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Quantum conductance of helical nanowires
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We have calculated the quantum conductance ofN-fold helical metallic nanowires by using recursion-
transfer-matrix method. WhenLH ~the pitch of the helix! is in a certain range, there appear characteristic
humps and dips with steps of 1G0 or 2G0 (G052e2/h) in the conductance. The anomalous conductance
originates from the fact that an energy gap opens due to noncircular cross section and shifts toward higher
energies with decreasingLH .
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Very recently, the gold nanowires were formed in go
thin films by electron-beam irradiation in an ultrahig
vacuum. Transmission electron microscopy images sho
that they take helical configurations.1 Prior to the experimen-
tal observation, using empirical molecular dynamics~MD!, it
was predicted that even for metals with isotropic atomic
tentials, the helical structures could be stable when the di
eters are smaller than the critical values.2 More recent theo-
retical investigation revealed that the helical structures
stabilized as a result of optimization of surface and inter
~bulk! energies.3

It is well recognized that the conductivity of carbon nan
tubes changes drastically from metallic to semiconducti
insulating depending on the chirality of a tube.4–7 On the
other hand, the conductance of the helical gold nanow
has not been measured yet. Therefore it is an interes
problem to clarify whether the similar conductance chan
take place in metallic nanowires with helical configuration
In this paper, we study theoretically the conductance of
helical nanowires. We will demonstrate later that the qu
tum conductance shows enhancement and suppression
pending on the pitch of the helixLH but that it never be-
comes insulating.

We adopted the jellium model where electrons are c
fined in a uniform potential with boundary of the helic
geometry as shown in Fig. 1. In spite of the simplicity
such a model, electronic properties of nanostructures h
been successfully investigated, yielding a number of fruit
informations, for example, the quantized conductance va
ing with a unit of G0 (52e2/h), oscillations in the tensile
force as a function of the elongation of the wire, and t
interplay between the size effect and the Landau splitt
under magnetic field.8–11 The shapes of cross sections we
approximated by polygons, havingN-fold symmetry with
N55,6,7, and̀ ~cylinder! as a reference. According to th
MD simulations for Pb and Al nanowires, structuresN
55,6,7 were often stabilized.2 Experimentally, on the othe
hand, the thinnest helical gold nanowire was observed
have sevenfold symmetry.1 The helical wire of lengthLW
was connected to jellium electrodes. We used electron d
sity (EF55.53 eV) and the work function (Wf55.47 eV)
of gold s electrons. The potential depth~11.0 eV! was deter-
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mined to give the above constants. The same areapR2 of the
cross section for each wire was assumed, whereR is the
averaged radius. We fixedR to be 0.53 nm as an example
Then the Sharvin’s number (pR/lF)2510.3,12 and we con-
firmed there existed ten quantized states below the Fe
level.

The HamiltonianĤHN of the wire is written as

ĤHN5
1

2
~ p̂x

21 p̂y
21 p̂z

2!1VHN~x,y,z!, ~1!

where (p̂x ,p̂y ,p̂z) are the momentum operators an
VHN(x,y,z) is the effective potential of the helical wire, th
cross section of which hasN-fold symmetry. Atomic units
are employed. WhenN is infinitely large ~cylinder!, eigen-
states of the HamiltonianĤH` can be solved analytically
They are specified by a set of quantum numbers (n,m,kz),
wheren, m are the principal and angular momentum qua
tum numbers andkz is the momentum along the wire. For
finite integerN, however,m is no longer a good quantum
number.

We first calculated the quantum conductance numeric
by using recursion-transfer-matrix~RTM! method.13 In the
RTM method, we consider a periodically repeated unit c
in the xy direction each containing the single wire ofĤHN .
Due to the periodicity, wave function can be expressed b

FIG. 1. Model of the helical nanowire.LH is the pitch of the
helix and LW is the length of the wire. The helical nanowire
connected to jellium electrodes. The shape of the cross sectio
assumed to be anN-fold polygon.
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Cki
~r i ,z!5eikir i(

Gi

uki
~Gi ,z!eiGir i, ~2!

whereki is the Blochk vector andGi is the reciprocal-lattice
vector in thexy-Brillouin zone. The expansion is taken fo
Gi satisfying 1

2 uki1Giu2,Ecut , whereEcut is the cutoff en-
ergy. The expansion coefficientsuki

(Gi ,z) are solved by
real-space discretization alongz direction. A continued frac-
tion formalism is used to eliminate numerically unstab
components and the electric current and/or conductance
be calculated stably. The input parameters for numerical
culation are as follows14 if not stated otherwise; cutoff en
ergy Ecut540 eV, mesh sizeDz50.05 nm, length of the
wire LW56.0 nm ~the same length as the gold nanowir
formed experimentally1!, and the unit cell in thexy plane
Lx5Ly52.0 nm. Onlyki50 point is used in the presen
calculation.

The numerical results are shown as a function of the e
tron energyE, in Fig. 2 for ~a! N55, ~b! N56, and~c! N
57 helical wires. The rapid oscillations of the calculat
conductance curves are due to the interference between
dent and reflected electrons.15 The periods of the oscillation

FIG. 2. Conductance curves numerically calculated by the R
method as a function of electron energyE of helical nanowires for
several helical pitchesLH of ~a! N55, ~b! N56, and ~c! N57.
Stepwise broken lines show the conductance values for infiniteLH

estimated by the Landauer formula. Quantum numbers (n,m) are
shown for each conductance step.
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are of order (2p/LW)2'0.08 eV. We have confirmed tha
the periods became four times larger than the ones with
of LW . Thus the oscillations are caused by the finite-s
effect due to the existence of the electrodes. In real syste
since two contacts between wire and electrodes are smoo
than the present model, the interference effect will be s
pressed. The broken lines show maximum conductance
ues for infiniteLH obtained by the Landauer formula, whe
the interference effects are not considered. There are se
characteristic features in the calculated conductance cur
~i! In case ofN55, a dip of depth 2G0 appears after the
onset of the modes (1,63) only for LH53.0 nm.~ii ! In case
of N56, conductance curve has a hump and a dip of de
1G0 around the modes (1,63) only for LH56.0 nm. The
two modes (1,63) for infinite LH are split, while they seem
to be degenerate for smallLH . ~iii ! In case ofN57, all
conductance curves coincide with each other, includingLH
528.2 nm for the thinnest helical gold wire formed so fa
In all cases, the wires do not become insulators. In orde
check the accuracy of the numerical calculations, we h
carried out for some cases more detailed calculations w
using twice ofEcut and/or half ofDz. The results showed no
significant changes. The anomalous behaviors stated a
are not the artifacts arising from the numerical errors.

In order to interpret the characteristic features in the c
culated conductance curves and to generalize the results
analyzed eigenstates of the HamiltonianĤHN in the case of
an infinitely long wire without electrodes. Introducing th
new coordinates (x8,y8,z8) defined as

x5x8cosu2y8sinu,

y5x8sinu1y8cosu,

z5z8, ~3!

whereu[GHz with GH[2p/LH , the momentum operator
( p̂x ,p̂y ,p̂z) are transformed as

p̂x5 p̂x8 cosu2 p̂y8 sinu,

p̂y5 p̂x8 sinu1 p̂y8 cosu,

p̂z5 p̂z82GHL̂z8 , ~4!

whereL̂z8 is the angular momentum operator. ThenĤHN is
transformed into

ĤHN8 5
1

2
~ p̂x8

2
1 p̂y8

2
!1VN~x8,y8!1

1

2
~ p̂z82GHL̂z8!

2.

~5!

In the new representation,VN is independent onz8 and thez8
component of the momentumkz8 becomes a good quantum
number. However, because angular momentum operatorL̂z8
does not commute with the potentialVN(x8,y8), couplings
occur between angular momentum states. We divided
HamiltonianĤHN8 into two parts,
3-2
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ĤHN8 5ĤH`8 1DVN , ~6!

where the first and the second terms are isotropic and an
tropic parts, respectively. The second termDVN is

DVN~x8,y8!5VN~x8,y8!2V`~x8,y8! ~7!

by definition. Eigenfunctions and eigenvalues ofĤH`8 are
expressed as

unmkz8&5cnm
` ~r 8!eimf8eikz8z8,

Enmkz8
5Enm

` 1
1

2
~kz82mGH!2, ~8!

where cnm
` and Enm

` are the radial wave function and th
two-dimensional energy level of the state (n,m) for a circu-
lar potential, respectively. Since the perturbationDVN is a
periodic function off8 with a period 2p/N, it can be ex-
panded as

DVN~r 8,f8!5(
j

Vj
N~r 8!eiN j f8, ~9!

where Vj
N(r 8) is an expansion coefficient. The matrix el

ment^nmkz8uDVNun8m8kz8& vanishes except for the follow
ing cases:

m2m85 lN, ~10!

wherel is an integer. No such selection rules exist between
andn8. In fact, the matrix elements are found to be the sa
order for different values ofn andn8. It should be noted tha
as the helical pitchLH decreases, low energy eigenstates
the total HamiltonianĤHN8 approach those of a cylinder, be
cause the energies where mixing occurs shift toward hig
energies.

Since the energy separations between eigenmodes
relatively large in nanowires, it is sufficient to consider t
couplings between only a few adjacent modes. At first
consider the case of two-mode coupling between the mo
(n,m) and (n8,m8), described by the following 232 matrix:

S Ẽm
`1

1

2
~kz82mGH!2 V1

V1* Ẽm8
`

1
1

2
~kz82m8GH!2

D ,

~11!

where

Ẽm
`[Enm

` 1^nmkz8uDVNunmkz8&,

Ẽm8
` [En8m8

`
1^n8m8kz8uDVNun8m8kz8&,

and

V1[^nmkz8uDVNun8m8kz8&.

In Fig. 3, the analytical results are summarized. Several v
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DẼ5Ẽm8
`

2Ẽm
` ,

Eb
65

1

2
~Ẽm

`1Ẽm8
`

!6
1

2
A~DẼ!21~2uV1u!2,

1

2
~m2m8!2~GH

c !25$~DẼ!2/31~2uV1u!2/3%3/2. ~12!

The eigenvaluesE6(kz8) for intermediateGH
a are illustrated

in the left figure. A gap of 2D ('2uV1u) opens near the
energy at the level crossing. As a result, there arises a
energy region with four eigenstates in the region with tw
eigenstates. They are shaded by dark gray and light g
respectively. In the former region, the conductance increa
by 2G0, while in the latter by 1G0. Variation of these re-
gions with increasingGH is shown in the right figure. When
GH is small, there exist two energy regions; the lower o
has two eigenstates and the higher one has four eigenst
At certain critical value ofGH

c , the region with four eigen-
states emerges. With increasingGH , the new energy region
widens, keeping the width of the gap region nearly const
(2D). Eventually, the energy structure comes up to that o
cylinder.

All the complicated behaviors of the conductance in F
2 can be understood by using Fig. 3~b!. In case ofN56,
energetically degenerate modes (1,3) and (1,23) couple
each other. SinceDẼ50 eV in this case, the conductanc
due to these modes changes 0, 1G0 , 2G0 as a function ofE
for LH>LH

c , and changes 0, 2G0 , 1G0 , 2G0 for LH,LH
c .

We obtain the critical point (LH
c ,Ec)5(11.33 nm,

26.71 eV) by the analytical expressions as in Eq.~12!, to-
gether with the numerically obtained valueuV1u50.21 eV.
We plot the analytical conductance neglecting the interf
effect in Figs. 4~a!, ~b!, ~c! for LH55.0, 6.0, 7.0 nm by gray
lines. Also in the figure, conductance values calculated
the RTM method are plotted by the solid lines. The agr
ment is satisfactory. In case ofN55, the nearest mode
which couple with the modes (1,63) are (1,72). In this

FIG. 3. Results of the two-mode coupling analysis between
modes (n,m) and (n8,m8); ~a! band structure, and~b! the region
with two eigenmodes~light gray! and four eigenmodes~dark gray!
as a function ofGH . In the light gray region, the conductanc
increases by 1G0, while in the dark gray by 2G0. Energy gap 2D
appears forGH>GH

c .
3-3
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case, DẼ51.48 eV, uV1u50.32 eV, and (LH
c ,Ec)

5(3.58 nm,26.64 eV). The results of the two-mode co
pling was qualitatively good, but they did not reproduce t
results of RTM quantitatively. This is because there ex
another modes (2,72), which couple with the modes (1
63), located at23.66 eV~not shown in Fig. 2!. Therefore
we consider coupling of three modes by diagonalizing a
33 matrix and we obtain 2D50.65 eV, and (LH

c ,Ec)

FIG. 4. Dependence of the conductance on the helical pitchLH

near the anomalous energy region.~a!, ~b!, ~c! are for N56, and
~d!, ~e!, ~f! are forN55. Gray and solid lines show the results b
the mode-coupling analysis and by the RTM method, respectiv
.D

hy

nd
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5(3.49 nm,26.56 eV). The results are plotted in Fig
4~d!, ~e!, ~f!, together with those by the RTM method. Bo
lines agree fairly well. The depth of the dip is 2G0 in con-
trast to 1G0 for N56, because we have two sets of coupl
modes; (1,22)-(1,13)-(2,22) and (1,12)-(1,23)-(2,
12). In the case ofN57, since no lower energy states sa
isfy Eq. ~10!, an energy gap does not appear.

In conclusion, we have calculated quantum conducta
of the N-fold helical metallic nanowires by using the RTM
method. We found that characteristic features appeared in
calculated conductance curves when the helical pitchLH was
in a certain range. By diagonalizing the model Hamiltonia
we showed that an energy gap appears due to a noncirc
cross section of the wire whenLH is smaller than a critical
pitch LH

c . The condition for the appearance of the gap ism
2m8[0 ~mod N), wherem andm8 are angular momentum
quantum numbers. The gap shifts toward higher energie
the pitchLH decreases, restoring the conductance of a cy
der in lower energies. Thus the anomalous conductanc
these energies is observed only in a certain range of the p
LH (<LH

c ). In case of the gold nanowires of averaged rad
R50.53 nm,LH

c was calculated to be 3.49 nm (N55) or
11.33 nm (N56). The geometry on which such anomalo
conductance curves are expected may possibly be fabric
by the present nanometer technology. In the near future
modulation of the quantum conductance will be realized
controllingLH , for example, by rotating the electrode, whic
may open the way to the quantum switch.
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