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The Nernst formulation of the third law of ordinary thermodynamioften referred to as the “Nernst
theorem”) asserts that the entroj8/of a system must go to zefor a “universal constant)’as its temperature
T goes to zero. This assertion is commonly considered to be a fundamental law of thermodynamics. As such,
it seems to spoil the otherwise perfect analogy between the ordinary laws of thermodynamics and the laws of
black hole mechanics, since rotating black holes in general relativity do not satisfy the analogue of the “Nernst
theorem.” The main purpose of this paper is to attempt to lay to rest the “Nernst theorem” as a law of
thermodynamics. We consider a bosg@r fermion ideal gas with its total angular momentuinas an
additional state parameter, and we analyze the conditions on the single-particle density ofgé&ids,
needed for the Nernst formulation of the third law to hdldere,e andj denote the single-particle energy and
angular momenturh Although it is shown that the Nernst formulation of the third law does indeed hold under
a wide range of conditions, some simple classes of examples of densities of states which violate the “Nernst
theorem” are given. In particular, at zero temperature, a b@soffiermion gas confined to a circular string
(whose energy is proportional to its lengtiot only violates the “Nernst theorem” also but reproduces some
other thermodynamic properties of an extremal rotating black (8@556-282(97)01122-3

PACS numbd(s): 04.70.Dy, 05.30.Jp, 05.70a

I. INTRODUCTION “universal constant.” Thus, the Kerr black holes stand in

Nearly 25 years ago a remarkable relationship was estat5)_Iatant violation of the black hole mechanics analogue of the

: ; ; ‘Nernst theorem.”

lished[1] between the ordinary laws of thermodynamics and ) . . N .

certain laws of black hole physics. This relationship was therr1 ITh'S fa;:lurfa OL the “Nernst tlrlegrem _to hgld .'ﬂ bllack b
greatly enhanced by the discové@] that black holes radiate "©'¢ MeCNanIcs has not generally been viewed with alarm by

as perfect black bodies, and by strong evidence for the Ve{:nost researchers because it is clear that the Nernst formula-
lidity of the “generalized second law[3—6]; see, e.g.[7,8] tion of the third law does not have the same fundamental

for comprehensive reviews status in thermodynamics as the first or second |&e,

However, one apparent blemish has existed on this othef:9- Sec. 91;4h'0f t_he Slt%nd%rd htexlil of HL:f[% f?r a clefarh
wise seemingly perfect relationship. The Nernst formulatiorStatement of this vieyvIndeed, the Nernst formulation of the

of the third law of thermodynamics asserts that the ent®py third Ifaw doles r_10t| hdoldlat alllln cIasslcaI fTY?.'CSI' fi'“n.g
of a system must go to zefor a “universal constant)'as its eéven lor a classical ideal gas. In guantum statistical pnysics,

temperaturel approaches absolute zero. On the other han ,he "‘Nernst theore'm” corresponds to a claim about the be-
avior of the density of stateg(E), as the total energy of

for Kerr black holes in general relativity, the entropy is given _ . _
the system goes to its minimum possible value. More pre-

by cisely, it is a statement about the extrapolation to minimum
S=Al4=27[M2+(M*— 33V, (1) energy of the higher energy, continuum approximation to
n(E) (see[9]); in other words, the thermodynamic limit
and the temperature is given by should be taken prior to the limit—0. It is not difficult to
concoct examples whergE) is such that the Nernst formu-
(M4=J%)172 lation of the third law is violated. For example, a system
T=«l2m= AaMIM2+ (M 3772 (20 comprised by particles with spin but having no spin interac-
tion energy — so that the ground state is highly degenerate

whereM andJ denote, respectively, the mass and angularTN WI||tVL?1|ate th”e “INernst the]?rem.” tV'Olat.'OHS hc')fhthti
momentum of the black holéHere and throughout this pa- emst Iheorem  alSo occur for systems in whic €
per, we use units wher6=c=4=k=1. Thus, absolute ground state is nondegenerate at finite volusee[10] and

zero temperature corresponds to the “extremal limit” references cited thergin
Nevertheless, most such counterexamples to the Nernst

13|=M2, 3) formulation of the third law seem rather contrived, and the

fact that it has been empirically found to hold for all systems

The entropy at abso'ute Zero temperature is thus studied in the |ab0rat0ry prOVideS evidence that it m|ght hold
for all “physically reasonable” systems. If so, this would

S=2m|J], (4) suggest that there might be something “exotic” about the

thermodynamic properties of extremal rotating black holes.
which is nonvanishing and, furthermore, has a functional de- In this paper we shall investigate this issue by studying
pendence on the state parameleso it does not approach a the Nernst formulation of the third law for a very nonexotic
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class of thermodynamic systems: ideal boson gases. To keepist states which satisfy=( ,j exactly! No such states

the system as simple as possible — and, in particular, texist for a free boson gas confined by a spherical box in two
avoid complications resulting from Bose-Einstein condensaer higher spatial dimensions, and such systems satisfy the
tion — we shall assume that, as in the case of the photon gaklernst formulation of the third law even when they are ro-
particle number is not conserved; equivalently, the chemicatating. (We will explicitly calculate the low temperature be-
potential of the gas will be assumed to vanish. However, wénavior of a rotating gas in the next sectiphlowever, mass-

will assume that the gas is confined by an axially symmetridess ideal gases in one spatial dimension and ideal gases in
box (or potentia), so that its total angular momentudh,is  “zero spatial dimensions'{i.e., spin systemsdo have states
conserved, and we will také and the total energ\g, to be  for which e=(), j, and they violate the “Nernst theorem”
the state parameters of the system. In studying systems withihen angular momentum is taken into account. Thus, viola-

nonzero angular momentum, it does not make sense to cotions of the “Nernst theorem” — which are qualitatively
sider an infinite volume limit, so we will restrict attention to very similar the violations of the “Nernst theorem” for Kerr
finite volume systems. black holes — do occur for some simple systems comprised

The thermodynamic properties of the ideal boson gas arby ideal gases with angular momentum, although the(one
determined by its single-particle density of statgée,j),  zero dimensionality of such systems seems essential.
wheree andj denote, respectively, the single-particle energy Encouraged by this result, we may ask if the detailed
and angular momentum. In order to facilitate our calculathermodynamic properties of extremal Kerr black holes
tions, we shall further assume thgfe,j) is sufficiently given by Eqs.(3) and(4) also can be modeled by ideal gas
“nonexotic” that the appropriate canonical ensemble —systems. As we shall see in the next section,Jor0 the
modified to include angular momentum — can be defit@d ideal gas systems will automatically satidfy= () J at zero
least at low temperaturgsThis requires thag(e,j) not grow  temperature, rather tha<JY?, as in Eq.(3). However, if
more rapidly than exponentially ie, and that the single- we modify the model of a one-dimensional boson gas con-
particle angular momentum to energy ratio be bounded, i.efined to a ring of radiuRR by simply treatingR itself as an

that (). #0, where additional classical dynamical variable, and if we also at-
. ) tribute an additional energy proportionalRo(due to “string
(Q.) "=sug*jle). (5  tension”) to the total energ{, then the behavioE=<J¥2 is

obtained — in agreement with E¢B). However, the behav-

ior SJ at zero temperatursee Eq.(4)] seems much more
(6) difficult to model, as it appears to require the density of

states,n(j), at e=Q,j to grow exponentially withj. (A
[Note that this condition holds for a system of free particlescollection of massless boson gases would have a constant
confined to within a(cylindrical radiusR of the symmetry  N(j), which leads to the behavi@®xJ'? at zero tempera-
axis, withQ . = 1/R.] We then pose the following two ques- ture) Nevertheless, it seems remarkable that such a simple
tions: (i) What properties ofj(e,j) are required in order that model can come so close to mlmlcklng the thermodynamic
the Nernst formulation of the third law be violated, i.e., sobehavior of extremal Kerr black holes.
thatS(T"]) approaches a nonzero I|mWh|Ch depends upon Th|S inVeStigation was Stimulated by the recen.t success in
J) asT—07? (i) Can these conditions be achieved for anymodellng the thermodynamic behavior o.f certain extremal
classes of “physically reasonable” ideal gas systems?  charged black holegnamely, those which saturate the

Of course, even if the answer ) were “no,” this “Bogomol’nyi-Prasad-Sommerfiel(BPS bound”) in string
would not mean that extremal Kerr black holes necessariljn€ory[11]. These results already provide a counterexample
display any “unphysical” or “exotic” thermodynamic be- (O th(_a “Nernst theqrem” for a particular system in_the cIas;
havior, since there is no reason to expect that their behavidgionsidered here, since the degrees of freedom which contrib-
could be properly modeled by an ideal boson gas. Indeedite to the entropy in the weak coupling string model corre-
with the restrictions placed on the density of states needed Pond to that of a free, one-dimensional gas. In the present
define the ordinary canonical ensemble, it is impossible tdnvestigation, we consider general ideal boson gas systems
get negative heat capacities, as occurs for black holes wit Not restricted by any models arising from string thebry.
sufficiently small angular momentum. There is nothing “un- The one(or zerg dimensionality of the models we find
physical” or “exotic” about systems with negative heat ca-
pacities; for example, ordinary self-gravitating stars in New-
tonian gravity have negative heat capacities. However, thenote that this condition implies that if we define a new notion of
simple ideal gas systems we consider here are not adequai@ne translation” by t’#=t*+Q, ¢* — with t* and ¢* being
to model this behavior. There is no reasanpriori, to be-  the generators of ordinary time translations and rotations, respec-
lieve that they should be adequate to model the violations ofively — then the “ground state” of the system relative t@* is
“Nernst’'s theorem” displayed by extremal Kerr black holes. highly degenerate.
Nevertheless, it is of interest to see how close one can come’The philosophy of the present paper bears some similarity with
to modeling the thermodynamic behavior of extremal Kerrthe philosophy adopted in a recent paper of Maldecena and
black holes with ideal boson gas systems. Strominger12], who study the emission properties of nearly BPS,
As we shall see in the next section, for a violation of slowly rotating black holes and deduce from those properties some

“Nernst’s theorem,” it is sufficien{and, as explained there, aspects of the effective string theory description of such black
“nearly necessaryy that there exist single-particle states holes. However, there does not appear to be any overlap in the
which achieve the bountb), i.e., that(for positive J) there ~ contents of that paper and the present paper.

Thus, we haveay(e,j)=0 unless

—elQ_<j=elQ, .
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which violate the “Nernst theorem” is a conclusion, rather ensemble is not very convenient for most calculations, and
than an input, of our analysis. the entropy of systems is usually computed in the context of
Finally, we note that, for definiteness, we shall considerthe canonical ensemble.
an ideal boson gas at zero chemical potential in our analysis. To obtain the appropriate canonical ensemble in the
However, the analysis of an ideal fermion gés zero present case, we proceed in close parallel to the derivation of
chemical potentialwould proceed in complete parallel — the grand canonical ensemble. We imagine that our system is
with merely some sign changes in various expressions —able to exchange energy and angular momentum with a
and the conclusions in the fermion case would be unalteredheat bath and angular momentum reservoirather than a
“heat bath and particle reservoiy"characterized by tem-
peratureT=1/8 and angular velocit§). (HereT and() are
defined by their appearance in the first law of thermodynam-
ics for the reservoir, namelgE=TdS+QdJ.) In order that
our ideal gas system be able to “come to equilibrium” with
Consider an ideal boson gas, confined by a potefial the reservoilso that the canonical ensemble can be defined
“box” ) which is axially symmetric. Then the angular mo- it is necessary to impose two additional restrictions on
mentum about the symmetry axis is conserved, and th&(e,j): First, in the usual manner, we must have
single-particle states of the gas can be labeled by their erf5(€,j)<Cexp(ae) for some constantS anda, since other-
ergy, e, and angular momentun, about the symmetry axis. Wise the system could indefinitely soak up energy from the
We shall assume that the single-particle Hamiltonian is posireservoir. Second, we must hate, #0 and()_+0 [where
tive, and that the minimum energy single-particle state hag}. and{)_ were defined by Eq5) abové, since otherwise
energye,>0. (This ensures that the “vacuum state” is the the system could indefinitely soak up angular momentum
unique ground state of the system. If there existed anyrom the reservoir. In the following, we shall assume that
single-particle states wite=0, the ground state of system these conditions are satisfied — so that the canonical en-
would be highly degenerate and the Nernst formulation osemble is well defined fof <1/a and—Q_<Q<Q_ . We
the third law would be trivially violated even when the total then shall use canonical ensemble methods to compute
angular momentum vanishgset G(e,j) denote the number S(T,J). As usual, the canonical ensemble is equivalent to the
of states with energys e and angular momentursj. Thus, ~ microcanonical ensemble for the purposes of computing the
G is non-negative, is a monotone increasing functioneof €ntropy and other thermodynamic quantities for the system

andj, and satisfie§(0,j)=0. The density of stateg(e,j),  Provided that the energy and angular momentum fluctuations
is defined by in the canonical ensemble are sufficiently smiall.

In exact parallel with the grand canonical ensemble, in
our “angular momentum modified canonical ensemble,” all
_. (7)  thermodynamic quantities can be derived in a straightfor-
ded) ward manner from a partition functia®(3,€2). For an ideal
boson gasZ is given by

Il. THE THERMODYNAMICAL PROPERTIES
OF A ROTATING BOSON GAS
AT LOW TEMPERATURES

PG

gd(e,j)=

In reality, on account of the discreteness of staf(s,|) is
a piecewise constant function and, correspondinglys a In Z= f : . .

: . . nzZ=- | ded JIn[1—exp(— -0 . (8
sum of § functions, but(following standard practigen our edigle.)inl Xp(—ple= QD] (®
expressions we will treat both of them as “continuum” _ _

(though not necessarily continuolisvariables, i.e., we will The (expected angular momentund is then given by
write down integral expressions rather than sums in our for-

mulas below. However, all of our formulas will continue to ~1ldinz _J’ dedia(e i j 9
make sense if is taken to be a sum af functions(or has B edjgle.)) expBle—Qj)—-1" ©
sfunction contributions in addition to contributions which
are treated as being continugus The (expected energy,E, is determined by

We will assume that, as for the case of a photon gas,
particle number in our boson gas is not conserved, i.e., that dinZz ] ] e—Q]j
particles can be created freely, at no “cost” other than the E~ 9=~ W:f dEd]g(E’J)quB[E_Qj])_]_'

energy and angular momentum required to create tii€his

corresponds to a vanishing chemical potential of the)gas.

Thus, the state variables will not include the number of parFinally, the entropyS is given by
ticles and will be taken to be simpl andJ. Given only that
G(e,j) is bounded inj at eache (i.e., that for eacke there

are only a ﬁnite numper of single-particle st{ites With _energy SAt extremely low temperatures, the microcanonical and canoni-
<€), the microcanonical ensemble approprlat_e to fixing thecal ensembles need not be equivalent. However, as emphasized in
total energyE, and total angular momenturd, is well de- 9] the Nernst formulation of the third law really refers to the
fined. The entropy,S(E,J), may then be defined as gyrapolation toT=0 of the formula for the entropy which applies
S(E,J)=In N(E,J), where N(E,J) denotes the number of at temperatures which are sufficiently high that the two ensembles
states of the total systefnotsingle-particle statgswvith total  should be equivalent. Thus, it is appropriate to use the canonical
energy betweel andE+ AE and total angular momentum ensemble for our calculations here even if the two ensembles are
betweenJ andJ+ AJ. However, use of the microcanonical not equivalent al=0.
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S=In Z+B(E-QJ)=In Z— /3 (11)

07,3

Equation(11) yields the entropy as a function @ and Q).
To obtainS(B,J), we must solve Eq9) to expresd) as a
function of B8 and J. Our task is to find conditions on the
density of statesg(e,j), so thatS(8,J) does not approach
zero(or a “universal constant) when 8—co at fixedJ.

In the following, we shall restrict attention to analyzing
the case wherd>0. (In particular, the casd=0 will be
excluded from our analysjsThe states with) near its maxi-
mal valuee/() . will then play an important role in the be-
havior of the gas ag— o, and it useful to replace the vari-

able € with the variable
y=e—Q,j. (12

The allowed ranges of andj corresponding to the restric-
tions (6) are then

y=0, j=-y/(Q,+Q_). (13
In addition, the conditiore= ¢, yields
j=(e0—y)/IQ.. (14

We defineH(y,j) to be the total number of states labeled by

(y',i"), such thaty’'<y and j'<j. We define the corre-

sponding density of statdgy,j) by
9°H
aydj

h(y,j)= (15)

Then, we havén(e— Q. j,j)=9(e,j), although the relation-
ship betweerH andG is not quite as straightforward, since

ROBERT M.

WALD
S:O'J+Z fdy J—e ngyg=nei
n=

~nBygnai, (20)

aya

We now integrate Eq$19) and(20) by parts with respect
to bothy andj (taking the ranges of both of these integrals
to be —» to ). When we do so, no boundary terms arise
from the upper limits on account of the exponentially decay-
ing termse™"? and e "), and no boundary terms arise
from the lower limits on account of the vanishingldafy,j)
outside of the range defined by E4.3). We obtain

- 1 .
=2 nzﬁof ddeH(y,J)(J - —) e "Ae Nl
n=1 no
(21

and

S=al+ D nzﬁzaf dydjH(y,j)ye "We "7l (22
n=1

Finally, we introduce the new variables

w=noj, z=ngy (23

to convert these expressions to the form

z w
dwH| —, —
T o 1n —20/B(Q_+Q,) ng’'no

X(w—1)e e W (24)

the state counting in the two cases is being done over differ-
ent regions of single-particle state space. In terms of our newand

variables, the above formul®) for In Z becomes

inZ== | dydibty.j)in[1-exst— By~ B0, ~ 1)

(?ZH nBya—n J
—e e ¢
dydj Y]

—E

(16)

« 1 © ©
S=UJ+2 —f dzf
n=1NJo -

zZ W
dw
201B(Q_+Q )

ng'no
xXze e W, (25

where we have now explicitly inserted lower limits on the
integrals to remind the reader thet vanishes outside the

where, in the second line, we have made use of the serigange defined by Eq13). Note that since the second term on

expansion
“1
In[l—e*"]:—z —e ™ (17)
n=1 N
and we have written
o=B(Q,—Q). (18

(Note thato>0 in order for the canonical ensemble to be

defined) The corresponding series expanded formulasifor
andS in our new variables are

2
d d'ﬂ' —Nnpya—noj
y J&yé’jje €

=2
n=1

(19

and

the right side of Eq(25) is non-negative, we have

S=gl. (26)
We now show that for any fixed>0, o must remain
bounded from above wheB— «, i.e.,) must approack) ..
at least as rapidly as @/ Equivalently, we havery<w
where
oo=limsupo. (27
B—*

To see this, we note that by E(4) we have

jdzJ’ dWH(n,B o )(w l)e”

J$E

opn=1 N
(28)
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If there were a sequengg — o such thato;— o, then, due 12 1 (= (= 7 w \ K
to the factor of 14 together with the fact thatl is a mono- J= —E —f dzf dWF(— 1+ —) }
tone increasing function of both of its argumetaad, hence, 7a=1NJo 0 ng no
is monotone decreasing along this sequgnte right side X(w—1)e Ze™W
of Eqg. (28) would converge to zero, in contradiction with the
fact thatJ>0. 1 Sl (= z\
A crucial factor in the behavior & at T=0 is whether or = O_(k+1)l—‘(k+2)n§1 WJO dzR g)e
not oo=0. If 05>0, then by Eq(26) we have
C o z\ _,
_ < g<k+1)fo sz(E)e , (31
lim sup S=0,J>0, (29
B where the monotone property Bf was used in the last line

to obtainF(z/nB)<F(z/B). However, asB— o, the func-

) ) o tions fz(z2)=F(z/B) converge pointwise to O and are
and the Nernst formulation of the third law will fail. On the “gominated” by F(z), so, by the dominated convergence
other hand, suppose thap=0 (so thate—0 asp—x, i.e.,  theorem, the integral on the right side of E§1) converges
) approached), more rapidly than 38). ThenaJ con-  to 0. Consequently, we must hawg=0 in this case, as we
verges to zero, so we only need worry about the second terlesired to show.
on the right side of Eq(25). However, in order to keep the If H(y,j) is not polynomially bounded irj, then it is
right side of Eq(24) from diverging ag8— o, it is necessary possible to haver,>0 even ifH(0,j) =0 for all j. Indeed, if
thatH(z/ 8,w/ o) converge pointwise to zero for alw=0. H(y,j)=F(y)eM wherex>0 andF is as in the previous
[If not, then using the monotonicity and positivity Bif, the ~ paragraph, then it is not difficult to see from E@4) that
integrals on the right side of Eq424) would remain finite, o0o=A>0. However, | am not aware of any circumstances
but the 14 factor would divergd. If we knew, in addition, under whicho,>0 whenH(0,j)=0 for all j andH(y,j) is
that for all 8 we hadH(z/ 8,w/ ) <F(z,w) whereF is such ~ such that at fixedy, H(y,j)e"* is bounded inj for all
that fdzdwRz,w)ze 2" converges, then we could use @>0.
the dominated convergence theorem to conclude $had We now summarize our results. We have considered ideal
asB—. | have not attempted to give a complete analysis Oposon gases whose smgle-partlc_le states _satlsfy the restric-
the conditions orH which are necessary and sufficient for tion (6). We have shown above thithere exist any single-

the Nernst behavior to occur wher=0, but it seems clear particle states which actually achieve the maximal ratio of
that this “normally” will be the casdand possibly always is angular momentum to energy — namely 14, — then

: the Nernst formulation of the third law will fail for=30. In
the case, since | do not know of any counterexamples to thg1 S : . )
. limited class of other circumstances — in particular, when
Nernst behavior wheo;=0).

. - H(y,j) grows exponentially with — the Nernst formula-
What conditions orH are necessary and ;ufﬂment to en- tio(r>1/ cj)z t%\e third Igw also myay fr:\]il even if no single particle
sure thatoo>0, so that the Nernst formulation of the third giates satisfyj/e=1/0), . However, it appears that in the
law will be violated? A sufficient condition is th&t(0,j)>0 “vast majority of cases” — and conceivably all cases where
for somej, i.e., that there exists at least one single particlq_|(y'j)e—aj bounded inj for all >0 — the Nernst formu-
state which actually achieves the limiting angular momentumation of the third law holds when no single-particle states
j=€/Q, . To see this, we note that if we assume thatsatisfyj/e=1/0, .
H(0,j) >0 for somej but thatoy=0, it follows immediately A few simple examples are useful to illustrate these gen-
that H(z/8,w/ o) cannot converge pointwise to zero. How- eral results and to gain insight into the conditions under
ever, as in the arguments of the previous paragraph, thishich there are states withe=1/Q), , so that the Nernst
yields a contradiction, since it implies th&t->c asf—oo. formulation of the third law is violated. As a first example,
On the other hand, for a wide classdfs, the condition consider a gas of particles of a free, massless, scalar field in
thatH(0,j)>0 for somej also is necessary to havg>0. three dimensions, confined by a spherical box of radius

In particular, suppose that(y,j) is polynomially bounded With Dirichlet boundary conditions on the walls of the box.
in j at eachy in such a way that foj=0 we have The spatial mode functions for the particles are then of the
form

nim=J1(Kin1) Yim(6,¢), (32

wherek;,, is the nth value ofk such thatj;(kR)=0. The

energy of the mode,,, is k;,, and itsz-angular momentum
whereF(y) is continuous, is exponentially bounded at largeis m. (Recall that we are using units in whi¢h=1.) Since
y (so that the canonical ensemble is well defined at l#fge  kin>(1+1/2)/R (see, e.9.[13]), we havej/e<1/R for all
and satisfies=(0)=0. This behavior encompasses a verysingle-particle states. However, since the first zég, sat-
wide class oH’s such thatH(0,j)=0 for all j. SinceH isa  isfies[13]
monotone increasing function gf we may assume, without
loss of generality, that also is a monotone increasing func- lim—-—=1 (33
tion. By Eq.(28), we have oo |

H(y,))<F(y)(1+]}"), (30



6472

we see thaf), =
achieves the maximal angular momentum to energy ratio.
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1/R, and no single-particle state actually [Here { denotes the Riemann zeta function, and we have

By the above arguments, the Nernst formulation of ther(5/2):3\/;/4_] Thus, at large3, we have

third law should hold in this example. To see this explicitly,

we note that for largé, the density of zeros gf(x) is given
by

(39

1, (1+1/2)2\ "
A

(This result can be derived from formulas given in Sec.

15.81 of[13].) Eachl contributes one state @afangular mo-

mentumj (for integerj) if |=|j| and zero states otherwise.

Hence, the density of stateg(e,j), is given by

(1+1/2)2\ "

R (eR-1/2
1_
(eR)?

g( lJ)__ il

RZ%e ) i ]
= 5 —{arccos|j|/Re) = (|j|/Re)[1 - (j/Re)*]"2.

(35
In terms of the variabley=€¢—j/R, the density of states
h(y.j) is
ljl
(j+Ry)?

h(y,j)= R(+R)arcco% i -
Y. y | +Ry

X[2Rjy+ R2y2]1’2] . (36)

Taking into account the restrictioil3), we see that

used the values {(4)==*90, TI'(3/2)= J— /2, and
2 4) 2/3 R5/3

am{f—w] - (41)
360 B5/3J2/3

Substituting this into Eq(20), we find that asT—0 at fixed
J>0, we have

S RY3IRTER, 0, (42

Thus, the Nernst formulation of the third law does indeed
hold, althoughS goes to zero more slowly than in the case
where the angular momentum of the gas is not constrained
(in which caseS=R3T? at all temperaturés

| have not succeeded in finding any simple examples of
systems violating the Nernst formulation of the third law
which, like the case of a free boson gas in a spherical box,
satisfy the properties thdt) the angular momentum carried
by the particles is primarily “orbital” (as opposed to
“spin”) in character, andii) the particles are not con-
strained to move exclusively in the direction. However, it
is easy to find simple examples of “zero-dimensional sys-
tems” (i.e., spin system}sand one-dimensional systems
which violate the Nernst formulation of the third law.

As a simple example of a spin system which violates the
Nernst formulation of the third law, suppose that we have
bosonic particles of masd and spins, which can be located
on any one oN “lattice sites.” (Again, the total number of
such particles is taken to be unconstraindthen the maxi-
mal angular momentum to energy ratio for single-particle
states is/M (i.e., (), =M/s), which is attained by a particle
whose spin is aligned along the axis. In this case, we
clearly haveH(0,j)=0 for j<s, whereasH(0,j)=N for
j=s. The states witly=0 (i.e., j=s) will dominate the low

h(y.)=<C(ljl+Ry)=<C'(1+y)1+]i], (37 temperature behavior of the gas whien 0. Thus, taking the
from which it follows immediately that !|m|t as f—o n Egs. (24 and (25 and performing the
integrals, we find that, ai=0,
H(y.))<C"(y+y*(1+]j?), (38)
J= f de(O—)(w le” (43
which is of the form(30). Thus, we havery=0 in this case. f’n in
The explicit behavior of the entropy of the rotating gas at
low temperatures can be calculated as follows. From Eqand
(36), we see that for smail, we have 1 (e W
S=gJ+ >, —f de(o,—)e‘W (44)
2\/5 n=1NJo no
h(y J)N R5/2 71/2y3/2 (39)
Consequently, in the present case, we have
Substituting this into Eq(19), we find that, forJ>0 and 12 1 (=
large 8, J=N=> —f dw(w—1)e™ ¥
on=1 NJsns
2[ .
5/2 1/2,,3/. nBya—nNaoj
J~-—R Z fdydu %% Ve _NsS e s
n=1
242
~ %—RS’ZF(S/Z)F(SIZ) {(4) 52532 1
& =Ns . (45)
e’—1

N
_ R523~5/25- 312

360 40

Similarly, we get
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S=0J-N In(1—e %9). (46) Encouraged by the ability to violate the Nernst formula-
tion of the third law in the simple examples above, we may
Eliminating o, we find that aff=0, we have ask whether it is possible to reproduce the relati@)sand
(4) with an ideal boson gas at absolute zero temperature.
_ﬂ N_S i However, it is easy to see that $(T,J) remains finite as
S=-In|1+ +NIn| 1+ , (47) o .
S J Ns T—0, then Eq(3) cannotbe satisfied by any ideal boson gas

] ) ) ) at T=0. Namely, it follows immediately from Eq$10) and
which violates the Nernst formulation of the third law. Note (11) that asT—0, we have E—QJ)—0. However, since

that a similar behavior of the entropy @&=0 also should o=8(Q, — Q) always remains bounded -0 at fixed
hold for any system in which the angular momentum of they- g [se+e Eq(27) abovd, we also have)— ), asT—0.

system is carried in discrete “vortex structures,” such aspp g provided only tha$ is finite atT=0, the relation
occurs in superfluid helium(Here, N should correspond ' '

roughly to the number of vortex structures that could occur E=Q.J (53
in the superfluid helium without overlapping. Presumably,
we would needl/s<N in order to have the vortex structures always holds af =0, rather tharE«<J'? as in Eq.(3).
presend. Thus, if the vortex structures in superfluid helium  However, a simple and natural modification of the model
persist to absolute zero temperature and can be treated @k a boson gas confined to a ring does yield the desired
noninteracting, that system should violate the Nernst formubehaviorExJ¥2. Suppose that we take the ring radigs,to
lation of the third law. However, the entropy contributed by be an additional dynamical degree of freedom of the system
the vortex structures should be negligible at temperature@vhich we treat classically In addition, suppose that, due to
achievable in the laboratory. tension, this ring has an ener@g=A\R with N\ a constant.
Another simple example of a system which violates theln other words, suppose that the “ring” is actually a
Nernst formulation of the third law is provided by a free, “string.” [The “massless boson gas confined to the ring”
massless, gas of scalar particles, which is confined to a oneeuld then arise naturally as certdiguantized degrees of
dimensional ring of radiuR. The states in this case decom- freedom describing deviations of the string from circulatity.
pose into “right movers” and “left movers,” and the den- The total energy of the system would then be
sity of states is simply
E=Eg+Er=Eg+AR, (59
g(e,j)=06(e—jIR)+ 6(e+j/R). (48

whereEs denotes the energy of the boson gas. By G8),
Thus, Q. =1/R, and, in terms of the variables/ (), we  atT=0 we haveEg=0_J=J/R, andR will be determined
have by minimizing the total energy. We obtain

h(y,j)=a(y)+ o(y+2j/R). (49 R=J/\ (55)

Again, for J>0 the states witty=0 dominate the low tem-

and, th
perature behavior. Sindé(0,j) =, Egs.(43) and(44) yield us

© E=2J\JY? (56)
151
>

on=1 N

© W
P _ —W
Jo dea(W e in agreement with the behavior in E).*

Can Eq.(4) also be satisfied in this model? As calculated
1 o above, for a free, massless boson @asa collection of such
:—zg(Z)J dwww—1)e " gasey we haveSxJ'? [see Eq.(52)], rather thanSx=J, as
o 0 required by Eq(4). Indeed, for any system for which Egs.
(43) and(44) hold atT=0 and for any polynomial behavior
of H(0,j) such thatH(0,0)=0 [see Eq.(14)], it is easy to
check thatS/J—0 asJ—o. What seems to be required to
obtain the behaviof4) in any model where Eqg43) and
and, similarly, (44) hold atT=0 is to have exponential growth &f(0,j) at
largej. | know of no physically reasonable model involving
T an ideal boson gas in which this behavior occurs.
S=35- (51 Nevertheless, one possibility is worth analyzing further
with regard to whether the behavi¢f) at T=0 can be ob-
Thus, we find that aT=0, tained in the above simple “string model.” Suppose we al-
low the string to have a spectrum of massive particles which

2 rises exponentially irM, i.e., n(M)xe*. (Such an expo-
5= 27y 52 p y (M) ( p

6

in violation of the Nernst formulation of the third law. Note  “Note that the above argument is similar in nature to the argument
that this example is essentially the same system as consigading to the identical formulal=M?2, for a meson modeled as a

ered in the string theory models of charged black holegcD flux tube(i.e., a string with (masslessquarks at its ends; see,
which saturate the BPS boundll]. e.g., p. 311 of 14].

a
=, (50)
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nentially rising spectrum occurs in string thedis].) Al- rapidly than polynomially inj at fixedy, but it also grows
though for a massive particle, no single-particle states satisfynore slowly than exponentially in If any massless particles
i/e=R, a sufficiently rapidly growing density of states—in are presenfso thatH(0,j >0 for somej), thenoy>0, and
particular, as discussed above, exponential growth of th& is not difficult to see that the massive states will not, in
density of states inj at fixed y—could allow states with fact, contribute to the thermodynamic behavior of the system
j/e<R to contribute to the thermodynamic properties of theat T=0. On the other hand, if no massless particles are
system aflT =0, thus invalidating Eqsi43) and (44). Since present, then the growth of states wijtlis not rapid enough
each particle of mas$ contributes a density of states to avoid havingoy=0, and the Nernst formulation of the
gu(ej)=8(e— VM?+j?/R?), the density of states for an third law should hold. Thus, | see no natural way of obtain-
exponentially rising spectrum behaves as ing the behavior(4) at T=0 in the context of this simple
“string model.” Of course, as emphasized in the Introduc-
(57)  tion, we have little right to expect to be able to obtain all of
the thermodynamic properties of extremal rotating black

g(e,j)~ex\ IR

or, equivalently, holes with such a naive model.
h(y,j)~esV iR (58)
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