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Diffraction of electromagnetic plane wave by an infinitely long conducting strip which is placed on a
dielectric slab of finite thickness is formulated rigorously. Both the principal polarizations have been con-
sidered. The method of analysis is Kobayashi potential. Imposition of boundary conditions result in dual
integral equations. These dual integral equations are reduced to matrix equations with infinite number of

unknowns. The elements of the matrix equations are given in terms of infinite integrals. These integrals
are hard to solve analytically, so computed numerically. Diffracted far field patterns for different angle of
incidence have been computed. Current distributions on the strip are also presented. We have compared
our field patterns with those of obtained through physical optics. The agreement is good.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Scattering from PEC/non-PEC strips is a well-known topic of
study in electromagnetics. It has received the attention of various
investigators working in the field [1-10]. Senior [6] examined scat-
tering from resistive strips. Senior and Liepa [7] used diffraction
techniques in order to study strips with a nonconstant or tapered
resistivity. Peters and Newmann [8] examined TM scattering by a
resistive sheet located in a dielectric half space using method of
moments and spectral domain Green’s functions. Strips with
superconducting materials had been treated in [9]. Imran et al.
studied the diffraction from an impedance strip using Kobayashi
potential method [10].

In this work, diffraction of electromagnetic waves from a per-
fectly conducting strip which is placed on a dielectric slab has been
studied. This problem may be considered as a simple model of a
micro-strip antenna. Few investigations, which are close to our
study, are [11-14]. Michalski and Butler [13] studied the problem
of the current density induced on the strip embedded in a dielec-
tric slab. Using appropriate expansion and testing functions, they
developed singular integro-differential equations and utilized
moment method. Cheng and Chew [14] studied electromagnetic
scattering of finite strip array on a dielectric slab. Present analysis
is based on the Kobayashi potential (KP) method. This method may
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be utilized as an alternative approach to study these kind of prob-
lems. Kobayashi potential (KP) method is an analytical technique
for solving the mixed boundary value problem. It was developed
by Iwao Kobayashi in the beginning of 1930s. In his original work,
Kobayashi, firstly, introduced the idea that the solutions of poten-
tial problems associated with conducting disc and strip can be
effectively constructed by using the discontinuous properties of
Weber-Schafheitlin’s integrals [15]. He also discussed the proper-
ties of Jacobi’s polynomials which were used as the basis of
functional space in this method. The application of KP method to
wave phenomena has been studied extensively by Nomura
[16-20], Hongo [21-27] and their coworkers.

In KP method, we assume the solution in the form of unknown
weighting functions. Enforcement of boundary conditions yield
dual integral equations for the weighting functions. These equa-
tions are solved using the discontinuous properties of the We-
ber-Schafheitlin’s Integrals. At this stage we can incorporate the
edge conditions in the solution. The resulting equations is then
converted into matrix equations by applying the projection meth-
od with a functional space that consists of a set of Jacobi’s polyno-
mials [28] as basis functions. The elements of the matrix equations
are usually infinite integrals which have branch points as well as
poles. These integrals are hard to solve analytically. Therefore,
we use numerical techniques to evaluate these integrals. Illustra-
tive computations are given for far field patterns and the current
induced on the strip. We have compared our results with those
of obtained through physical optics (po) and the comparison is
good.
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2. Formulation of the problem
2.1. E-Polarization

The geometry of the problem and the coordinate system are
shown in Fig. 1. The conducting strip is located on a dielectric slab
with finite thickness ‘d’. Width of the strip is 2a. The constitutive
parameters of medium occupying the slab (—-d <y < 0) are
(&, Uy), while rest of the space has medium with constitutive
parameters (&, t4y). Incident field E. may be written as

E, = expljky (X cOS ¢ + Y sin )] (1a)

The space has been divided into three regions. Region 1 is above the
strip. Region 2 is the dielectric slab while region 3 is below the
dielectric slab. In each region, scattered field may be assumed in
terms of unknowns. The expressions for scattered fields E; in region
1, EY in the slab, and E. in region 3, can be assumed in the form

E' = /Oc[gl(é) os(&xq) + &, (&) sin(éx,))]
0

X exp(—uya)dé,

Ef:/om €os(¢Xa)[f1 (€) exp(y,) + i (<) exp(—vy,)]dé

y>0 (1b)

+ /0 " sin(exa) o (&) exp(oy,) + ha(2) exp(—vy,)lde,
—d<y<0 (1¢)

B, [ 166 cos(on) + £2(2)sin(xo)] expluty, + ol
y<—d (1d)

where ko = /ll;€ and k = /[i,€ are the propagation constants of
free space and dielectric slab, respectively, and u = /¢&* — K2,
V=& - K2 Ko =koa, k =ka, dg =9, X, =%y, =¥ and the func-
tions f12(¢), 812(), h12(¢) L(&) are the weighting functions to be
determined from the boundary conditions.

The required boundary conditions of the problem are given by

(i) E; is continuous at y = 0 for all values of x
(i)
(iii) Hy is continuous at y = 0 and for |x,| > 1
(iv)

Using boundary conditions (i) and (ii) we have obtained the follow-
ing relations:

E; and H, are continuous for y = —d

(2)

E.+E +E'=0aty=0and for |x,| <1

Fig. 1. Geometry of the problem.

fi(&)+hi (&) =g1(8) (33)
(&) +ha (&) = g,(8) (3b)
fi(€)exp(=p) + hi(¢) exp(p) = £1(¢) 3¢
f2(¢) exp(=p) + ha(&) exp(p) = £2(¢) (3d)
fi(€)exp(—p) — h1(¢) exp(p) = ut; (&) (3e)
f2(&) exp(—p) — ha2(&) exp(p) = ut>(¢) (3f)
where p = vd,. Using boundary conditions (iii) and (iv) we have
| g @ + 916~ ha (@) cos(exa

+ {ugy (&) + v[fa(&) — ha (&)} sin(éxe)]dE =0 for [xo| > 1 (3g)
/0 (81(&) cos Exa + &5 (€) sin &xq]d

= —(1 + Rg) expljkox sin¢pg] for |xq| < 1 (3h)

The reflection coefficient Rg of the slab for E-polarization can be cal-
culated as

2\
RE:(l_PE)(e e)’
Ag

e* = exp(—jkd cos ¢,),

_ Yosin g,
T Ysing, '
Ap = (1 + Pg)’e — (1 — Pp)%e

e = exp(jkd cos ¢,),

where Yy = \/;:‘; and Y = \/ﬂ—?u are intrinsic admittances of free space

and dielectric slab, respectively. Permeability is assumed to be con-
stant all over the space. The angle of refraction ¢, is related with the
angle of incident ¢, by

kcos ¢, = ko cos ¢,
Manipulating the expressions ((3a)-(3f)), we get

Fi(8) = (u+v)exp(p)
(v +u)exp(p) + (v — u) exp(-p)
(v —u)exp(-p)

&9 (4a)

MO T wenm) + v wen ) (@)
8O~ G mene + - (4
HO = a0 1 (o0 eyt (44
00) = Gy o) (o wjemp e e
5O~ G mewE + (e 0

Egs. (3g) and (3h) are the dual integral equations, so making use of
discontinuous properties of Weber-Schafheitlin’s integrals and
incorporating the edge and radiation conditions we can write

ug, (2) + 0lfi (&) — hi ()] = fjAnJZm@) (5a)

ug,(¢) + vlf2(9) ZBmIZmH (5b)

where A, and B,, are constants to be determined and J,,(¢) be the
Bessel's function. Using Eqs. (4), weighting functions g,(¢) and
g,(¢) can be expressed as

U+ v+ (v—u)exp(—

g8 = WUy — (v—uy? eXp Z mlam(S) (6a)
o Ut+v+(v-u) exp
gZ(g)_(eru) T exp Z BrJom (& (6b)

Putting these values of g ,(¢) in (3h), comparing even and odd
functions and then projecting thle resulting equations into the
functional space with elements u?(xﬁ) [25], we get
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> AnGg(2m,2n) =

m=0

> BnGc(2m+1,2n+1) =
m=0

—(1+ Re)Jon (K0 €OS o) (7)

—J(1 + Re)J2n11 (10 €OS o) (7b)

where Gg(v, i) is defined by

_[* u+v+ (v—u)exp(-2p) . .
Golvp) = [ e sk @n@de (79

In obtaining (7a) and (7b), we have used of the following relations:

cosx_1/ ] 12X

& V22n+m+)r(n+m+3) Lnma (6
=L T Taanrmen) v e®
_ \/vaF(nJ,— 1)F(m+ l)x,m/z /QC .]m(\/}?é).brwm%(é)
B F(n+m+%) 0 VE

d¢

where u(x) be the Jacobi’s polynomials.

2.1.1. Field patterns

Since the geometry supports surface waves. If the observation
point is far from the surface of the strip then this contribution
can be neglected and diffracted fields dominate. Substituting
g,(¢) and g,(¢) from (6a) and (6b) in expression (1b) and then
using saddle point method, we can calculate the far diffracted field
for region y > 0 as

\/ € — C0S2 ¢ +sin ¢ + ( € — COS2 ¢ — sin d)) exp <fj2k0d\/6, — C0s2 (b)

H, = expljko (X €OS ¢ + ¥ Sin ¢g)] (10a)

= /Ow[&(f) COS(EXq) + &, (&) sin(éxy)] exp(—uy,)dé, y >0

(10b)
HE = [ cos(x)lf(€) exp(ey,) + ha(€) exp(— oy, s
+ [ sin(ex (&) exploy,) + ha(&) exp(-ay, )lde,
- d0< y<0 (10c)
H. = [0 cos(en) + (9 sin(n)
expu(y, +da)ld¢, y < -—d (10d)
The required boundary conditions are given by
(i) Ex is continuous at y = 0 for all values of x
(ii) H, and E, are continuous for y = —d (1)

i)
(iii) H, is continuous at y = 0 and for |x,] > 1
(iv) EX+E.+E' =0 at y = 0 and for |x,| < 1

Using these boundary conditions and proceeding in the similar
manner as last section, we have dual integral equations:

/0 e (@ - -

hi (&)} cos(¢xa) + {82(¢) —fa(€)

— hy(&)} sin(&xy)]dé =0 for |xq] = 1 (12a)
/0 u[gy (&) cos éxq + &, (&) sin &xq]dE
= —jcos doko(1 — Ry) explikex sin ¢g]  for |x,| < 1 (12b)

E;l(d’od’) = 2
<\/<€r —€0S2 ¢ + sin¢) -

where ¢ is the angle of observation and €, = % Constants A,, and

B, can be computed from Eq. (7).

2.1.2. Current induced on the strip
Current density, induced on the strip, may be computed from
the expression

]zzf X‘y 0++H|y0

/ Ao (€) COS(EXa) + B (&) Sn(EXg)de

Yg -1
= —(1-x%) mE:O{Am cos[2msin ™" x,]
+ By sin[(2m + 1) sin ' x,]} (9)

2.2. H-Polarization

The formulation for H-polarization can be conducted in a man-
ner similar to E-polarization. The expressions corresponding to
((1a)-(1d)) for H-polarization may be written as

%3 [Andon(10 €05 ) + Byl (10 05 )]

(m —sin qs)z exp (—jzkod\/er — cos? d:) m=0

and unknown coefficients

O == e e & (13a)
m(©) = % (6u f%u!(é}r)ffpi{ff&_zmgl © (13b)
bl =~us U)erélefit(li(;ft)exp(—Zp) &(¢) (13¢)
b= e e (134)
ha(e) =) (U +(3)u+_(:,)uefpz§)_:fg(—2p)gz(@ (13¢)
bE) = - 2€ i exp(—p) &) (131)

(€U + V) + (€u — v) exp(—2p)

where Ry be the reflection coefficient of the slab for H-polarization
and it can be calculated as
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Fig. 2. Variation of diffracted fields with angle of incidence.
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Fig. 3. Comparison of field patterns obtained through KP and PO methods.
R — (1— P,Z,)(e* —e) P — Zo sin ¢q _ d Eqs. (12a) and (12b) are the dual integral equations. Using discon-
H = Ay » THTZdin A e = exp(jkdcos ¢,), tinuous properties of Weber-Schafheitlin’s integral, we can write

e* = exp(—jkdcos ¢,), Ay =(1+Py)’e—(1—Py)’e

where Zy = ’:—g and Z = |/ are intrinsic impedance of free space
and dielectric slab, respectively. It is assumed that permeability is
constant all over the space. The angle of refraction ¢, is related with
the angle of incident ¢, by

kcos ¢, = ko cos ¢,

ZA 12m+1
ZB ]2m+2 é

Substituting f1,(¢) and hq,(¢) given by (13a), (13b) and (13d), (13e)
into (14), we can determine the weighting functions g, (¢) and g,(¢)
as

-fi(¢

81(¢) - (14a)

8:(¢) —fa(¢ (14b)
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Fig. 4. Comparison of diffracted field patterns (H-Polarization).

9
5. E-polarization
7 4

CURRENT MAGNITUDE
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|
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Fig. 5. Current distribution on the strip (E-polarization).

o _ o (eU+v)+ (U —v)exp(=2p) <, Joma(§)

£1(8) = U(eru + v)* = (6u — v)* exp(—2p) mZ,OAm ¢ (152)
o _ o (EU+ D)+ (EU—V)exP(=2D) o Jamia(©)

£:(6) = U(eru + v)* — (€u — v)* exp(—2p) ,,Z:(,Bm ¢ (15b)

Substituting Eqs. (15) into (10b), and projecting 'ghe resulting equa-
tions into the functional space with elements v,fi(xg) [25]. Then we
have

o _ 0S¢y
ZmZOAmKKQm +1.2n41) = —j .

(1 = Ru)J 241 (K COS ¢hg)
(16a)

COS g

> oBuK(2m+2,2n+2) = Sin g

(1 = Ru)J 242 (K COS ¢hg)

(16b)

where Kx (v, u) is defined by
Ke(v. 1) :/ Ly L€+ V) + (&1 — v) exp(-2p) J\,(é)Ju(c)dé
0

(u+v)* — (u—v)’exp(-2p) &

(16¢)

2.2.1. Field patterns
Diffracted far fields for region y > 0 can be calculated using sad-
dle point method, and are given below
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<6r sing -+ m) + {er sing + \/€, — sin’ </>> exp (fj21<odm>

H; (o, ¢) =
’ (\/er—cos2 —s—ersinqs)2 -
S A1 (K005 ) + 1By (0 €05 )] S0

m=0

where ¢ be the angle of observation and €, = =
2.2.2. Current induced on the strip
Current density may be computed from the expression

.lx = HZly:O+ - HZ‘y:O—
[o ¢}

= ]2m+l (E) .]2m+1 (é) : :|
= Am Ee— CAq Bm - < a
E /0 { 5 COS &Xq + 7 sin &x, | dé

m=0

:i{Zm

0

cos[2m+ 1sin” xa]

+

S Sinl2m +2) sin”' xa]} (18)

3. Results and discussion

Far field patterns as a function of angle of observation, have
been computed using Eq. (8) for E-polarization and Eq. (17) for
H-polarization. These expressions contain expansion coefficients
A and B,.. These expansion coefficients have been computed using
Eq. (7) for E-polarization and Eq. (16) for H-polarization. Ky (n, m)
and G¢(n,m) are the matrices, the elements of which are in terms
of infinite integrals and have been computed as discussed in
Appendix. These integrals have been computed for finite values
of m and n values. The matrix size is taken as m x n = (2Kp + 1) x
(2K + 1). Fig. 2 gives the field patterns for different values of angle
of incidence for E-polarization. It is evident from the patterns that
as we increase the angle of incidence, the corresponding main lobe

(ersing — /& —cos? ) exp (~j2kody/e; —cos? §)

(17)

shifts towards the lower value of angle of observation ¢. To check
the validity of these patterns we have compared our results with
those of obtained through physical optics (po). Figs. 3 and 4 give
the comparisons for E- and H-polarized field, respectively, for
¢o = 60, Ko = 4.0, Kk =6.0, d; = 2.0. The comparison seems good.
We have also obtained the current distributions on the strip. Figs.
5 and 6 give the same. It is evident from the graphs, that the cur-
rent density is maximum at the strip edges for E-polarization and
reverse is true for H-polarization. Figs. 7 and 8 give the effects of
strip widths on the field patterns. The graphs show, as we increase
the strip width, the side lobes become prominent.

Appendix. Evaluation of Kk (v, ) and G¢(v, p)

Integrals Gc(v.u) and Kx (v, 1) can be represented in the form

ljx( ).lu

Ge(v.p) = | 2\/_«d¢+/ Fe(&,v, 1)de
vlu7 / F
Nz 2 o
ket =1 [ e ode [ Retev s
V K
= 1+'u€r / Fg(&, v, wyd
where

2.5

CURRENT MAGNITUDE

H-POLARIZATION

Fig. 6. Current distribution on the strip (H-Polarization).
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0o 2 42
K(v, i) = / 5‘52 i 1,(&) u(é)di
00 . a f
v, 16 1) :/0 J (;Z)Jf(,; de
_ -+ (v—u)Bv-u)exp(-2p), ., ,.
FG(é: v, ,U,) - 2U[(Z/+ u)z — (y — u)z exp(pr)] ]v(g) ,u(g)dé
Fe(&:v, 1) = i+ D[+ €)E = (u+ )] + (& = v)[(1 + €)E + (6 — v)] exp(=2p) ]‘,(fljz,,(i) dc

1+ €)[(v + €u)® — (6u — v)* exp(—2p)]
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Fig. 7. Variation of diffracted field as a function of strip width.
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Fig. 8. Variation of field patterns with width of strip.
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How to compute the integral G(v, y; ) and K(v, i, x) is discussed by
Hongo [21]. The “correction integrals” Fi(¢; v, i) and K (v, i) can be
computed by the standard methods. The integrands of correction
integrals have poles between Ky < ¢ < k. These poles can be
avoided by deforming the path of integration.
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