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The Nernst formulation of the third law of ordinary thermodynamics~often referred to as the ‘‘Nernst
theorem’’! asserts that the entropyS of a system must go to zero~or a ‘‘universal constant’’! as its temperature
T goes to zero. This assertion is commonly considered to be a fundamental law of thermodynamics. As such,
it seems to spoil the otherwise perfect analogy between the ordinary laws of thermodynamics and the laws of
black hole mechanics, since rotating black holes in general relativity do not satisfy the analogue of the ‘‘Nernst
theorem.’’ The main purpose of this paper is to attempt to lay to rest the ‘‘Nernst theorem’’ as a law of
thermodynamics. We consider a boson~or fermion! ideal gas with its total angular momentumJ as an
additional state parameter, and we analyze the conditions on the single-particle density of states,g(e, j ),
needed for the Nernst formulation of the third law to hold.~Here,e and j denote the single-particle energy and
angular momentum.! Although it is shown that the Nernst formulation of the third law does indeed hold under
a wide range of conditions, some simple classes of examples of densities of states which violate the ‘‘Nernst
theorem’’ are given. In particular, at zero temperature, a boson~or fermion! gas confined to a circular string
~whose energy is proportional to its length! not only violates the ‘‘Nernst theorem’’ also but reproduces some
other thermodynamic properties of an extremal rotating black hole.@S0556-2821~97!01122-3#

PACS number~s!: 04.70.Dy, 05.30.Jp, 05.70.2a

I. INTRODUCTION

Nearly 25 years ago a remarkable relationship was estab-
lished@1# between the ordinary laws of thermodynamics and
certain laws of black hole physics. This relationship was then
greatly enhanced by the discovery@2# that black holes radiate
as perfect black bodies, and by strong evidence for the va-
lidity of the ‘‘generalized second law’’@3–6#; see, e.g.,@7,8#
for comprehensive reviews.

However, one apparent blemish has existed on this other-
wise seemingly perfect relationship. The Nernst formulation
of the third law of thermodynamics asserts that the entropyS
of a system must go to zero~or a ‘‘universal constant’’! as its
temperatureT approaches absolute zero. On the other hand,
for Kerr black holes in general relativity, the entropy is given
by

S5A/452p@M21~M42J2!1/2#, ~1!

and the temperature is given by

T5k/2p5
~M42J2!1/2

4pM @M21~M42J2!1/2#
, ~2!

whereM and J denote, respectively, the mass and angular
momentum of the black hole.~Here and throughout this pa-
per, we use units whereG5c5\5k51.! Thus, absolute
zero temperature corresponds to the ‘‘extremal limit’’

uJu5M2. ~3!

The entropy at absolute zero temperature is thus

S52puJu, ~4!

which is nonvanishing and, furthermore, has a functional de-
pendence on the state parameterJ, so it does not approach a

‘‘universal constant.’’ Thus, the Kerr black holes stand in
blatant violation of the black hole mechanics analogue of the
‘‘Nernst theorem.’’

This failure of the ‘‘Nernst theorem’’ to hold in black
hole mechanics has not generally been viewed with alarm by
most researchers because it is clear that the Nernst formula-
tion of the third law does not have the same fundamental
status in thermodynamics as the first or second laws~see,
e.g., Sec. 9.4 of the standard text of Huang@9# for a clear
statement of this view!. Indeed, the Nernst formulation of the
third law does not hold at all in classical physics, failing
even for a classical ideal gas. In quantum statistical physics,
the ‘‘Nernst theorem’’ corresponds to a claim about the be-
havior of the density of states,n(E), as the total energy of
the system goes to its minimum possible value. More pre-
cisely, it is a statement about the extrapolation to minimum
energy of the higher energy, continuum approximation to
n(E) ~see @9#!; in other words, the thermodynamic limit
should be taken prior to the limitT→0. It is not difficult to
concoct examples wheren(E) is such that the Nernst formu-
lation of the third law is violated. For example, a system
comprised by particles with spin but having no spin interac-
tion energy — so that the ground state is highly degenerate
— will violate the ‘‘Nernst theorem.’’ Violations of the
‘‘Nernst theorem’’ also occur for systems in which the
ground state is nondegenerate at finite volume~see@10# and
references cited therein!.

Nevertheless, most such counterexamples to the Nernst
formulation of the third law seem rather contrived, and the
fact that it has been empirically found to hold for all systems
studied in the laboratory provides evidence that it might hold
for all ‘‘physically reasonable’’ systems. If so, this would
suggest that there might be something ‘‘exotic’’ about the
thermodynamic properties of extremal rotating black holes.

In this paper we shall investigate this issue by studying
the Nernst formulation of the third law for a very nonexotic
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class of thermodynamic systems: ideal boson gases. To keep
the system as simple as possible — and, in particular, to
avoid complications resulting from Bose-Einstein condensa-
tion — we shall assume that, as in the case of the photon gas,
particle number is not conserved; equivalently, the chemical
potential of the gas will be assumed to vanish. However, we
will assume that the gas is confined by an axially symmetric
box ~or potential!, so that its total angular momentum,J, is
conserved, and we will takeJ and the total energy,E, to be
the state parameters of the system. In studying systems with
nonzero angular momentum, it does not make sense to con-
sider an infinite volume limit, so we will restrict attention to
finite volume systems.

The thermodynamic properties of the ideal boson gas are
determined by its single-particle density of states,g(e, j ),
wheree and j denote, respectively, the single-particle energy
and angular momentum. In order to facilitate our calcula-
tions, we shall further assume thatg(e, j ) is sufficiently
‘‘nonexotic’’ that the appropriate canonical ensemble —
modified to include angular momentum — can be defined~at
least at low temperatures!. This requires thatg(e, j ) not grow
more rapidly than exponentially ine, and that the single-
particle angular momentum to energy ratio be bounded, i.e.,
that V6Þ0, where

~V6!21[sup~6 j /e!. ~5!

Thus, we haveg(e, j )50 unless

2e/V2< j <e/V1 . ~6!

@Note that this condition holds for a system of free particles
confined to within a~cylindrical! radiusR of the symmetry
axis, withV651/R.# We then pose the following two ques-
tions: ~i! What properties ofg(e, j ) are required in order that
the Nernst formulation of the third law be violated, i.e., so
thatS(T,J) approaches a nonzero limit~which depends upon
J) as T→0? ~ii ! Can these conditions be achieved for any
classes of ‘‘physically reasonable’’ ideal gas systems?

Of course, even if the answer to~ii ! were ‘‘no,’’ this
would not mean that extremal Kerr black holes necessarily
display any ‘‘unphysical’’ or ‘‘exotic’’ thermodynamic be-
havior, since there is no reason to expect that their behavior
could be properly modeled by an ideal boson gas. Indeed,
with the restrictions placed on the density of states needed to
define the ordinary canonical ensemble, it is impossible to
get negative heat capacities, as occurs for black holes with
sufficiently small angular momentum. There is nothing ‘‘un-
physical’’ or ‘‘exotic’’ about systems with negative heat ca-
pacities; for example, ordinary self-gravitating stars in New-
tonian gravity have negative heat capacities. However, the
simple ideal gas systems we consider here are not adequate
to model this behavior. There is no reason,a priori, to be-
lieve that they should be adequate to model the violations of
‘‘Nernst’s theorem’’ displayed by extremal Kerr black holes.
Nevertheless, it is of interest to see how close one can come
to modeling the thermodynamic behavior of extremal Kerr
black holes with ideal boson gas systems.

As we shall see in the next section, for a violation of
‘‘Nernst’s theorem,’’ it is sufficient~and, as explained there,
‘‘nearly necessary’’! that there exist single-particle states
which achieve the bound~6!, i.e., that~for positiveJ) there

exist states which satisfye5V1 j exactly.1 No such states
exist for a free boson gas confined by a spherical box in two
or higher spatial dimensions, and such systems satisfy the
Nernst formulation of the third law even when they are ro-
tating. ~We will explicitly calculate the low temperature be-
havior of a rotating gas in the next section.! However, mass-
less ideal gases in one spatial dimension and ideal gases in
‘‘zero spatial dimensions’’~i.e., spin systems! do have states
for which e5V1 j , and they violate the ‘‘Nernst theorem’’
when angular momentum is taken into account. Thus, viola-
tions of the ‘‘Nernst theorem’’ — which are qualitatively
very similar the violations of the ‘‘Nernst theorem’’ for Kerr
black holes — do occur for some simple systems comprised
by ideal gases with angular momentum, although the one~or
zero! dimensionality of such systems seems essential.

Encouraged by this result, we may ask if the detailed
thermodynamic properties of extremal Kerr black holes
given by Eqs.~3! and ~4! also can be modeled by ideal gas
systems. As we shall see in the next section, forJ.0 the
ideal gas systems will automatically satisfyE5V1J at zero
temperature, rather thanE}J1/2, as in Eq.~3!. However, if
we modify the model of a one-dimensional boson gas con-
fined to a ring of radiusR by simply treatingR itself as an
additional classical dynamical variable, and if we also at-
tribute an additional energy proportional toR ~due to ‘‘string
tension’’! to the total energyE, then the behaviorE}J1/2 is
obtained — in agreement with Eq.~3!. However, the behav-
ior S}J at zero temperature@see Eq.~4!# seems much more
difficult to model, as it appears to require the density of
states,n( j ), at e5V1 j to grow exponentially withj . ~A
collection of massless boson gases would have a constant
n( j ), which leads to the behaviorS}J1/2 at zero tempera-
ture.! Nevertheless, it seems remarkable that such a simple
model can come so close to mimicking the thermodynamic
behavior of extremal Kerr black holes.

This investigation was stimulated by the recent success in
modeling the thermodynamic behavior of certain extremal
charged black holes~namely, those which saturate the
‘‘Bogomol’nyi-Prasad-Sommerfield~BPS! bound’’! in string
theory @11#. These results already provide a counterexample
to the ‘‘Nernst theorem’’ for a particular system in the class
considered here, since the degrees of freedom which contrib-
ute to the entropy in the weak coupling string model corre-
spond to that of a free, one-dimensional gas. In the present
investigation, we consider general ideal boson gas systems
— not restricted by any models arising from string theory.2

The one ~or zero! dimensionality of the models we find

1Note that this condition implies that if we define a new notion of
‘‘time translation’’ by t8m5tm1V1fm — with tm and fm being
the generators of ordinary time translations and rotations, respec-
tively — then the ‘‘ground state’’ of the system relative tot8m is
highly degenerate.

2The philosophy of the present paper bears some similarity with
the philosophy adopted in a recent paper of Maldecena and
Strominger@12#, who study the emission properties of nearly BPS,
slowly rotating black holes and deduce from those properties some
aspects of the effective string theory description of such black
holes. However, there does not appear to be any overlap in the
contents of that paper and the present paper.
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which violate the ‘‘Nernst theorem’’ is a conclusion, rather
than an input, of our analysis.

Finally, we note that, for definiteness, we shall consider
an ideal boson gas at zero chemical potential in our analysis.
However, the analysis of an ideal fermion gas~at zero
chemical potential! would proceed in complete parallel —
with merely some sign changes in various expressions —
and the conclusions in the fermion case would be unaltered.

II. THE THERMODYNAMICAL PROPERTIES
OF A ROTATING BOSON GAS

AT LOW TEMPERATURES

Consider an ideal boson gas, confined by a potential~or
‘‘box’’ ! which is axially symmetric. Then the angular mo-
mentum about the symmetry axis is conserved, and the
single-particle states of the gas can be labeled by their en-
ergy,e, and angular momentum,j , about the symmetry axis.
We shall assume that the single-particle Hamiltonian is posi-
tive, and that the minimum energy single-particle state has
energye0.0. ~This ensures that the ‘‘vacuum state’’ is the
unique ground state of the system. If there existed any
single-particle states withe50, the ground state of system
would be highly degenerate and the Nernst formulation of
the third law would be trivially violated even when the total
angular momentum vanishes.! Let G(e, j ) denote the number
of states with energy<e and angular momentum< j . Thus,
G is non-negative, is a monotone increasing function ofe
and j , and satisfiesG(0,j )50. The density of states,g(e, j ),
is defined by

g~e, j !5
]2G

]e] j
. ~7!

In reality, on account of the discreteness of states,G(e, j ) is
a piecewise constant function and, correspondingly,g is a
sum ofd functions, but~following standard practice! in our
expressions we will treat both of them as ‘‘continuum’’
~though not necessarily continuous! variables, i.e., we will
write down integral expressions rather than sums in our for-
mulas below. However, all of our formulas will continue to
make sense ifg is taken to be a sum ofd functions~or has
d-function contributions in addition to contributions which
are treated as being continuous!.

We will assume that, as for the case of a photon gas,
particle number in our boson gas is not conserved, i.e., that
particles can be created freely, at no ‘‘cost’’ other than the
energy and angular momentum required to create them.~This
corresponds to a vanishing chemical potential of the gas.!
Thus, the state variables will not include the number of par-
ticles and will be taken to be simplyE andJ. Given only that
G(e, j ) is bounded inj at eache ~i.e., that for eache there
are only a finite number of single-particle states with energy
,e), the microcanonical ensemble appropriate to fixing the
total energy,E, and total angular momentum,J, is well de-
fined. The entropy,S(E,J), may then be defined as
S(E,J)5 ln N(E,J), where N(E,J) denotes the number of
states of the total system~not single-particle states! with total
energy betweenE andE1DE and total angular momentum
betweenJ andJ1DJ. However, use of the microcanonical

ensemble is not very convenient for most calculations, and
the entropy of systems is usually computed in the context of
the canonical ensemble.

To obtain the appropriate canonical ensemble in the
present case, we proceed in close parallel to the derivation of
the grand canonical ensemble. We imagine that our system is
able to exchange energy and angular momentum with a
‘‘heat bath and angular momentum reservoir’’~rather than a
‘‘heat bath and particle reservoir’’! characterized by tem-
peratureT51/b and angular velocityV. ~HereT andV are
defined by their appearance in the first law of thermodynam-
ics for the reservoir, namelydE5TdS1VdJ.! In order that
our ideal gas system be able to ‘‘come to equilibrium’’ with
the reservoir~so that the canonical ensemble can be defined!
it is necessary to impose two additional restrictions on
G(e, j ): First, in the usual manner, we must have
G(e, j )<Cexp(ae) for some constantsC anda, since other-
wise the system could indefinitely soak up energy from the
reservoir. Second, we must haveV1Þ0 andV2Þ0 @where
V1 andV2 were defined by Eq.~5! above#, since otherwise
the system could indefinitely soak up angular momentum
from the reservoir. In the following, we shall assume that
these conditions are satisfied — so that the canonical en-
semble is well defined forT,1/a and2V2,V,V1 . We
then shall use canonical ensemble methods to compute
S(T,J). As usual, the canonical ensemble is equivalent to the
microcanonical ensemble for the purposes of computing the
entropy and other thermodynamic quantities for the system
provided that the energy and angular momentum fluctuations
in the canonical ensemble are sufficiently small.3

In exact parallel with the grand canonical ensemble, in
our ‘‘angular momentum modified canonical ensemble,’’ all
thermodynamic quantities can be derived in a straightfor-
ward manner from a partition functionZ(b,V). For an ideal
boson gas,Z is given by

ln Z52E ded jg~e, j !ln@12exp~2b@e2V j # !#. ~8!

The ~expected! angular momentumJ is then given by

J5
1

b

] ln Z

]V
5E ded jg~e, j !

j

exp~b@e2V j # !21
. ~9!

The ~expected! energy,E, is determined by

E2VJ52
] ln Z

]b
5E ded jg~e, j !

e2V j

exp~b@e2V j # !21
.

~10!

Finally, the entropyS is given by

3At extremely low temperatures, the microcanonical and canoni-
cal ensembles need not be equivalent. However, as emphasized in
@9#, the Nernst formulation of the third law really refers to the
extrapolation toT50 of the formula for the entropy which applies
at temperatures which are sufficiently high that the two ensembles
should be equivalent. Thus, it is appropriate to use the canonical
ensemble for our calculations here even if the two ensembles are
not equivalent atT50.
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S5 ln Z1b~E2VJ!5 ln Z2b
] ln Z

]b
. ~11!

Equation~11! yields the entropy as a function ofb andV.
To obtainS(b,J), we must solve Eq.~9! to expressV as a
function of b and J. Our task is to find conditions on the
density of states,g(e, j ), so thatS(b,J) does not approach
zero ~or a ‘‘universal constant’’! whenb→` at fixedJ.

In the following, we shall restrict attention to analyzing
the case whereJ.0. ~In particular, the caseJ50 will be
excluded from our analysis.! The states withj near its maxi-
mal valuee/V1 will then play an important role in the be-
havior of the gas asb→`, and it useful to replace the vari-
ablee with the variable

y[e2V1 j . ~12!

The allowed ranges ofy and j corresponding to the restric-
tions ~6! are then

y>0, j >2y/~V11V2!. ~13!

In addition, the conditione>e0 yields

j >~e02y!/V1 . ~14!

We defineH(y, j ) to be the total number of states labeled by
(y8, j 8), such thaty8<y and j 8< j . We define the corre-
sponding density of statesh(y, j ) by

h~y, j !5
]2H

]y] j
. ~15!

Then, we haveh(e2V1 j , j )5g(e, j ), although the relation-
ship betweenH andG is not quite as straightforward, since
the state counting in the two cases is being done over differ-
ent regions of single-particle state space. In terms of our new
variables, the above formula~8! for ln Z becomes

ln Z52E dyd jh~y, j !ln@12exp~2by2b@V12V# j !#

5 (
n51

`
1

nE dyd j
]2H

]y] j
e2nbye2ns j , ~16!

where, in the second line, we have made use of the series
expansion

ln@12e2x#52 (
n51

`
1

n
e2nx ~17!

and we have written

s[b~V12V!. ~18!

~Note thats.0 in order for the canonical ensemble to be
defined.! The corresponding series expanded formulas forJ
andS in our new variables are

J5 (
n51

` E dyd j
]2H

]y] j
je2nbye2ns j ~19!

and

S5sJ1 (
n51

`
1

nE dyd j
]2H

]y] j
e2nbye2ns j

1 (
n51

`

bE dyd j
]2H

]y] j
ye2nbye2ns j . ~20!

We now integrate Eqs.~19! and~20! by parts with respect
to bothy and j ~taking the ranges of both of these integrals
to be 2` to `). When we do so, no boundary terms arise
from the upper limits on account of the exponentially decay-
ing terms e2nby and e2ns j , and no boundary terms arise
from the lower limits on account of the vanishing ofH(y, j )
outside of the range defined by Eq.~13!. We obtain

J5 (
n51

`

n2bsE dyd jH~y, j !S j 2
1

ns De2nbye2ns j

~21!

and

S5sJ1 (
n51

`

n2b2sE dyd jH~y, j !ye2nbye2ns j . ~22!

Finally, we introduce the new variables

w5ns j , z5nby ~23!

to convert these expressions to the form

J5
1

s (
n51

`
1

nE0

`

dzE
2zs/b~V21V1!

`

dwHS z

nb
,

w

ns D
3~w21!e2ze2w ~24!

and

S5sJ1 (
n51

`
1

nE0

`

dzE
2zs/b~V21V1!

`

dwHS z

nb
,

w

ns D
3ze2ze2w, ~25!

where we have now explicitly inserted lower limits on the
integrals to remind the reader thatH vanishes outside the
range defined by Eq.~13!. Note that since the second term on
the right side of Eq.~25! is non-negative, we have

S>sJ. ~26!

We now show that for any fixedJ.0, s must remain
bounded from above whenb→`, i.e.,V must approachV1

at least as rapidly as 1/b. Equivalently, we haves0,`
where

s0[ lim sup
b→`

s. ~27!

To see this, we note that by Eq.~24! we have

J<
1

s (
n51

`
1

nE0

`

dzE
0

`

dwHS z

nb
,

w

ns D ~w21!e2ze2w .

~28!
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If there were a sequenceb i→` such thats i→`, then, due
to the factor of 1/s together with the fact thatH is a mono-
tone increasing function of both of its arguments~and, hence,
is monotone decreasing along this sequence!, the right side
of Eq. ~28! would converge to zero, in contradiction with the
fact thatJ.0.

A crucial factor in the behavior ofS at T50 is whether or
not s050. If s0.0, then by Eq.~26! we have

lim sup
b→`

S>s0J.0, ~29!

and the Nernst formulation of the third law will fail. On the
other hand, suppose thats050 ~so thats→0 asb→`, i.e.,
V approachesV1 more rapidly than 1/b). Then sJ con-
verges to zero, so we only need worry about the second term
on the right side of Eq.~25!. However, in order to keep the
right side of Eq.~24! from diverging asb→`, it is necessary
thatH(z/b,w/s) converge pointwise to zero for allz,w>0.
@If not, then using the monotonicity and positivity ofH, the
integrals on the right side of Eq.~24! would remain finite,
but the 1/s factor would diverge.# If we knew, in addition,
that for allb we hadH(z/b,w/s)<F(z,w) whereF is such
that *dzdwF(z,w)ze2ze2w converges, then we could use
the dominated convergence theorem to conclude thatS→0
asb→`. I have not attempted to give a complete analysis of
the conditions onH which are necessary and sufficient for
the Nernst behavior to occur whens050, but it seems clear
that this ‘‘normally’’ will be the case~and possibly always is
the case, since I do not know of any counterexamples to the
Nernst behavior whens050).

What conditions onH are necessary and sufficient to en-
sure thats0.0, so that the Nernst formulation of the third
law will be violated? A sufficient condition is thatH(0,j ).0
for some j , i.e., that there exists at least one single particle
state which actually achieves the limiting angular momentum
j 5e/V1 . To see this, we note that if we assume that
H(0,j ).0 for somej but thats050, it follows immediately
that H(z/b,w/s) cannot converge pointwise to zero. How-
ever, as in the arguments of the previous paragraph, this
yields a contradiction, since it implies thatJ→` asb→`.

On the other hand, for a wide class ofH ’s, the condition
that H(0,j ).0 for somej also is necessary to haves0.0.
In particular, suppose thatH(y, j ) is polynomially bounded
in j at eachy in such a way that forj >0 we have

H~y, j !<F~y!~11 j k!, ~30!

whereF(y) is continuous, is exponentially bounded at large
y ~so that the canonical ensemble is well defined at largeb),
and satisfiesF(0)50. This behavior encompasses a very
wide class ofH ’s such thatH(0,j )50 for all j . SinceH is a
monotone increasing function ofy, we may assume, without
loss of generality, thatF also is a monotone increasing func-
tion. By Eq. ~28!, we have

J<
1

s (
n51

`
1

nE0

`

dzE
0

`

dwFS z

nb D F11S w

ns D kG
3~w21!e2ze2w

<
1

s~k11!
G~k12! (

n51

`
1

n~k11!E0

`

dzFS z

nb De2z

<
C

s~k11!E0

`

dzFS z

b De2z, ~31!

where the monotone property ofF was used in the last line
to obtainF(z/nb)<F(z/b). However, asb→`, the func-
tions f b(z)[F(z/b) converge pointwise to 0 and are
‘‘dominated’’ by F(z), so, by the dominated convergence
theorem, the integral on the right side of Eq.~31! converges
to 0. Consequently, we must haves050 in this case, as we
desired to show.

If H(y, j ) is not polynomially bounded inj , then it is
possible to haves0.0 even ifH(0,j )50 for all j . Indeed, if
H(y, j )5F(y)el j wherel.0 andF is as in the previous
paragraph, then it is not difficult to see from Eq.~24! that
s05l.0. However, I am not aware of any circumstances
under whichs0.0 whenH(0,j )50 for all j andH(y, j ) is
such that at fixedy, H(y, j )e2a j is bounded inj for all
a.0.

We now summarize our results. We have considered ideal
boson gases whose single-particle states satisfy the restric-
tion ~6!. We have shown above thatif there exist any single-
particle states which actually achieve the maximal ratio of
angular momentum to energy — namely j/e51/V1 — then
the Nernst formulation of the third law will fail for J.0. In
a limited class of other circumstances — in particular, when
H(y, j ) grows exponentially withj — the Nernst formula-
tion of the third law also may fail even if no single particle
states satisfyj /e51/V1 . However, it appears that in the
‘‘vast majority of cases’’ — and conceivably all cases where
H(y, j )e2a j bounded inj for all a.0 — the Nernst formu-
lation of the third law holds when no single-particle states
satisfy j /e51/V1 .

A few simple examples are useful to illustrate these gen-
eral results and to gain insight into the conditions under
which there are states withj /e51/V1 , so that the Nernst
formulation of the third law is violated. As a first example,
consider a gas of particles of a free, massless, scalar field in
three dimensions, confined by a spherical box of radiusR,
with Dirichlet boundary conditions on the walls of the box.
The spatial mode functions for the particles are then of the
form

fnlm5 j l~klnr !Ylm~u,w!, ~32!

where kln is the nth value of k such thatj l(kR)50. The
energy of the modefnlm is kln and itsz-angular momentum
is m. ~Recall that we are using units in which\51.! Since
kln.( l 11/2)/R ~see, e.g.,@13#!, we havej /e,1/R for all
single-particle states. However, since the first zero,kl1, sat-
isfies @13#

lim
l→`

kl1

l
51 ~33!
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we see thatV151/R, and no single-particle state actually
achieves the maximal angular momentum to energy ratio.

By the above arguments, the Nernst formulation of the
third law should hold in this example. To see this explicitly,
we note that for largel , the density of zeros ofj l(x) is given
by

r5
1

pS 12
~ l 11/2!2

x2 D 1/2

. ~34!

~This result can be derived from formulas given in Sec.
15.81 of@13#.! Eachl contributes one state ofz-angular mo-
mentumj ~for integer j ) if l>u j u and zero states otherwise.
Hence, the density of states,g(e, j ), is given by

g~e, j !5
R

pEu j u

eR21/2S 12
~ l 11/2!2

~eR!2 D 1/2

dl

5
R2e

2p
$arccos~ u j u/Re!2~ u j u/Re!@12~ j /Re!2#1/2%.

~35!

In terms of the variabley5e2 j /R, the density of states
h(y, j ) is

h~y, j !5
R

2p
~ j 1Ry!H arccosS u j u

j 1RyD2
u j u

~ j 1Ry!2

3@2R jy1R2y2#1/2J . ~36!

Taking into account the restriction~13!, we see that

h~y, j !<C~ u j u1Ry!<C8~11y!~11u j u!, ~37!

from which it follows immediately that

H~y, j !<C9~y1y2!~11 j 2!, ~38!

which is of the form~30!. Thus, we haves050 in this case.
The explicit behavior of the entropy of the rotating gas at

low temperatures can be calculated as follows. From Eq.
~36!, we see that for smally, we have

h~y, j !'
2A2

3p
R5/2j 21/2y3/2. ~39!

Substituting this into Eq.~19!, we find that, forJ.0 and
largeb,

J'
2A2

3p
R5/2(

n51

` E dyd j j1/2y3/2e2nbye2ns j

'
2A2

3p
R5/2G~5/2!G~3/2!z~4!b25/2s23/2

5
A2p4

360
R5/2b25/2s23/2. ~40!

@Here z denotes the Riemann zeta function, and we have
used the values z(4)5p4/90, G(3/2)5Ap/2, and
G(5/2)53Ap/4.# Thus, at largeb, we have

s'HA2p4

360 J 2/3 R5/3

b5/3J2/3
. ~41!

Substituting this into Eq.~20!, we find that asT→0 at fixed
J.0, we have

S}R5/3J1/3T5/3→0. ~42!

Thus, the Nernst formulation of the third law does indeed
hold, althoughS goes to zero more slowly than in the case
where the angular momentum of the gas is not constrained
~in which caseS}R3T3 at all temperatures!.

I have not succeeded in finding any simple examples of
systems violating the Nernst formulation of the third law
which, like the case of a free boson gas in a spherical box,
satisfy the properties that~i! the angular momentum carried
by the particles is primarily ‘‘orbital’’ ~as opposed to
‘‘spin’’ ! in character, and~ii ! the particles are not con-
strained to move exclusively in thew direction. However, it
is easy to find simple examples of ‘‘zero-dimensional sys-
tems’’ ~i.e., spin systems! and one-dimensional systems
which violate the Nernst formulation of the third law.

As a simple example of a spin system which violates the
Nernst formulation of the third law, suppose that we have
bosonic particles of massM and spins, which can be located
on any one ofN ‘‘lattice sites.’’ ~Again, the total number of
such particles is taken to be unconstrained.! Then the maxi-
mal angular momentum to energy ratio for single-particle
states iss/M ~i.e.,V15M /s), which is attained by a particle
whose spin is aligned along thez axis. In this case, we
clearly haveH(0,j )50 for j ,s, whereasH(0,j )5N for
j >s. The states withy50 ~i.e., j 5s) will dominate the low
temperature behavior of the gas whenJ50. Thus, taking the
limit as b→` in Eqs. ~24! and ~25! and performing thez
integrals, we find that, atT50,

J5
1

s (
n51

`
1

nE0

`

dwHS 0,
w

ns D ~w21!e2w ~43!

and

S5sJ1 (
n51

`
1

nE0

`

dwHS 0,
w

ns De2w. ~44!

Consequently, in the present case, we have

J5N
1

s (
n51

`
1

nEsns

`

dw~w21!e2w

5Ns(
n51

`

e2sns

5Ns
1

ess21
. ~45!

Similarly, we get
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S5sJ2N ln~12e2ss!. ~46!

Eliminating s, we find that atT50, we have

S5
J

s
lnF11

Ns

J G1N lnF11
J

NsG , ~47!

which violates the Nernst formulation of the third law. Note
that a similar behavior of the entropy atT50 also should
hold for any system in which the angular momentum of the
system is carried in discrete ‘‘vortex structures,’’ such as
occurs in superfluid helium.~Here, N should correspond
roughly to the number of vortex structures that could occur
in the superfluid helium without overlapping. Presumably,
we would needJ/s!N in order to have the vortex structures
present.! Thus, if the vortex structures in superfluid helium
persist to absolute zero temperature and can be treated as
noninteracting, that system should violate the Nernst formu-
lation of the third law. However, the entropy contributed by
the vortex structures should be negligible at temperatures
achievable in the laboratory.

Another simple example of a system which violates the
Nernst formulation of the third law is provided by a free,
massless, gas of scalar particles, which is confined to a one-
dimensional ring of radiusR. The states in this case decom-
pose into ‘‘right movers’’ and ‘‘left movers,’’ and the den-
sity of states is simply

g~e, j !5d~e2 j /R!1d~e1 j /R!. ~48!

Thus, V651/R, and, in terms of the variables (y, j ), we
have

h~y, j !5d~y!1d~y12 j /R!. ~49!

Again, for J.0 the states withy50 dominate the low tem-
perature behavior. SinceH(0,j )5 j , Eqs.~43! and~44! yield

J5
1

s (
n51

`
1

nE0

`

dw
w

ns
~w21!e2w

5
1

s2
z~2!E

0

`

dww~w21!e2w

5
p2

6s2
, ~50!

and, similarly,

S5
p2

3s
. ~51!

Thus, we find that atT50,

S5
2p

A6
J1/2, ~52!

in violation of the Nernst formulation of the third law. Note
that this example is essentially the same system as consid-
ered in the string theory models of charged black holes
which saturate the BPS bound@11#.

Encouraged by the ability to violate the Nernst formula-
tion of the third law in the simple examples above, we may
ask whether it is possible to reproduce the relations~3! and
~4! with an ideal boson gas at absolute zero temperature.
However, it is easy to see that ifS(T,J) remains finite as
T→0, then Eq.~3! cannotbe satisfied by any ideal boson gas
at T50. Namely, it follows immediately from Eqs.~10! and
~11! that asT→0, we have (E2VJ)→0. However, since
s5b(V12V) always remains bounded asT→0 at fixed
J.0 @see Eq.~27! above#, we also haveV→V1 asT→0.
Thus, provided only thatS is finite atT50, the relation

E5V1J ~53!

always holds atT50, rather thanE}J1/2 as in Eq.~3!.
However, a simple and natural modification of the model

of a boson gas confined to a ring does yield the desired
behaviorE}J1/2. Suppose that we take the ring radius,R, to
be an additional dynamical degree of freedom of the system
~which we treat classically!. In addition, suppose that, due to
tension, this ring has an energyER5lR with l a constant.
In other words, suppose that the ‘‘ring’’ is actually a
‘‘string.’’ @The ‘‘massless boson gas confined to the ring’’
could then arise naturally as certain~quantized! degrees of
freedom describing deviations of the string from circularity.#
The total energy of the system would then be

E5EG1ER5EG1lR, ~54!

whereEG denotes the energy of the boson gas. By Eq.~53!,
at T50 we haveEG5V1J5J/R, andR will be determined
by minimizing the total energy. We obtain

R5AJ/l ~55!

and, thus

E52AlJ1/2, ~56!

in agreement with the behavior in Eq.~3!.4

Can Eq.~4! also be satisfied in this model? As calculated
above, for a free, massless boson gas~or a collection of such
gases!, we haveS}J1/2 @see Eq.~52!#, rather thanS}J, as
required by Eq.~4!. Indeed, for any system for which Eqs.
~43! and~44! hold atT50 and for any polynomial behavior
of H(0,j ) such thatH(0,0)50 @see Eq.~14!#, it is easy to
check thatS/J→0 asJ→`. What seems to be required to
obtain the behavior~4! in any model where Eqs.~43! and
~44! hold atT50 is to have exponential growth ofH(0,j ) at
large j . I know of no physically reasonable model involving
an ideal boson gas in which this behavior occurs.

Nevertheless, one possibility is worth analyzing further
with regard to whether the behavior~4! at T50 can be ob-
tained in the above simple ‘‘string model.’’ Suppose we al-
low the string to have a spectrum of massive particles which
rises exponentially inM , i.e., n(M )}eaM. ~Such an expo-

4Note that the above argument is similar in nature to the argument
leading to the identical formula,J}M2, for a meson modeled as a
QCD flux tube~i.e., a string! with ~massless! quarks at its ends; see,
e.g., p. 311 of@14#.
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nentially rising spectrum occurs in string theory@15#.! Al-
though for a massive particle, no single-particle states satisfy
j /e5R, a sufficiently rapidly growing density of states—in
particular, as discussed above, exponential growth of the
density of states inj at fixed y—could allow states with
j /e,R to contribute to the thermodynamic properties of the
system atT50, thus invalidating Eqs.~43! and ~44!. Since
each particle of massM contributes a density of states
gM(e, j )5d(e2AM21 j 2/R2), the density of states for an
exponentially rising spectrum behaves as

g~e, j !;eaAe22 j 2/R2
~57!

or, equivalently,

h~y, j !;eaAy212y j /R. ~58!

The leading order behavior ofH(y, j ) ~at large values of
y212y j /R) is similar. Thus,H(y, j ) does indeed grow more

rapidly than polynomially inj at fixed y, but it also grows
more slowly than exponentially inj . If any massless particles
are present@so thatH(0,j #.0 for somej ), thens0.0, and
it is not difficult to see that the massive states will not, in
fact, contribute to the thermodynamic behavior of the system
at T50. On the other hand, if no massless particles are
present, then the growth of states withj is not rapid enough
to avoid havings050, and the Nernst formulation of the
third law should hold. Thus, I see no natural way of obtain-
ing the behavior~4! at T50 in the context of this simple
‘‘string model.’’ Of course, as emphasized in the Introduc-
tion, we have little right to expect to be able to obtain all of
the thermodynamic properties of extremal rotating black
holes with such a naive model.
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