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Electric field effect on the second-order nonlinear optical properties of parabolic
and semiparabolic quantum wells
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By using the compact-density-matrix approach and iterative procedure, a detailed procedure for the calcu-
lation of the second-harmonic generation~SHG! susceptibility tensor is given in the electric-field-biased
parabolic and semiparabolic quantum wells~QW’s!. The simple analytical formula for the SHG susceptibility
in the systems is also deduced. By adopting the methods of envelope wave function and displacement har-
monic oscillation, the electronic states in parabolic and semi parabolic QW’s with applied electric fields are
exactly solved. Numerical results on typical AlxGa12xAl/GaAs materials show that, for the same effective
widths, the SHG susceptibility in semiparabolic QW is larger than that in parabolic QW due to the self-
asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both
systems enhance remarkably. Moreover, the SHG susceptibility also sensitively depends on the relaxation rate
of the systems.

DOI: 10.1103/PhysRevB.68.235315 PACS number~s!: 42.65.Ky, 42.79.Nv, 73.21.Fg, 78.66.Fd
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I. INTRODUCTION

Recently nonlinear optical properties in semiconduc
quantum wells ~QW’s! systems, superlattices, an
nanostructures1–21 are of considerable interest because
their relevance in studying practical applications and a
probe for the electronic structure of mesoscopic med
Much special attentions had been paid to the second-o
nonlinear optical properties,4–17 such as optical rectification
~OR!, second-harmonic generation~SHG!, electro-optic ef-
fect ~EOE!, and so on, because the second-order nonlin
procedures are the simplest and the lowest-order nonli
procedures, and the magnitudes of the second-order no
ear are usually stronger than those of the higher-order n
linears if the quantum systems have significa
asymmetry.13,14,18

In a symmetric QW structure, the second-order nonlin
susceptibility is usually small except for the contribution
the bulk susceptibility.4 Therefore, in order to obtain a stron
second-order optical nonlinearity, the inversion symmetry
the quantum systems should be broken.4–7 In general, people
get these asymmetries through two ways, one is by us
advanced material growing technology such as molecu
beam epitaxy and metal-organic chemical vapor deposi
to obtain the systems with asymmetric confini
potential,7–10 the other is through applying an electric field
a symmetric system to get an asymmetric quant
system.4,11,12Gurnick and Detemple8 have suggested obtain
ing this asymmetry by growing AlxGa12xAs multiple QW’s
with asymmetric composition gradients of Al in the growin
direction, and the authors have calculated the second-o
nonlinearities for a Morse potential; the results reveal 1
100 times larger than in bulk materials. Khurgin5 and Yuh
and Wang10 later suggested using an asymmetric couple Q
and a step-QW structure, respectively. Rosencher and B7

have shown that the step QW’s could be designed so tha
0163-1829/2003/68~23!/235315~6!/$20.00 68 2353
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absorption could be doubly resonant, leading to SHG susc
tibilities more than 103 times of magnitude higher than tha
in bulk GaAs. Ahn and co-worker11 proposed to bias a sym
metric QW electrically to obtain this asymmetry. This h
been realized by Fejeret al.,12 who obtained a SHG coeffi
cient more than 70 times higher than in bulk GaAs. Recen
Guo and co-workers13,14 investigated the OR and EOE in
symmetric parabolic QW with an applied electric field; r
sults reveal that both effects were enhanced significa
with the increase of the magnitude of the electric field, a
they reach nearly one and six orders higher than thos
bulk GaAs, respectively. The huge nonlinear optical prop
ties have the potential for device applications in far-infrar
laser amplifies,1 photodetectors,2 and high-speed electro
optical modulators.3

In this paper, except for the symmetrical parabolic Q
modes, a semiparabolic QW model has been brought
ward. It is obvious that the semiparabolic QW system is
asymmetrical quantum system, and the applied electric fi
can adjust the asymmetry of the potential. Therefore, co
paring with that in the symmetrical parabolic QW syste
the second-order nonlinear effect in semiparabolic QW
be looked forward to having large enhancement. Bearing
idea, we will study the influences of electric field on th
SHG susceptibility in parabolic and semiparabolic QW’s.

The paper is organized as follows: In Sec. II, by adopt
the methods of envelope wavefunction and displacement
monic oscillation, the electronic states in parabolic and se
parabolic QW’s with applied electric fields are exact
solved first, then under the compact-density-matrix a
proach, the simple analytical formula for the SHG susce
bility in the systems is deduced. In Sec. III, numerical c
culations on typical GaAs material are performed. T
influences of the electric field on the energy level of t
bound states in the semiparabolic QW systems are anal
and discussed first, then the SHG susceptibility as functi
©2003 The American Physical Society15-1
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of the change in the energy eigenvalues due to an app
electric field, the incident photon energy, and the relaxat
rate of the systems are plotted, and the characteristics
these curves are analyzed and compared. The results r
that the SHG susceptibilities are related to the strength
applied electric field and the relaxation rate of the system
the energy eigenvalues decrease due to the applied ele
field becoming strong, the SHG susceptibility in both sy
tems increase monotonely. Furthermore, when the effec
widths of the semiparabolic and parabolic QW’s are sam
the SHG susceptibility in semiparabolic QW is larger th
that in parabolic QW, which means that the semiparab
QW is a model of very promising candidates for secon
order nonlinear optical properties.

II. THEORY

Under the effective-mass approximation, the elect
Hamiltonian of a QW system with an applied electric field
described by

H52
\2

2m*
F ]2

]x2
1

]2

]y2
1

]2

]z2G1V~z!1qFz, ~1!

with

V~z!5 1
2 m* v0

2z2, 2`,z,` ~2!

for parabolic quantum wells, and

V~z!5H 1
2 m* v0

2z2 z>0

`, z,0
~3!

for semiparabolic quantum wells. Herez represents the QW’s
growth direction,F is the strength of the applied electric fie
parallel toz direction,q is the electron charge, andv0 is the
frequency of the parabolic confining potential of the Q
Under the envelope wave-function approximation, the eig
functionscn,k(r ) and eigenenergies«n,k are the solutions of
the Schro¨dinger equation forH and are given by13

cn,k~r !5fn~z!Uc~r !exp~ ik//•r //!, ~4!

and

«n,k5En1
\2

2m*
uk//u2. ~5!

Here,k// andr // are the wave vector and coordinate in thexy
plane andUc(r ) is the periodic part of the Bloch function i
the conduction band atk50. fn(z) andEn are the solutions
of one-dimensional Schro¨dinger equation

Hzf~z!5Ef~z!, ~6!

whereHz is thez part of the HamiltonianH, and it is given
by

Hz52
\2

2m*

d2

dz2
1V~z!1qFz. ~7!
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Using the analogous steps as in Refs. 16 and 17, we
tain the energy levels and corresponding wave functions
the parabolic QW, and they take the following forms:

En5\v0S n1
1

2D2
q2F2

2m* v0
2

, n50,1,2,3. . . , ~8!

fn~z!5NnexpS 2
1

2
@a~z1b!#2DHn@a~z1b!#, ~9!

with

a5Am* v0

\
, b5

qF

m* v0
2

, ~10!

where Ht(z) is the Hermite functions22 @when t is integer,
Ht(z) becomes Hermite polynomial#, and Nn

5@a21Ap2nn! #21/2 is the normalization constant.
For semiparabolic QW, the electronic energy levels a

corresponding wave functions are given as follows:

En5\v0S tn1
1

2D2
q2F2

2m* v0
2

, ~11!

fn~z!5NnexpS 2
1

2
@a~z1b!#2DHtn

@a~z1b!#, ~12!

wheretn is determined by

Htn
~ab![0, n51,2,3. . . , ~13!

and the normalization constantNn is determined by

Nn5H E
0

`

exp$2@a~z1b!#2%$Htn
@a~z1b!#%2dzJ 21/2

.

~14!

Next, the formulas of the SHG susceptibility in the tw
models will be deduced. Assuming a monochromatic in
dent field E(t)5Ẽexp(2ivt)1Ẽ*exp(ivt) is applied to the
system. The evolution of the density matrix is given by t
time-dependent Schro¨dinger equation

]r i j

]t
5

1

i\
@H02qzE~ t !,r# i j 2G i j ~r2r (0)! i j . ~15!

For simplicity, only one value of the relaxation rate is a
sumedG i j 5G051/T. Equation~15! is solved using the usua
iterative method,7,11

r~ t !5(
n

r (n)~ t !, ~16!

with

]r i j
(n11)

]t
5

1

i\
$@H0 ,r (n11)# i j 2 i\G i j r i j

(n11)%

2
1

i\
@qz,r (n)# i j E~ t !. ~17!
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TABLE I. The calculated energy eigenvalues and their intervals in eV.

Semiparabolic QW Parabolic QW

F3107 V/m E1 E2 E3 E4 DE1 DE2 DE3 E1 E2 E3 E4 DEi( i 51,2,3)

0.0 0.3554 0.8293 1.3032 1.7770 0.4739 0.4739 0.4739 0.2369 0.7108 1.1847 1.6586 0.4
0.5 0.3432 0.8110 1.2802 1.7502 0.4676 0.4692 0.4700 0.2369 0.7108 1.1846 1.6585 0.4
1.0 0.3315 0.7930 1.2576 1.7238 0.4615 0.4646 0.4662 0.2367 0.7106 1.1844 1.6583 0.4
1.5 0.3201 0.7755 1.2355 1.6978 0.4554 0.4600 0.4623 0.2364 0.7102 1.1841 1.6580 0.4
2.0 0.3091 0.7583 1.2137 1.6721 0.4492 0.4554 0.4584 0.2359 0.7098 1.1837 1.6576 0.4
3.0 0.2883 0.7253 1.1714 1.6222 0.4371 0.4461 0.4507 0.2347 0.7085 1.1824 1.6563 0.4
4.0 0.2689 0.6939 1.1308 1.5738 0.4250 0.4369 0.4430 0.2329 0.7068 1.1806 1.6545 0.4
5.0 0.2510 0.6640 1.0917 1.5270 0.4130 0.4277 0.4353 0.2306 0.7045 1.1784 1.6522 0.4
8.0 0.2058 0.5842 0.9850 1.3979 0.3784 0.4009 0.4129 0.2207 0.6946 1.1685 1.6424 0.4

10.0 0.1822 0.5383 0.9210 1.3187 0.3561 0.3828 0.3977 0.2116 0.6855 1.1594 1.6333 0.4
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The electronic polarization of the QW will also be a ser
expansion as in Eq.~16!, and be limited to the first two
orders, i.e.,

P~ t !5~«0xv
(1)Ẽeivt1«0x2v

(2)Ẽ2e2ivt!1c.c.1«0x0
(2)Ẽ2,

~18!

wherexv
(1) , x2v

(2) , andx0
(2) are the linear susceptibility, SHG

and OR coefficients, respectively.«0 is the vacuum permit-
tivity. The electronic polarization of thenth order is given by

P(n)~ t !5
1

S
Tr~r (n)qz!, ~19!

whereS is the area of the interaction and the symbol ‘‘T
denotes the summation over the diagonal elements of
matrix.

In this paper, we lay emphasis on the calculations of
SHG susceptibility. By using the same compact-dens
matrix approach and iterative procedure as Refs. 7, 11
and 16–18, and under the condition of two-photon re
nance, i.e.,\v'E21'E32'\V ~From the above discussio
on electron states, it can be seen that the resonance cond
in parabolic QW with applied field can obtain rigorous s
isfaction, and the resonance condition in semiparabolic Q
with applied field can also obtain approximate satisfact
when the field is not too strong!, the SHG susceptibility pe
unit volume is derived, and it is given by

x2v
(2)5

q3m12m23m31rs

«0

3
1

~E3122\v1 i\G0!~E212\v1 i\G0!
. ~20!

The volume SHG susceptibility has a resonant peak value
\v5\V given by

x2v,Max
(2) 5

q3rsm12m23m31

«0~\G0!2
, ~21!

wherers is the surface density of electrons in the QW,Ei j
5Ei2Ej is the energy interval of two different electron
23531
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states, andm i j is the off-diagonal matrix element which i
given bym i j 5u^f i uzuf j&u ( i , j 51,2,3).

III. NUMERICAL RESULTS AND DISCUSSION

It is well known that parabolic QW is a symmetrica
quantum system, while semiparabolic QW is an asymme
cal quantum system. So the effective width for the parabo
QW can be defined as 2uz0u, but that for the semiparabolic
QW asuz0u (z0 is the maximum size of the quantum well i
z direction!. In order to compare the SHG susceptibility an
the influences of electric field on the SHG susceptibility
the two systems, the same effective widths and the sa
barrier heights of the two QW’s are assumed, which impl
that 1

2 m* vS
2z0

25 1
2 m* vA

2(2z0)2. Via this relation, it is easy to
get vA5vS/2, wherevS andvA denote the confined poten
tial frequencies of the symmetrical parabolic QW and t
asymmetrical semiparabolic QW, respectively. In the follo
ing discussion, we markvA5vS/25v0 for convenience.

Numerical calculations are carried out on typic
Al xGa12xAs/GaAs parabolic and semiparabolic QW’s. Th
material parameters adopted in the present work are f
Refs. 13 and 18:m* 50.067m0 (m0 is the bald electron
mass!, rs5531024 m23, andT50.14 ps.

In order to better visualize the QW systems under cons
eration, whenv0 is kept at 3.631014 s21, the first four en-
ergy eigenvalues and their intervals for semiparabolic Q
and parabolic QW were listed in Table I, and the first thr
eigenfunctions for the two systems were plotted in Fig.
From Table I, it can be observed that, with the increase oF,
all the energy eigenvaluesEi ( i 51,2,3,4) in the two systems
decrease monotonously, but the variations of the energy
tervalsDEi between adjoining energy levels in the two sy
tems are obviously different.DEi in semiparabolic QW de-
creases monotonely asF increases, whileDEi in parabolic
QW is kept unchanged with the increase ofF. It also can be
noted that, when electric field is absent (F50), the energy
intervalsDEi in both QW systems are the same, which is n
occasional. It is well known that, whenF50, the energy
levels in parabolic QW can be expressed byEn5\vS(n
1 1

2 ) via Eq. ~8! ~Ref. 23!, and the expression of the energ
5-3



lic
with the

LI ZHANG AND HONG-JING XIE PHYSICAL REVIEW B 68, 235315 ~2003!
FIG. 1. The first three wave functions in semiparabolic QW and parabolic QW along with the confining potential. Panels~a!, ~b!, and~c!
correspond to the first three states in semiparabolic QW, respectively. Panels~d!, ~e!, and~f! correspond to the first three states in parabo
QW, respectively. The solid lines denote the wave functions without electric field and the dashed lines denote the wave functions
electric field ofF583107 V/m.
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levels in semiparabolic QW becomesEn5\vA(2n1 3
2 )

~Ref. 24! (n50,1,2. . . ), thus the energy intervals in th
two systems have the same values 2\vA or \vS ~note vS
52vA). Comparing the corresponding energy levels in th
two systems, we found that the energy level in semiparab
QW is higher than the corresponding energy level in pa
bolic QW, which is because the confinement for the elect
in the semiparabolic QW is stronger than that in parabo
QW. Detailed calculation denotes that, whenF→`, DEi ( i
51,2,3) of semiparabolic QW with applied electric field a
proaches\v0. This characteristic forDEn in semiparabolic
QW can be explained reasonably as follows. It is well kno
that, in a symmetric parabolic QW with or without applie
electric field, all the intervals of the adjoining energy leve
are \v0.23 Therefore, it can be deduced that, whenF ap-
proaches infinity, the potential functionV(z)1qFz of semi-
parabolic QW more and more approaches that in symme
parabolic QW, and only the symmetrical axis of semipa
bolic QW with electric field moves from the positionz50 to
uqF/m* v0

2u, and the potential bottom of the semiparabo
QW decreases from 0 to2q2F2/2m* v0

2. Thus, the intervals
DEi in semiparabolic QW with strong electric fields a
proach those in symmetrical parabolic QW, namely, the
tervals approach\v0.

Figures 1~a!–1~c! are for the wave functions of th
23531
e
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-
n
c

n

ic
-

-

ground state, the first excited state, and the second exc
state in semiparabolic QW, while Figs. 1~d!–1~f! are for the
wave functions of the first three states in parabolic QW,
spectively. In the six figures, the solid lines denote the wa
functions without electric field and the dashed lines den
the wave functions with the electric field ofF58
3107 V/m. Due to the infinite barrier atz50 for semipara-
bolic QW, their wave functions are zero at the origin. T
applied electric field make each wave function an obvio
right-shift, which is a reasonable result.

The SHG susceptibility peak valuex2v,max
(2) as functions

of the eigenenergy of ground statesE1 for semiparabolic QW
and parabolic QW are depicted in Figs. 2~a! and 2~b!, respec-
tively. In fact, in Fig. 2, the confined potential frequencyv0
is kept at 3.631014 s21, and F varies from 0 to 1
3108 V/m. From Fig. 2 it can be seen that both curves d
crease monotonously with the increase of the ground-s
energy, which means that the SHG susceptibility increa
with the increase of the applied electric field. It can also
seen that, in the energy ranges of the two systems un
consideration, the SHG susceptibility in semiparabolic Q
is much larger than that in parabolic QW. This feature is d
to the self-asymmetry for the semiparabolic QW, and it
just the prospective result.

Figures 3 and 4 depict the SHG susceptibilityux2v
(2)u as
e
f

FIG. 2. The SHG susceptibility peak valu
x2v,Max

(2) as functions of the eigenenergy o
ground statesE1 for semiparabolic QW~a! and
parabolic QW ~b!. The confined-potential fre-
quencyv0 is kept at 3.631014 s21 andF varies
from 0 to 13108 V/m.
5-4
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functions of the photon energy\v for semiparabolic QW
and parabolic QW, respectively. The confined potential f
quencyv0 is kept at 3.631014 s21. In the two figures, solid
line, dashed line, and dotted line correspond to the elec
field strengthsF553107 V/m, F523107 V/m, and F
50, respectively. It is observed that each curve of the S
susceptibility dependent on the photon energy reveal
single resonant peak. The stronger the electric fields are
sharper the resonant peak will be and the bigger the p
intensity will be. The most obvious difference between Fi
3 and 4 is that, corresponding to the three different elec
field strengths 53107 V/m, 23107 V/m, and F50, the
resonant peaks for semiparabolic QW appear at three di
ent values of photon energy,\v50.4204 eV, 0.4523 eV
and 0.4739 eV, while the three resonant peaks for parab
QW appear at the same photon energy 0.4739 eV. This

FIG. 3. The SHG susceptibilityux2v
(2)u as functions of the photon

energy\v for semiparabolic QW when the confined-potential fr
quencyv0 kept at 3.631014 s21. The solid line, dashed line, an
dotted line correspond to the electric field strengthsF55
3107 V/m, F523107 V/m, andF50, respectively.

FIG. 4. The SHG susceptibilityux2v
(2)u as functions of the photon

energy\v for parabolic QW when the confined-potential frequen
v0 kept at 3.631014 s21. The solid line, dashed line and dotted lin
are corresponding to the electric field strengthsF553107 V/m,
F523107 V/m, andF50, respectively.
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ture is because, asF increases, for the semiparabolic QW, th
intervals of adjoining energy levels become narrower a
narrower, which results in the redshifts of resonant peak w
the creasing ofF; but for the parabolic QW, the intervals o
adjoining energy levels are kept unchanged. These res
can also be deduced directly from the discussions of the e
tronic states, or be observed directly from the Table I.

In Fig. 5, we show the SHG susceptibilityux2v
(2)u as func-

tions of the photon energy\v for four different relaxation
times T50.2 ps, 0.15 ps, 0.1 ps, and 0.08 ps, withv0
53.631014 s21 and F51.53107 V/m in semiparabolic
QW, which are shown by the solid line, dashed line, dot
line, and dash-dotted line, respectively. The relaxation r
G0 is the inverse of relaxation timeT. From the figure, we
observed that the relaxation timeT has a great influence o
the SHG susceptibilityux2v

(2)u, namely, with the increase o
relaxation rateG0, or the decrease of the relaxation timeT,
the SHG susceptibilitiesux2v

(2)u decrease obviously. On th
other hand, the relaxation rate is related not only to the m
terials constituting the QW, but also to some other facto
such as the temperature of the system, boundary conditi
and the electron-impurity and electron-phonon scattering
teractions, etc. Hence, in order to obtain a large SHG sus
tibility, one should reduce the influences of these factors
the systems.

IV. SUMMARY

In conclusion, by using the compact-density-matrix a
proach, the SHG susceptibility in a parabolic and semipa
bolic QW with applied fields have been deduced and inv
tigated in detail. Before studying the nonlinearity, the ex
and analytical electronic states in both QW systems w
applied electric fields have been deduced by the method
displacement harmonic oscillation. Numerical calculation
the typical AlxGa12xAs/GaAs QW’s are performed; result
show that the applied electric fields have an important in

FIG. 5. The SHG susceptibilityux2v
(2)u as functions of the photon

energy\v for four different relaxation timesT50.2 ps~solid line!,
0.15 ps ~dashed line!, 0.1 ps ~dotted line!, and 0.08 ps~dashed-
dotted line! with v053.631014 s21 andF51.53107 V/m in semi-
parabolic QW.
5-5
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LI ZHANG AND HONG-JING XIE PHYSICAL REVIEW B 68, 235315 ~2003!
ence on the electronic energy levels, for example, with
increase of electric field from 0 tò, the energy intervals o
the adjoining energy levels in semiparabolic QW’s decre
from 2\v0 to \v0, and the reason for these characters
been explained. Calculation found that, for the same ef
tive widths of the parabolic and semiparabolic QW, the SH
susceptibility in semiparabolic QW is larger than that
parabolic QW due to the self-asymmetry of the semipa
bolic QW, which means that the semiparabolic QW is
model of very promising candidates for second-order non
ear optical properties. In addition, the applied electric fi
can make the SHG susceptibility enhance remarkably.
example, whenF varies from 0 to 63107 V/m, the SHG
susceptibility in semiparabolic QW have 25.7% enhan
ment for the effect of the electric field. Moreover, the res
calculated reveals that the SHG susceptibility is also rela
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