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In [1, Theorems 1 and 2] two multidimensional versions of Rolle's theorem are 

given which have the classical one-dimensional result as a particular case. Simplify- 

ing their statements and notation, let B, U and S denote the closed unit ball, open 

unit ball and unit sphere, respectively, of t. We reproduce the results before 

mentioned. 

Theorem 1. Let f: B SOP be a continuous function differentiable in U. Assume 

there is a vector v E RP such that (v, f(x)> = O, for every x E S. Then there is a 

vectorxO E U such that (v, f'(xo)u> = O, for all u E l[tZt. 

Theorem 2. Let f be as before. Let v E RP and z E U be such that (v, f(x) - f(z)> 

does not chanvge sign in S. Then there is a vectorxO E Usuch that (v, f'(xo)u> = O, 

forallus lt. 

The paper ends with the conjecture that both theorems should not hold for 

infinite-dimensional domains. We prove the conjecture to be correct by means of 

an example of a real valued function f defined in the Hilbert space 12 of 

square-summable real sequences such that it is continuous and differentiable in 

every point Of 12, fls = ° but f '(x) + O for every x E U. Clearly, from now on B, 

U and S will refer to the closed unit ball, open unit ball and unit sphere, 

respectively, of 12. We use ( , > to denote the usual inner product of 12. 

The Example. Let L and R denote the continuous linear operators in 12 given by, 

if x= (x1,x2,x3,...), 

Lx= (X2,X3,X4,X), 

Rx= (O,X1EX2EX3XX) 

Let T be the map (clearly motivated by [1, Example 1]) T :12 ) 12 defined as 

T(x) = (1/2 - llxll2)el + RJC. 
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Finally, consider the function f: 12 R such that 

l - llXll2 
f( ) ||x-T(x)||2 

Since the map T has no fixed points, it follows that f is continuous in 12 and 
f(x) = O for every x E 5. We show next that f is differentiable in every point of 12. 

Identifying in the usual fashion 12 with its dual, we know that the Frechet 
derivative of llx112 is given by 2x. So, we have that the mapping T is differentiable 
at x and, for each u s 12, 

T'(x)u=-2<x,u>el +Ru. 

Hence, we have that the derivative of lix-T(x)ll2 is given by the functional 

u > 2<x-T(x),u-T'(x)u). 

Nowsince lix - T(x)112 nevervanishes, the derivative of aquotient tells us that f 
is Frechet differentiable at every x s 12 and, for each u s 12, we have 

|| x-T( x) || 

x [-2||x-T(x) ||2<x, u>-2(1-||X112/X-T(x), u-T'(x)u)] . 

But, since <T(x), e1 > = 1/2-llx112 and noticing that <x, Ru> = <Lx, u>, LT(x) 
= x, it follows that 

(x-T(x),u-T'(x)u) 

= (x-T(x), u) + 2<x, u>x1-2<x, u>(1/2-llx112)-(x-T(x), Ru) 

=(x-T(x) + 2xlx-(1-211x112)x-L(x-T(x)), u) 

= ((1 + 2x1 + 211x112)x-T(x)-Lx, u). 

Therefore, the value of f'(x)u is given by the ewression 

-2 

x-T(x) 11 

Xe (11 X-T(x) 112 + (1-1lX112)(1 + 2X1 + 2||X||2))X-(1-llx112)(Lx + T(x)), u) . 

That is, 

-2 

ll x-T(x) 114 

x [(llx-T(x)ll2 + (1-llx112)(1 + 2x1 + 2llxll2))x-(1-llx112)(Ex + T(x))]. 

We show that the equation f'(x) = O has no solution in U. Assume that 
f'(x) = O, liXll < 1. Then, if we call 

S = 1 11( 11)2 + 1 + 2Xl + 211X112, (l) 
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it follows that 

Lx+T(x)=sx, 
and 

L2x-sL^x + x = O. 

Ihat is, x E Ker(L2-sL + I) is a recurrent sequence of order two in 12. The 
associated characteristic equation for this type of sequence is 

t2 _ st + 1 = O, 

which gives us three different alternatives according to the sign of its discriminant. 

Case 1. Isl = 2. Then we know that the sequences 

( /2 ( /2)2 (s/2)3 ); v = (O,s/2,2(s/2) ,3(s/2) ,...) 

are basic elements of Ker(L2 - sL + I). Thus, x = Au + Bv, for some real num- 
bers A, B. So, for each n 2 1, 

X,l = A(s/2)'1-l + B(n - l)(s/2)'1-l, 

and, since lim,l x,l = O, we have that A = B = O, i.e., x = O. But this cannot be so, 
since 

f'(O) = 16el. 

Case 2. Isl < 2. Then the characteristic equation has two complex roots given by 

ct = cos 0 + i sin 0, ,8 = cos 0 - i sin 0, sin 0 + O. 

I^hen, we know that there are complex constants A, B for which 

x,i = A(cos 0 + i sin 0)'1 l + B(cos 0 + i sin 0)'1-l, n 2 1, 

and, for suitable real constants C, D 

x,l = Ccos(n - l)0+Dsin(n - 1)0, n 21. 

But sin 0 + O implies that the former sequence has no limit, unless C = D = O, 
i.e., x = O, again a contradiction. 

Case 3. Isl > 2. We then have two real roots 

S + lS2 - 4 S - lS2 - 4 

2 ' + 2 

Clearly, one of these roots has absolute value greater than one and the other less 
than one. Assume that 

Ictl > l, 1p1 < 1. 

Since 

x,l = Act'l-l + Bp'l-l, n 2 1, 

it follows that A = O and 

X,l = X1 ,8'1 l, n 2 1. 
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Thus, x is the geometric progression 

Xl2 182 
+ - - 

1 _ p2 2, 
2 

x2(1 - p) 

1 + p 
ggX112 = 1 _ p 2 

From sx = T(x) + Lx, we have 

l - p2 1 

xl2+ p X1- 2(1-p2)=O, 

and 

|| x-T(X) 112 XI (1-p ) 

Hence, substituting in (1), 

(2) 

p + - = s 

which yields 

xl(l - p) 

p2(1 + p) 

l - p2 Xl2 

1_p2_X2 +1+2Xl+2l-p2 

1 = ( p-2X1) 1 + 2B2(1 _ X2 _ B2) 

From (2), we consider two subcases: 

(3) 

- 1 + p2 - 21 - p4 
X - 1- 2p 

since liXll < 1 implies X12 + p2 < 1, we have that O < p - 2x1 < 1. 
< (1 + 21 - :4 )/p < 1. A contradiction, since | p1 < 1. 

- 1 + p 2 + 21 - p4 

_ 

^1- 2p 

(3.1) 

From (3), 
Therefore, O 

(3.2) 

Noticing that 

1 - X12 - p2 = _(1 - p2)( p + 2X1), 

it follows after (3) that 

1 = p (1 - 21 - p4 ) 2p 2 _ 1 + 21 _ p4 

p(2p2 - 1 + 21 - p4) = (1 - 21 - p4)(2p2 - p+ 21 - p4) 

2p3=(l-/l-p4)(2p2+21-p4) 

2(1+21-p4)=p(2p2+21-p4) 

2(1 - ,li3) = (,8 - 2)21 - ,84 

This last expression is a contradiction. 
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We have heard much about the poetry of mathematics, but very 
little of it has as yet been sung. The ancients had a juster notion of 
their poetic value than we. The most distinct and beautiful 
statements of any truth must take at last the mathematical form. 
We might so simplify the rules of moral philosophy, as well as of 
arithmeticX that one formula wotlld express them both. 

H. D. Thoreau 
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