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Nonequilibrium precursor model for the onset of percolation in a two-phase system
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Using a Boltzmann-like equation, we investigate the nonequilibrium dynamics of nonperturbative fluctua-
tions within the context of Ginzburg-Landau models. As an illustration, we examine how a two-phase system
initially prepared in a homogeneous, low-temperature phase becomes populated by precursors of the opposite
phase as the temperature is increased. We compute the critical value of the order parameter for the onset of
percolation, which signals the breakdown of the conventional dilute gas approximation.
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The process by which an ordered low-temperature sys
approaches disorder as its temperature is increased ha
ranging applications in many areas of physics. In syste
that allow for low-temperature symmetry breaking, such p
cesses would describe symmetry restoration. There is con
erable overlap between treatments found in the conden
matter literature within the context of Ginzburg-Land
models@1,2# and those found in the high-energy physics
erature through the use of temperature-corrected effec
potentials@3#, although clearly there are several crucial d
ferences as well@4#. In this paper, we would like to explor
an issue that is of interest to both areas, namely, how
describe the dynamics of nonperturbative thermal fluct
tions in simple systems, modeled by the Ginzburg-Land
model.

It is well known that ferromagnets will become parama
netic above a certain critical temperature. It is also w
known that such emergence of disorder is due to the nu
ation of ferromagnetic domains of the opposite phase@5#.
The dynamics of the domain interfaces, as well as th
growth, is of interest in many diverse areas, from mater
science to particle physics to cosmology, even if some s
tems require more complicated order parameters. Exam
include the recent experiments on Bose-Einstein conde
tion in dilute atomic gases@6# and the study of the growth o
the condensate@7#, ultrarelativistic heavy-ion collision ex
periments@8#, formation of topological defects both in th
laboratory, via pressure quench experiments@9#, or in the
early Universe@10#, and the nematic-isotropic transition i
liquid crystals @11#. Diverse as these systems are, they
have one feature in common; their change in behavior is
to the onset of nonequilibrium conditions, which are poo
understood.

In studying these kinds of problems one usually sta
with mean-field theory, or some of its microscopic versio
such as the equilibrium one-loop approximation in fie
theory or the Hartree approximation. In these approxim
tions, localized, high amplitude fluctuations are neglec
and replaced by an average interaction of the system with
thermal environment@4#. However, this approximation
breaks down as the system approaches criticality and t
fluctuations become more important.

It has long been recognized@12# that in order to fully
understand the dynamics of a given system one mus
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beyond the mean-field approximation. One approach is
invoke time-dependent renormalization group techniques@4#.
Here, we would like to propose an alternative approa
based on the dynamics of large-amplitude fluctuations, fr
which we can examine the nonequilibrium properties of
system. As we will show, our approach is valid up to t
onset of percolation, which is known to occur before cri
cality for three-dimensional systems.

Let us start by considering a standard Ginzburg-Land
model where local fluctuations about homogeneous equ
rium have the free energy

F~f,T!5E d3xFb

2
u¹fu21V~f!G , ~1!

with V(f)5V01a(u21)f2/21lf4/4, wherea, b, V0, and
l are ~positive! constants andu is the temperature ratio
T/Tc . For convenience, we have added the constant termV0
to fix the minima of the free-energy density atT,Tc at zero,
^f&56Aa(12u)/l[f6 , which then gives thatV0
5a2(12u)2/(4l). The constantsa and b can easily be
scaled away andF(f,T) can be made dependent only on t
temperature ratiou and on the coupling constantl.

We choose to study the dynamics of the fluctuations as
system is heated from itsT50 state, where it is in one of its
ordered states, sayf2 , to a temperatureT,Tc , focusing on
its evolution to a final equilibrium state determined by
time-independent value of the order parameter^f& at tem-
peratureT. We model the fluctuations away from the initia
equilibrium state as Gaussian shaped, spherically symm
configurations with a core valuefC and radiusR. These
precursors are also called subcritical bubbles and treatm
involving them have been successfully used in many ot
contexts before@13#. By expressing the amplitude of th
fluctuation asfA5fC2f2 , the fluctuations are paramete
ized asf f(r )5fA exp(2r2/R2)1f2 . ~The Gaussian satisfie
the physical boundary conditions—regularity at the orig
and asymptotic approach to the background, while cos
very little free energy. See Ref.@13# for details.!

Since we are interested in fluctuations that can probe
other available free-energy minimum, their amplitudes c
be easily determined by the condition thatf f(r ) represents
unstable fluctuations inside the (2)-vacuum phase. We the
simply have, from the symmetric double well potential us
©2002 The American Physical Society13-1
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in Eq. ~1! ~note that small-amplitude fluctuations are alrea
incorporated in the mean-field approximation to the fre
energy density!, that those fluctuations withfC>fmax50
are the ones probing the (1) phase. As forR, we allow for
fluctuations larger than the correlation length,Rmin5j(T),
where j(T)5@V9(f6)#21/2, consistent with the natura
coarse-graining scale dictated by the continuous free ene
Substitutingf f(r ) in Eq. ~1! we obtain the free-energy ba
rier for a fluctuation with amplitudefA and radius R
as F f(R,fA ,T)5(3A2p3/2fA

2/8)R1p3/2fA
2@A2V9(f2)/ 8

1A3V-(f2)fA/541V(4)(f2)fA
2/192#R3. We will refer to

the fluctuations withfC>fmax as ‘‘(1)-phase fluctuations’’
and the background phase as the ‘‘(2) phase.’’

We next study the dynamical evolution of these fluctu
tions. For this we use the Boltzmann-like equation derived
Ref. @14# for the distribution function of (1)-phase fluctua-
tions of radiusR and amplitudefA , f 1(R,fA ,t), which sat-
isfies the equation

] f 1

]t
5uvu

] f 1

]R
1~12g!G2→12gG1→2 , ~2!

where the first term in the right-hand side incorporates
collapse of subcritical domains, which we approximate
having constant velocityv5]R/]t. In a forthcoming publi-
cation we will show that this is a valid approximation fo
most of the interesting range of bubble radii. The seco
term describes the thermal nucleation of fluctuations of
(1) phase inside the (2) phase, with nucleation rat
G2→1 , while the last term describes the inverse proce
with rateG1→2 . For a degenerate potential these two ra
are the same, which we express in terms of the free energ
the fluctuations,F f , as given by a standard Gibbs distrib
tion: G(fA ,R)[G2→15G1→25AT4 exp(2Ff /T), where
A is a constant. Note also that from Eq.~2!, detailed balance
imposes that the ratioA/uvu be constant, which will be taken
as a free parameter in our model; it can be determined
specific models, as shown in Ref.@14#. In fact, the ratio
A/uvu must depend on dynamical quantities that are, in p
ciple, expressable in terms of the only two parameters in
model free energy,l andu, that must control heat diffusion
and fluctuations dynamics and can be mapped to spe
applications.g in Eq. ~2! is the total fraction of volume in
the (1) phase, defined by@14#

g5E
fmax

1`

dfCE
j(T)

1`

dR
4pR3

3
f 1~R,fA ,t !. ~3!

Note that from our initial condition att50, we have
g(0)50 and, in the asymptotic equilibrium regime at tem
perature 0,T<Tc ,0,geq<1/2. Equation~2!, together with
Eq. ~3!, is an integrodifferential equation that we numerica
solve forg. The result is shown in Fig. 1 for different value
of temperature andl51.

geq can be computed from Eq.~2! by setting the time
derivative term in the left-hand side to zero. The result
expression forgeq, using Eq.~3!, is geq5I /(112I ), where
03611
y
-

y.

-
n

e
s

d
e

s,
s
of

or

-
e

fic

g

I 5E
fmax

1`

dfCE
j(T)

1`

dR
4pR3

3 E
R

1`

dR8
A

uvu
T4e2F f /T. ~4!

Writing g(t)[geqB(t), and using Eqs.~2! and ~3!, we find
an equation forB(t), after integrating all terms in Eq.~2! by
*fmax

1` dfC*j(T)
1`dR(4pR3/3),

dB~ t !

dt
1

G

geq
B~ t !2

G

geq
50, ~5!

whereG, the total volume-integrated nucleation rate, is giv
by

G5E
fmax

1`

dfCE
j(T)

1`

dR
4pR3

3
G~fC ,R!. ~6!

The differential equation~5! has a simple solution, given b
B(t)512exp(2t/t), where t5geq/G is the equilibration
time scale. Therefore, the analytical solution forg(t) is
g(t)5geq(12e2t/t). This solution fits very well the numeri
cal solution forg shown in Fig. 1. In Fig. 2 we compare th
theoretical and numerical results for the equilibration tim
scalet, as a function of the temperature, for two differe
values ofl, the agreement is quite striking. The results

FIG. 1. The volume fractiong as a function of time forl51
andA/uvu51.

FIG. 2. The equilibration timet for l51 and l50.1 with
A/uvu51. The dots are the numerical results from Eq.~2! and the
lines are the theoretical result,t theor5geq/G.
3-2
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Fig. 2 reveal a peak in the equilibration time scale. For sm
temperatures, the equilibration time grows continuously u
it reaches a maximum at the temperatureTmax(l). This is
reminiscent of the critical slowing down behavior charact
istic of critical phenomena, although we cannot recover
discontinuity at the critical point with our simple mode
What we do provide is a dynamical picture of the approa
to criticality, which we expand below. As the temperatu
increases, a larger fraction of the volume of the initial state
the (2) phase is populated by fluctuations of the (1) phase;
also, as the free-energy barrier decreases with increa
temperature, these fluctuations will become larger in s
Hence, their equilibration time scales grow with increas
T, as displayed in Fig. 2. For temperatures larger thanTmax,
the equilibration time decreases, vanishing at the mean-
critical temperatureTc . This is due to the fact that atT
.Tmax the system is described by a free-energy density w
a single minimum atf50; thus, the true critical temperatur
is not at Tc . This is in accordance with what is expecte
when corrections beyond the mean field to the potential
taken into account@15# and explicitly seen in large-scal
Langevin simulations performed on the lattice@16#. From
Fig. 2 our model predicts the valuesTmax.0.79Tc for l51
andTmax.0.97Tc for l50.1. These results are dependent
the ratio A/uvu that involves the microscopic details of
given model under study. Physical lower bounds on this ra
will be discussed below.

As the temperature is increased and the volume densit
(1)-phase fluctuations grows, the system will eventua
reach an instability point beyond which domains of th
(1) phase will grow by percolating with their nearest neig
bors@17#. The question is at what temperature such perco
ing instability occurs. In order to answer this question,
take full advantage of our dynamical model.~A preliminary
approach can be found in Ref.@14#.! Since correlation-
volume fluctuations have the smallest free-energy bar
they will be statistically dominant. In order to model th
percolation instability, consider a domain of the (1) phase
of correlation-length radiusj. There are three main process
that can change its volume: shrinking due to its surface
sion, growth due to the thermal nucleation of anoth
(1)-phase domain of radiusR just outside it, which account
for a change of volumeDV54p@(j12R)32j3#/3, and
thermal destruction of the correlation size fluctuation due
inverse nucleation, that changes the volume byDV8
54pj3/3. We thus arrive at an approximate equation d
scribing the rate of change ofVj :

dVj

dt
.2uvu4pj21E

fmax

1`

dfCE
j(T)

1`

dR
4pR3

3
G~fC ,R!DV

2E
fmax

1`

dfC

4pj4

3
G~fC ,j!DV8

[4pj2veff . ~7!

In Fig. 3 we show the numerical solution for the effecti
velocity, veff , as a function of temperature. The temperat
for which veff.0,Tperc(l), indicates the onset of percolatio
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for correlation-volume fluctuations. Our numerical resu
give the valuesTperc.0.72Tc for l51 andTperc.0.96Tc for
l50.1. Tperc obtained with Eq.~7! is very close toTmax
given before. As percolation sets in, Eq.~2! begins to under-
estimate the growth of fluctuations and the further devel
ment of the system.Tperc then determines the limit of validity
of Eq. ~2!, or the breakdown of the dilute gas approximatio
beyond which coalescence of phase fluctuations begins t
of importance. Nevertheless, Eqs.~2! and ~7! describe quite
well the dynamics until the onset of continuous percolat
as well as the equilibrium properties of the system.~Note
that continuous percolation, as opposed to lattice percolat
is very poorly understood, and only within simple two
dimensional mathematical models, such as the Boole
Poisson model@17#.!

Finally, it is important to test the validity of this mode
with respect to the calculation of the free energy of the flu
tuations. It is clear that as the free energyF f for fluctuations
drops belowkBT we no longer can distinguish them from
simple thermal noise, which then becomes statistically do
nant; the description of the nucleation of large-amplitu
fluctuations with rateG becomes meaningless. Using th
temperaturesTmax and Tperc, we can set a lower bound o

FIG. 4. umax5Tmax/Tc anduperc5Tperc/Tc as a function ofA/uvu
for l51. The dotted line is defined by the conditionF f /TuTn

51,
from which we obtain the boundA/uvu.1022.

FIG. 3. The effective velocity of correlation-length fluctuation
veff5(4pj2)21dVj /dt as a function of temperature forl51 and
l50.1. A/uvu is again set to 1.
3-3
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the value ofA/uvu.This is shown in Fig. 4 for the case ofl
51, where we show howTmax andTperc change withA/uvu.
The conditionF f /TuTn

51 applied to the fluctuations of low

est free energy,f5fmax and R5j, gives Tn*0.87Tc for
l51 andTn*0.99Tc for l50.1.

Summarizing, we have presented a simple model ba
on the dynamics of phase fluctuations that is able to prov
a dynamical description of how a continuous ordered sys
described by a Ginzburg-Landau free energy approache
percolation instability. The model allows us to compute t
temperature for the onset of percolation, which signals
breakdown of the conventional dilute gas approximation,
fering also a different way to estimate the actual critical te
perature in a Ginzburg-Landau system, that can be read f
.
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the results of Fig. 2. Furthermore, the model studied he
despite its simplicity, exhibits a dynamical picture of sym
metry restoration and the breakdown of mean-field the
observed both numerically and analytically, without recou
to large-scale numerical simulations. The model can ea
be extended to different systems including inhomogene
nucleation, or systems outside the Ising universality cla
We expect to report soon on these applications.
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