= Px’ COSO—=py: SING,
vector in thexy-Brillouin zone. The expansion is taken for . R
Gy satisfying3 |k + G)|?<E,, whereE, is the cutoff en- Py= Py’ SiN 6+ p,, COSH,
ergy. The expansion coefficient&H(GH,z) are solved by
real-space discretization alomglirection. A continued frac- p,=P,—Gul,, 4

tion formalism is used to eliminate numerically unstable

components and the electric current and/or conductance calvhereLzr is the angular momentum operator. T“dﬂN is
be calculated stably. The input parameters for numerical catransformed into

culation are as follow$ if not stated otherwise; cutoff en- L L
ergy E;,+=40 eV, mesh size\z=0.05 nm, length of the N2 a2 . - ro\2
wire Ly, =6.0 nm (the same length as the gold nanowires Hin=5 (P + Py )+ VN )+ 5 (P2 = Gulzr)”
formed experimentallyy, and the unit cell in thexy plane 5)

L,=L,=2.0 nm. Onlyk;=0 point is used in the present . .
cglculénon YX| P P In the new representatioNy is independent om’ and thez’

The numerical results are shown as a function of the elec= component of the momentuky, becomes a good quantum

tron energyE, in Fig. 2 for () N=5, (b) N=6, and(c) N number. However, because angular momentum opetgtor
=7 helical wires. The rapid oscillations of the calculateddoes not commute with the potentidl(x’,y’), couplings
conductance curves are due to the interference between in@ccur between angular momentum states. We divided the
dent and reflected electrofsThe periods of the oscillations HamiltonianH/,y, into two parts,
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Hn=H{.+AVy, (6)

where the first and the second terms are isotropic and anisc
tropic parts, respectively. The second tet¥ is

AVN(X",Y") =VN(X"Y") = Ve (X'Y') @)

by definition. Eigenfunctions and eigenvalues ﬁbpw are
expressed as

Inmke) = gn(r')em? ez ?,
FIG. 3. Results of the two-mode coupling analysis between the

modes (,m) and (h',m’); (a) band structure, an¢b) the region

with two eigenmodeslight gray) and four eigenmode@&ark gray

as a function ofGy. In the light gray region, the conductance

where ¢, .. and E}, are the radial wave function and the increases by G, while in the dark gray by &,. Energy gap 2

two-dimensional energy level of the state,ifn) for a circu-  appears foG,=Gf, .

lar potential, respectively. Since the perturbatidky is a

periodic function of¢’ with a period 27/N, it can be ex- ables shown in the figure are defined as

panded as

1
Enmlgr:Enm'}'E(kz’_mGH)z- (8)

AE=E] -E;

m?

AVN(r ¢') =2, Vyi(r e, ©) . .
i N ~ e .~

Nppry o . . . EEZE(Em+Em')iEV(AE)2+(2|Vl|)2a

where Vi (r’) is an expansion coefficient. The matrix ele-

ment{nmk,,|AVy|n'm’k,) vanishes except for the follow- L
INg cases: E(m_mr)Z(GCH)ZZ{(AE)2/3+(2|Vl|)2/3}3/2. (12)

m—m’=IN, (10
) ) _ _ The eigenvalue& ™ (k,/) for intermediateG{, are illustrated
wherel is an integer. No such selection rules exist between n, the |eft figure. A gap of 2 (~2|V,|) opens near the

andn’. In fact, the matrix elements are found to be the samgnergy at the level crossing. As a result, there arises a new
order for different values afi andn’. It should be noted that = energy region with four eigenstates in the region with two
as the helical pltckLHA decreases, low energy eigenstates ofgjgenstates. They are shaded by dark gray and light gray,
the total HamiltoniarH |, approach those of a cylinder, be- respectively. In the former region, the conductance increases
cause the energies where mixing occurs shift toward higheby 2G,, while in the latter by G,. Variation of these re-
energies. gions with increasingsy is shown in the right figure. When
Since the energy separations between eigenmodes a@, is small, there exist two energy regions; the lower one
relatively large in nanowires, it is sufficient to consider thehas two eigenstates and the higher one has four eigenstates.
couplings between only a few adjacent modes. At first weAt certain critical value ofGf;, the region with four eigen-
consider the case of two-mode coupling between the modegates emerges. With increasifg, , the new energy region
(n,m) and (0',m’), described by the following 2 matrix:  widens, keeping the width of the gap region nearly constant
(2A). Eventually, the energy structure comes up to that of a
~E°°+E(k —mMGy)? vV cylinder.
mo24 H ! All the complicated behaviors of the conductance in Fig.
2 can be understood by using FigibB In case ofN=6,
A E:;,Jr—(kzr—m’GH)z energetically degenerate modes (1,3) and-@), couple
(11) each other. SincAE=0 eV in this case, the conductance
due to these modes changes @Gyl 2G, as a function oE
where for Ly=L},, and changes 0,Q@y, 1G, 2G, for Ly<Lf,.
- We obtain the critical point L, ,E.)=(11.33 nm,
Em=Enmt(nmk;:|AVy[nmk,), —6.71 eV) by the analytical expressions as in Ep), to-
gether with the numerically obtained valli¢;|=0.21 eV.
E, =E. . +(n'mk,|AVy/n'm’k,), We plot the analytical conductance neglecting the interface
and effect in Figs. 4a), (b), (c) for Ly=5.0, 6.0, 7.0 nm by gray
lines. Also in the figure, conductance values calculated by
Vi=(nmk, |[AVy|n'm’Ky). the RTM method are plotted by the solid lines. The agree-
ment is satisfactory. In case =5, the nearest modes
In Fig. 3, the analytical results are summarized. Several variwhich couple with the modes (£3) are (17+2). In this

N| -

=0
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=(3.49 nm-6.56 eV). The results are plotted in Figs.
4(d), (e), (f), together with those by the RTM method. Both
lines agree fairly well. The depth of the dip i$53 in con-
trast to 1G4 for N=6, because we have two sets of coupled
modes; (1;-2)-(1,+3)-(2,—-2) and (1;+2)-(1,—3)-(2,
+2). In the case oN=7, since no lower energy states sat-
isfy Eq. (10), an energy gap does not appear.

In conclusion, we have calculated quantum conductance
of the N-fold helical metallic nanowires by using the RTM
method. We found that characteristic features appeared in the
calculated conductance curves when the helical fitglvas
in a certain range. By diagonalizing the model Hamiltonian,
we showed that an energy gap appears due to a noncircular
cross section of the wire when, is smaller than a critical
pitch L{,. The condition for the appearance of the gapnis
—m’=0 (modN), wheremandm’ are angular momentum
quantum numbers. The gap shifts toward higher energies as
0 75 70 65 60 55 50 B0 75 70 65 60 55 5.0 the pitchLy decreases, restoring the conductance of a cylin-

E (eV) E (eV) der in lower energies. Thus the anomalous conductance in
these energies is observed only in a certain range of the pitch

FIG. 4. Dependence of the conductance on the helical pitfch | |, (<L¢). In case of the gold nanowires of averaged radius
near the anomalous energy regida), (b),_(c) are forN=6, and R=0.53 nm,Lﬁ' was calculated to be 3.49 nniNES) or
(d), (e), (f) are f(_)rN=5. G_ray and solid lines show the results_ by 11.33 nm (N=6). The geometry on which such anomalous
the mode-coupling analysis and by the RTM method, respectively; . .

tonductance curves are expected may possibly be fabricated
by the present nanometer technology. In the near future the
case, AE=1.48 eV, IVi|=0.32 eV, and L ,E.) modula_tion of the quantum conducfcance will be realizeq by
=(3.58 nm-6.64 eV). The results of the two-mode cou- controllingL,, for example, by rotating the electrode, which
pling was qualitatively good, but they did not reproduce themay open the way to the quantum switch.
results of RTM quantitatively. This is because there exist The authors would like to thank Y. Kondo, J. A. Torres,
another modes (Z,2), which couple with the modes (1, E. Tosatti, K. Terakura, T. Tonegawa, M. Kaburagi, and S.
*3), located at-3.66 eV(not shown in Fig. 2 Therefore  Hayashi for valuable discussions. This work was supported
we consider coupling of three modes by diagonalizing a 3oy New Energy and Industrial Technology Development Or-
X3 matrix and we obtain 2=0.65 eV, and [}, ,E.) ganization(NEDO).
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