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Generalized van der Waals theory of liquid-liquid phase transitions
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In the framework of the thermodynamic perturbation theory for fluids we study how the phase diagram of an

isotropic repulsive soft-core attractive potential, where a liquid-liquid phase transition exists in addition to the
standard gas-liquid phase transition, changes by varying the parameters of the potential. We show that there are
some regions in a potential parameter space where a high-density liquid-liquid critical point can exist in
addition to the conventional gas-liquid critical point. It is also found that there is a correlation between the
behavior of the phase diagram as a function of width of the repulsive step and the structure of the correlation

function of a reference liquid.
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I. INTRODUCTION

Despite the growing interest to the possible polymorphic
phase transitions in liquids and glasses [1,2], the nature of
different phases which can be found in dense (and possibly
metastable) liquids is still puzzling. The coexistence of dif-
ferent phases, while common for mixtures, is unexpected for
a simple fluid. In principle, the rules of thermodynamics do
not forbid the existence of more than two different fluid
phases in a simple fluid, however, from a common experi-
ence only two of them are well known: low density fluid
(vapor) and high-density fluid (liquid) phases. At the same
time in recent years experimental evidences of such features
of the phase diagram as ligiud-liquid transitions, polyamor-
phism, etc., appeared for a wide range of systems including
water, Si, I, Se, S, P, etc. [1-15]. The complexity of the phase
diagrams in these substances may be a result of complex
interactions depending on the intermolecular orientations.

At the same time exploring the possibility that simple
fluids interacting through isotropic potentials may exhibit
similar behavior represents a serious challenge for theorists.

It was shown recently through molecular dynamics simu-
lations that a system of particles with the isotropic repulsive
soft-core attractive potential may have high-density and low-
density liquid phases [17,18] (see also [19-21]). This poten-
tial may be considered as an effective potential resulting
from an average over the angular degrees of freedom for
systems where the position of the minimum approach be-
tween particles depends on their relative orientations such as
in the case of the hydrogen bonding between water mol-
ecules [1,5,13,22]. This potential also may be used to model
interactions in a variety of systems including liquid metals,
colloids, silica [1,22-26].

After the pioneering work by Hemmer and Stell [16],
where the soft-core potential with an attractive interaction at
large distances was first proposed for the qualitative expla-
nation of the isostructural phase transitions in materials such
as Ce or Cs, a lot of attention was paid to the investigation of
the properties of the systems with the potentials that have a
region of negative curvature in their repulsive core.

In spite of the simplicity of the model, the physical
mechanism that causes the liquid-liquid phase transition
in such systems is not completely understood. As was
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emphasized in Refs. [27,28], it arises from an interplay of the
different components of the pair interaction. In Refs. [27,28]
the authors tried to disentangle the role of each component to
investigate the dependence of the phase diagram on the po-
tential parameters. In Ref. [27] the results of molecular dy-
namic calculations performed for several sets of parameters
were presented. The resulting behavior of the critical points
was interpreted through a modified van der Waals equation
where the effect of the repulsive shoulder at different densi-
ties p and temperatures 7 can be taken into account by an
effective excluded volume depending on both p and 7. In
Ref. [28] the same analysis was undertaken by using an in-
tegral equation approach in the hypernetted-chain approxi-
mation. In Refs. [27,28] it was shown that the high-density
liquid-liquid critical point can be found only when there is
some kind of balance between the attractive and repulsive
parts of the potential.

It should be noted that it is widely believed (see, for ex-
ample, Refs. [29,30]) that a fluid-fluid transition should be
related to the attractive part of the potential. However, in
Refs. [31,32] in the framework of the generalized van der
Waals theory it was shown that the purely repulsive step
potential is sufficient to explain the high-density liquid-liquid
phase transition.

II. PHASE DIAGRAMS

In the present paper we apply the generalized van der
Waals theory to the study of the phase diagram of the system
of particles interacting through an isotropic potential with an
attractive well and a repulsive component consisting of a
hard core plus a finite shoulder. This potential can be written
in the form

», r=d,
o) e, d<r=o, (1)
r)=
— &y, 0'<I"SO'1,
0, r> .

The potential is shown in the inset in Fig. 1. We apply to
the problem the first order thermodynamic perturbation
theory for fluids. The soft-core plus the attractive well of the
potential (1) are treated as perturbation with respect to the
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FIG. 1. The pressure isotherms for the system with the potential
shown in the inset for €/e;=5 and for different values of o/d for
T=5 (0,/d=2). Inset: An isotropic potential with an attractive well
and a repulsive component consisting of a hard core plus a finite
shoulder.

hard sphere potential. In this case the free energy of the
system may be written in the form [33,34]

F_FHS

1
NkgT =5pﬂfu1(r)gHS(r)dl‘, 2)

where p=N/V is the mean number density, B=1/kgT, u,(r)
is the perturbation part of the potential u,(r)=®(r)—Py(r),
@ y4(r) is the hard sphere singular potential, and gy(r) is the
hard sphere radial distribution function which is taken in the
Percus-Yevick approximation [35].

To calculate Fpyg, one can use,
approximate equation [34]

F 479-3
H =31n)\—1+lnp+7’—7f.
kTN (I-7)

Here N=h/(2mmkgT)"? and n=mpc/6.

The conventional van der Waals theory is obtained after
the further assumption that the molecules are randomly dis-
tributed, i.e., gys(r)=1 for r>d [34,36]. This approximation
corresponds to the structureless reference liquid. In this case
after substitution of Eq. (1) in the right-hand side of Eq. (2)
one has

for example, the

3)

F-F
— B - _ap, (4)
NkgT

where
a= 22l (0}~ )~ el - ). (5)

As is well known, a conventional van der Waals equation
is obtained from Eq. (4) using thermodynamic relation
P=p2(‘;—F)T. If a<0, in the system there are no phase transi-
tions; ifp a> 0, there is only a gas-liquid phase transition. So
in the framework of the conventional van der Waals theory it
is impossible to describe an additional liquid-liquid phase
transition, and one has to take into account a density depen-
dence of the radial distribution function of the reference
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liquid. As will be seen further, in this case the interplay be-
tween the structure of the reference liquid and the form of
the potential has an essential influence on the phase diagram
of the system. For these reasons we call the approach pre-
sented in this article by “generalized van der Waals theory.”

Further in this paper we use the dimensionless quantities
T=r/d, P=Pd®/e, V=VINd*=1/p, T=kyT/e, omitting the
tilde marks. We also use a packing fraction n:z‘;i:%’z.

The results of the calculations are demonstrated in Figs.
1-5. In Fig. 1 a typical family of pressure isotherms is shown
for the system with £,/e=5 for different values of o/d for
T=5. The van der Waals loops in the isotherms at low tem-
peratures are clearly seen, this indicates the existence of the
first order liquid-gas and liquid-liquid phase transitions for
some sets of the potential parameters.

In order to investigate the dependence of the phase dia-
grams on the parameters of the potential (1) we consider two
cases. In the former case the overall length of the potential is
fixed: 0,/d=3.0. The latter case corresponds to the constant
width of the attractive well (o;—0)/d=0.5 and variable o.

In Fig. 2 the evolution of the phase diagram is shown as a
function of o/d for the fixed value of o,/d=3. The dashed
lines correspond to spinodals which as usual are calculated
from the condition dP/dp=0 and the solid lines are the equi-
librium lines of gas-liquid and liquid-liquid phase transitions
calculated by using the Maxwell construction (binodals).
One can see that for small values of o there is only gas-
liquid transition with very high critical temperature due to
large width of the attractive well. If the value of o/d in-
creases the second (liquid-liquid) transition develops, the
critical temperature being lower than for the pure gas-liquid
transition. When the difference o,/d—o/d is small enough
(=0.2), the gas-liquid transition disappears, and one has the
only high-density fluid-fluid transition, as was discussed in
Refs. [31,32]. This transition may be called a liquid-liquid
phase transition because it takes place between two high-
density fluid phases (high-density liquid and low-density lig-
uid). It should be noted that in this case a=—10.334 [see Eq.
(5)], so in the framework of the conventional van der Waals
approach there is no phase transition. In this case the poten-
tial is close to the pure repulsive step potential. As was
shown in Refs. [31,32] in the framework of the generalized
van der Waals theory, the liquid-liquid phase transition does
exist in this system. It should be noted that this scenario is in
agreement with the results of Refs. [27,28].

We cannot extend the transition lines down to zero tem-
perature and make calculations for o;/d <1.3 because of the
limitation of the perturbation approach.

Before we study the second case, let us consider the sys-
tem with a purely repulsive step potential, which corresponds
to the case o=0 in Eq. (1). Figure 3 shows the families of
the pressure isotherms for different values of o/d. One can
see some kind of periodic behavior as a function of the re-
pulsive step radius o which apparently correlates with the
behavior of the radial distribution function gg¢(r). One can
see that for small values of o there is no phase transition.
The fluid-fluid phase transition appears in the vicinity of
o/d=1.5 and disappears again for o=2.0. Upon further in-
crease of o the isotherms reveal some tendencies to forma-

041201-2



GENERALIZED VAN DER WAALS THEORY OF LIQUID-...

Y
45]
40
35]
30]
25]

b~ 20]
15]
10]

5.
0

40 o=23%0=30 R

0.0 0.1 02 03 04 05 06 0.7

[ S S ——
14
12
10

0=2.6; O 1=3.0

i
t
'
'
'
i
'
'

enroR

00 01 02 03 04 05 06

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.28 032 036 040 0.44 0.48
7

T T T

T T T T

FIG. 2. Phase diagram of the system of particles interacting
through the potential (1) for different values of o/d and the fixed
value of o/d=3. Solid lines correspond to binodals and the dashed
lines to spinodals. Squares represent the approximate locations of
the fluid-solid transition obtained by equating the free energies of
the fluid and solid.

tion of the van der Waals loops. This behavior may be un-
derstood from the right-hand side of Eq. (2). One can see that
r=1.5, r=2.0, and r=2.5 approximately correspond to the
first minimum, second maximum, and second minimum of
the radial distribution function gy(r). As it is seen from Eq.
(2), for o= 1.5 the contribution to the free energy of the
system comes from the first coordination sphere, which
changes most drastically under the fluid-fluid phase transi-
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FIG. 3. The families of pressure isotherm for the purely repul-
sive step potential [c=0 in Eq. (1)] for different values of o.

tion. A similar situation takes place for o=2.5, where the
contribution corresponds to the first and second coordination
shells. For 0=2.0 the contribution is more smooth and, it
seems, cannot lead to the transition.

The scenario depicted above strongly correlates with
the case when the attractive well is added to the potential.
Figure 4 shows the evolution of the phase diagram of the
system of particles interacting through the potential (1) for
different values of o/d and fixed value of the difference
Ao=0,/d-o/d=0.5. Phase diagrams in Fig. 4 demonstrate
similar “periodic” behavior as a function of the repulsive
step radius o as one can see in Fig. 4. It should be noted that
the attractive well not only leads to the gas-liquid phase tran-
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FIG. 4. Phase diagram of the system of particles interacting
through the potential (1) for different values of o/d and fixed value
of Ao=0/d—o/d=0.5. Solid lines correspond to binodals and the
dashed lines to spinodals. Insets show the characteristic isotherms.
Squares represent the approximate locations of the fluid-solid tran-
sition obtained by equating the free energies of fluid and solid.

sition but also considerably stabilizes the liquid-liquid phase
transition. From Fig. 4 one can see that the critical tempera-
ture of the liquid-liquid phase transition in the presence
of the attractive well is much higher than the critical
temperature of the fluid-fluid phase transition in the underly-
ing purely repulsive step potential system. Moreover, for
o/d=2.5 there is only tendency to the transition in the
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FIG. 5. Dependence of the critical temperatures T (upper figure)
and the densities 7 (lower figure) on the parameter o for fixed
Ac=0.5

system with the repulsive step potential (Fig. 4), however, in
the presence of the attractive well one finds the well-defined
liquid-liquid phase transition (Fig. 4).

Complex phase behavior shown in Fig. 4 is summarized
in Fig. 5 where the dependence of the critical temperatures
and densities on the parameter o for fixed Ao=0.5 is repre-
sented. The most interesting feature is the discontinuity in
the appearance of the second transition, which is clearly seen
from the lower part of Fig. 5. One can see that the second
transition disappears at o=1.75 and reappears only at o
~2.15. As was discussed above, this behavior is obviously
related to the positions of the maxima of a reference radial
distribution function (or the structure of the reference liquid).
One can see that the second transition is absorbed by the first
one when the radius of the repulsive step and correspond-
ingly the position of the attractive part of the potential ap-
proximately coincides with the positions of the first and sec-
ond maxima of the radial function gg(r). (See also Fig. 2 in
Ref. [38] for the similar behavior of the melting line of the
two-dimensional system with attractive well potential.)

In Figs. 2 and 4 we also show rough estimations of loca-
tions of high-density branches of solid-liquid transition
(squares). These lines were obtained by equating the fluid
free energy [Eq. (2)] and the solid free energy calculated in
the framework of the first order perturbation theory for solids
[39-42]. For larger values of o, one can expect that the
liquid-liquid phase transition may occur in the stable fluid
region. The complete phase diagram, including liquid-solid
phase transition, will be presented in a separate publication.

III. SOFT MODEL POTENTIAL

To illustrate the application of the generalized van der
Waals theory to other systems let us consider the potential
which has the form
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FIG. 6. The potential (6) for ry=1.1 (line 1) and r4=1.16 (line
2). Line 3 is obtained from line 2 by the shift downward by the
height of the first maximum.

B(r) a exp(— ar)c;s[ZkF(r— ro)] N b(g) 18 o (6

for r<r. and O otherwise. Here r. is a a cutoff distance.
We consider three types of potentials (see Fig. 6). In cases 1
and 2 we use the position of the third minimum of the func-
tion (6) as the cutoff distance, in case three, the position of
the second maximum. ®, is defined through the equation
®(r.)=0, i.e., D, shifts the potential so that it vanishes at the
cutoff distance making the function and its first derivative
continuous at r,.. This potential is a modification of the po-
tential considered in Ref. [43]. The physical meaning of the
potential is the following: the first term has a form similar to
that expected for the effective interaction between metal ions
when screened by electrons. Freidel oscillations are present
with wave vector 2kp, where kp corresponds to the wave
vector at the Fermi level. The second term adds a repulsive
interaction that suppresses the oscillations at small . The
potential looks similar to the effective pair potentials often
derived for the metallic systems [23-26], however in the
latter case the potentials are density dependent. This means
that the present model cannot be used for the calculations of
properties of liquid metals directly, however, the most impor-
tant feature of the potential (6), a repulsive shoulder (or
negative curvature of the potential), may be found in the
effective potentials of some metals [23-26] and, in principle,
can lead to anomalous behavior of liquid metals, including
possible liquid-liquid phase transition.

In Fig. 6 this potential is shown for the parameters
a=0.1,a=0.5, kp=4.1, 0=0.331, b=0.42 X 108, ry=1.1 (line
1), and ry=1.16 (line 2). Line 3 is obtained from line 2 by the
shift downward by the height of the second maximum.

In Fig. 7 the corresponding families of isotherms are
shown for different temperatures. To calculate the equation
of state corresponding to the potential (6) we apply the ther-
modynamic perturbation theory. The second part of the
potential (6) was considered as a reference system,
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FIG. 7. (Color online) The families of isotherms corresponding
to the potentials in Fig. 6. There are only high-density fluid-fluid
transitions for the potentials corresponding to lines 1 and 2 in Fig. 6
(upper figure). For the potential corresponding to the line 3 in Fig.
6, there is also a low-temperature gas-liquid transition shown in the
inset in the lower figure.

18
Dy (r) =b(§) . (7)

Potential ®((r) is approximated by the hard sphere potential
with an effective diameter which depends on the density and
the temperature [34,37].

From Fig. 7 one can see that there are only high-density
fluid-fluid transitions for the potentials corresponding to the
lines 1 and 2 in Fig. 6 (upper figure). These transitions exist
due to negative curvature of the potential (6). There are no
low density (i.e., gas-liquid) transitions in these cases be-
cause the strength of an attraction is insufficient. For the
potential corresponding to line 3 in Fig. 6 there is also a
gas-liquid transition at low temperatures shown in the inset
in the lower figure.

IV. CONCLUSIONS

The main purpose of the present investigation is to de-
velop the simple almost analytical approach for the qualita-
tive description of the properties of systems with the repul-
sive soft-core attractive potential (1), and on the basis of this
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approach, to study the physical mechanism underlying the
possible liquid-liquid phase transition in these systems. In
the framework of the first order thermodynamic perturbation
theory we have studied the phase diagrams of these systems
for different values of potential parameters, and in agreement
with the results of Refs. [27,28], have shown that there are
some regions in the parameter space where the high-density
critical point can exist in addition to the gas-liquid critical
point.

We have considered two different ways of variation of the
potential parameters. In the former case the overall length of
the potential is fixed and in the latter case the width of the
attractive well is constant. In both cases the width of the
repulsive step o is variable. In the framework of the second
case we have also considered the system with a purely repul-
sive step potential which corresponds to the repulsive soft-
core attractive potential (1) with zero width of the attractive
well and have shown that in this system there is a high den-
sity fluid-fluid phase transition for some ranges of the repul-
sive step width. We have found some kind of periodic behav-
ior of the phase diagram as a function of repulsive step
radius o which apparently correlates with the behavior of the
radial distribution function gyg(r). This behavior may be ex-
plained by the analysis of the dependence of the free energy
(2) on the repulsive step radius o. This scenario strongly
correlates with the case when the attractive well is added to
the potential where phase diagrams demonstrate similar “pe-
riodic” behavior as a function of the repulsive step radius o,
as one can see in Fig. 4. It should be specially noted that the
attractive well not only leads to the gas-liquid phase transi-
tion but also considerably stabilizes the liquid-liquid phase
transition: the critical temperature of the liquid-liquid phase

PHYSICAL REVIEW E 74, 041201 (2006)

transition in the presence of the attractive well is much
higher than the very low critical temperature of the fluid-
fluid phase transition in the underlying purely repulsive step
potential system. This means that it could be difficult or even
impossible to find a fluid-fluid phase transition in the purely
repulsive step potential systems in computer simulations,
but, as was shown in Refs. [17,18,27,28], it can be found
when the attractive well is present.

In the framework of the first order perturbation theory for
solids [39-42] we have estimated the locations of the solid-
liquid transition lines and have shown that for larger values
of o one can expect that the liquid-liquid phase transition
may occur in the stable fluid region.

As an illustration of our approach we have also consid-
ered the soft potential which qualitatively resembles the ef-
fective potentials of some metals and have shown that two
critical points may exist in these systems for some sets of the
potential parameters.

We would like to emphasize that we do not claim that the
first order perturbation scheme, which was used in the
present article, gives the high precision quantitative results,
however, it seems reliable enough to give correct qualitative
description of the liquid-liquid transition in the system with
potentials (1) and (6). It should be noted that the second-
order perturbation theory gives qualitatively the same results
[31,32].
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