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Quintessence restrictions on negative power and condensate potentials
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We study the cosmological evolution of scalar fields that arise from a phase transition at some energy scale
Lc . We focus on negative power potentials given byV5cLc

41nf2n and restrict the cosmologically viable
values ofLc andn. We make a complete analysis ofV and impose SN1a conditions on the different cosmo-
logical parameters. The cosmological observations ruled out models where the scalar field has reached its
attractor solution. For models where this is not the case, the analytic approximated solutions are not good
enough to determine whether a specific model is phenomenologically viable or not and the full differential
equations must be solved numerically. The results are not fine-tuned since a change of 45% in the initial
conditions does not spoil the final results. We also determine the values ofNc andNf that give a condensation
scaleLc consistent with gauge coupling unification, leaving only four models that satisfy unification and SN1a
constraints.
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I. INTRODUCTION

Recent cosmological results given by the superon
project SN1a@1# and the Maxima and Boomerang@2# obser-
vations have led us to conclude that the universe is flat an
expanding with an accelerating velocity. This conclusio
show that the universe is now dominated by an energy d
sity with a negative pressure withVf50.760.1 andwf,
22/3 @3#. This energy is generically called the cosmologic
constant. An interesting parametrization of this energy d
sity is in terms of a scalar field with only a gravitation
interaction called quintessence@4#. The evolution of the sca
lar field has been widely studied and some general
proaches can be found in@5,6#. The evolution of the scala
field f depends on the functional form of its potentialV and
a late time accelerating universe constrains the form of
potential@6#.

In this paper we will concentrate on negative power p
tentials because they lead to an acceptable phenomeno
and because they are naturally obtained from gauge g
dynamics. Negative power potentials have been extensi
studied@4–11# first in @7# and then as tracker fields in@4#.
Steinhardtet al. @4# showed that a scalar field with a negati
power potentialV5cf2n with n.5 has already reached it
tracker solution but is not cosmologically acceptable beca
it has wf.20.52. However, if the scalar field has n
reached its tracker solution by today, we will show that t
models may lead to an acceptable phenomenology and
final results depend on the initial conditions and on the va
of n. Contrary to the tracker models, no analytic solution
good enough to determine the value ofwfo ~from now on the
subscripto will refer to present day values! and it is sensitive
to the whole dynamics. We will solve the differential equ
tions numerically and we will constrain the valuesn of cos-
mologically viable models, including the big bang nucle
synthesis ~NS! constraints @12#. We will also give
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approximate analytical solutions.
Tracker solutions are widely favored because they do

have a fine-tuning problem in the initial conditions. But ev
more, they are independent of the initial conditions since
range of the initial conditions can vary by up to 100 orders
magnitude. The models withn,5 do depend on the initia
conditions but it is important to remark that theydo nothave
a fine-tuning problem. The initial conditions can vary by u
to 45%; the solutions are still fine and the values of the ini
conditions are completely ‘‘natural,’’ i.e., they are of th
same order of magnitude as the other relevant cosmolog
parameters. So, to conclude, one thing is to have a mo
with no dependence on the initial conditions and anothe
to have a fine-tuning problem. ‘‘Natural’’ models in physic
should not have fine-tuning problems but they do in gene
depend on the initial values as it is the case for our mod
However, for any initial conditions we will end up with
21<wfo<22/(21n)5wtr , where n gives the inverse
power andwtr is the tracker value.

Negative power potentials@9–11# can be obtained using
the Affleck-Dine-Seiberg~ADS! superpotential@13#. The
condensation scaleLc of the gauge group SU(Nc) can be
determined from the high energy scale (L) using renormal-
ization group equations in terms ofNc ,Nf , and it is then
natural to ask if it is possible to have a common gauge c
pling unification with the standard model~SM! gauge groups
@11#. We will show that this is indeed possible and we w
give the values ofNc ,Nf where gauge coupling unification i
achieved.

The cosmological picture in the case of gauge coupl
unification is very pleasing. We assume gauge coupling u
fication at a scaleL for all gauge groups~as predicted by
string theory! and then let all fields evolve. At the beginnin
all fields, SM and those from the SU(Nc) gauge group, are
massless and redshift as radiation until we reach the con
sation scaleLc . Below this scale the fields of the SU(Nc)
group will dynamically condense and we use the ADS p
tential to study their cosmologically evolution. Interesting
enough, the relative energy density of the SU(Nc) groupVf
drops quickly, independently of the initial conditions, and
©2002 The American Physical Society20-1
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A. de la MACORRA AND C. STEPHAN-OTTO PHYSICAL REVIEW D65 083520
is close to zero for a long period of time, which may inclu
nucleosynthesis, until very recently~around onee-fold of
inflation!. The energy density of the universe is at pres
time dominated by the scalar field withVf.0.7 and a nega-
tive pressurewf,22/3 leading to an accelerating univer
@3#.

The paper is organized as follows. In Sec. II we give
general framework to derive the scalar potential forf from
non-Abelian gauge dynamics using the ADS potential.
Sec. III we analyze the cosmological evolution off and we
concentrate on the nonattractor regime. We derive ana
formulas forwfo andfo as functions of the initial conditions
and of n, and we discuss in detail the possible choices
initial conditions and show that the models do not have
fine-tuning problem. In Sec. IV we constrain the values on
in order to havewfo,22/3, while in Sec. V we comment o
the possibility of having models with a gauge coupling co
stant unified with the couplings of the standard model a
we explicitly give these models. In Sec. VI we give furth
examples. Finally, we summarize and conclude in Sec. V

II. POTENTIALS OF THE FORM VÄcLc
4¿nfÀn

In this work we study the quintessence field~scalar! f
with negative power potentials that arise from a phase tr
sition at some stage of the evolution of the universe. T
energy scale of the phase transition is given byLc and the
initial value of the scalar fieldf is naturally given byf i
5Lc since it is the relevant scale for the transition. T
potential we will consider is of the type

V5c2Lc
41nf2n ~1!

with c a constant~we will comment on the value ofc in Sec.
IV ! and has a runaway behavior.

This class of models will have a vanishing potentialV
[0 for energy scales aboveLc since the phase transition ha
not taken place yet and there is nof field. At the phase
transition energy scaleLc a potentialV(Lc).Lc

4 and a field
f(Lc)5Lc are generated. BelowLc , the f field becomes
dynamic and it evolves to its minimum. The cosmologic
evolution depends on the functional form ofV and for Eq.
~1! with n.0 we expectf to roll down its potential. This
class of potential has been chosen because they can b
tained from a phase transition of non-Abelian gauge dyna
ics ~see Sec. II A! @13# and because they lead to a quinte
sence interpretation of thef field. However, if some othe
physical process also leads to an inverse power scalar po
tial the cosmological evolution studied in Sec. III and t
conclusions remain valid.

The energy scaleLc is expected to be considerab
smaller than the reduced Planck massmPl , so the initial
valuef i /mPl5Lc /mPl is much smaller than 1 and this ha
interesting consequences for the cosmological evolution of
~from now on we will set the reduced Planck mass to
mPl

2 5G/8p[1).
The normalization of the field is important and we w

consider, for simplicity, thef field to be canonically normal
ized, Lk5(Kf

f)21u]mfu2 with Kf
f51 and Kf[]K/]f.
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However, the complete Kahler potentialK is in general not
known. The canonically normalized fieldf8 can be defined
by f85g(f,f̄)f with the functiong given by solving the
differential equationKf

f5(g1fgf1f̄gf̄)2. For f!1 we
do not expect any large contributions to the kinetic term
for f;1 the Kahler potential could give a significant co
tribution and could spoil the runaway and quintessence
havior of f. In order to see this, we can expand the Kah
potential as a power seriesK5ufu21S iai ufu2i /2i with ai
some constants of order 1 and to be determined by the
cific model. If we approximate, for simplicity, the canon
cally normalized fieldf8 by f85(Kf

f)1/2f, the potential in
Eq. ~1! is then given by

V5~Kf
f!21uWfu25c2Lc

41nf2n~Kf
f!21

5c2Lc
41nf82n~Kf

f!n/221. ~2!

For n,2 the exponent term ofKf
f in Eq. ~2! is negative so it

will not spoil the runaway behavior off, but for n.2 the
extra terms could stabilize the potential. In the absence
better understanding ofK we will work with canonically
normalized fields, but we should keep in mind that forn
,2 the results are robust while forn.2 the contribution
from the Kahler potential could spoil our results and must
determined.

A. ADS potential

The potential in Eq.~1! can be obtained from the nonpe
turbative dynamics of a non-Abelian asymptotically fr
gauge group SU(Nc) with Nf chiral 1 antichiral fieldsQ in
N51 supersymmetric theory. At energy scales much lar
than the condensation scale the gauge coupling consta
small and theQ fields are free elementary fields. As th
universe expands and cools down, the energy of the elem
tary fieldsQ becomes smaller while the gauge coupling co
stant grows. When the gauge coupling constant has the c
cal value to condense theQ fields, then all the elementar
fields will no longer be free and they will form ‘‘mesons
and ‘‘baryons,’’ as in QCD. This effect takes place at t
condensation scaleLc and below this scale the correct d
scription of the dynamics of the non-Abelian gauge group
in terms of the condensatesf. In order to study the dynamic
of these fieldsf we use the ADS superpotential, which
exact ~i.e., it does not receive radiative or nonperturbati
contributions! and is given by W(f)5(Nc

2Nf)(Lc
3Nc2Nf /det̂ QQ̃&)1/(Nc2Nf ) @13#. In terms of the

gauge singlet combination of chiral and antichiral biline
termsf5^QQ̃& the globally supersymmetric scalar potent
is given by Eq.~2! with c52Nf , det̂ QQ̃&5P j 51

Nf f j
2 , and

n5214Nf /(Nc2Nf) @9–11#.
If we wish to study models with 0,n,2, which are cos-

mologically favored as we will see in Sec. IV, we need
consider the possibility that not allNf condensatesf i be-
come dynamic but only a fractionn ~with Nf>n>1), and
we also needNf.Nc . It is important to point out that even
though it has been argued that forNf.Nc there is no non-
0-2
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QUINTESSENCE RESTRICTIONS ON NEGATIVE POWER . . . PHYSICAL REVIEW D 65 083520
perturbative superpotentialW generated@13# this is not al-
ways the case@14#. The possibility of havingnÞNf can be
reached with a gauge group with unmatching numbers
chiral and antichiral fields or if some of the chiral fields a
also charged under another gauge group. In this latter
we havec52n,n5214n/(Nc2Nf) , and Nf2n conden-
sates fixed at their vaccum expectation value~VEV! ^QQ̃&
5Lc

2 @11#.

III. EVOLUTION OF f

We will now determine the cosmological evolution of
scalar fieldf with an inverse power potential regardless
what physical process caused it. We will concentrate on
tentials that have not reached the tracker solution yet, s
they can give the correct value ofwfo , and we will give
approximately analytic solutions forwfo andfo .

The cosmological evolution off with an arbitrary poten-
tial V(f) can be determined from a system of different
equations describing a spatially flat Friedmann-Roberts
Walker universe in the presence of a barotropic fluid ene
densityrg that can be either radiation or matter; they are

Ḣ52
1

2
~rg1pg1ḟ2!,

ṙ523H~r1p!,

f̈523Hḟ2
dV~f!

df
, ~3!

whereH is the Hubble parameter,ḟ5df/dt, andr ~p! is the
total energy density~pressure!. We use the change of var
ablesx[ḟ/A6H andy[AV/A3H and Eqs.~3! take the fol-
lowing form @15,6#:

xN523x1A3

2
ly21

3

2
x@2x21gg~12x22y2!#,

yN52A3

2
lxy1

3

2
y@2x21gg~12x22y2!#,

HN52
3

2
H@2x21gg~12x22y2!#, ~4!

whereN is the logarithm of the scale factora, N[ ln(a), f N
[d f /dN for f 5x,y,H, gg511wg , and l(N)[2V8/V
with V85dV/df. In terms ofx,y the energy density param
eter isVf5x21y2 while the equation of state parameter
given bywf[rf /pf5(x22y2)/(x21y2).

The Friedmann or constraint equation for a flat unive
Vg1Vf51 must supplement Eqs.~4!, which are valid for
any scalar potential as long as the interaction between
scalar field and matter or radiation is gravitational only. T
set of differential equations is nonlinear and for most ca
has no analytical solutions. A general analysis for arbitr
potentials was performed in@6#; the conclusion there is tha
all model dependence falls on two quantities:l(N) and the
08352
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constant parametergg . In the particular case given byV
}1/fn we findl→0 in the asymptotic limit. If we think the
scalar field appears well after Planck times we havel i
5n mPl /Lc@1 ~the subscripti corresponds to the initia
value of a quantity!. An interesting general property of thes
models is the presence of a manye-fold scaling period in
which l is practically a constant andVf!1. Figure 1 shows
the rapid arrival and long permanence of this parameter a
constant value, together with the final decay to zero. In t
last regime we havel→0, which implies xN /x,0 and
yN /y.0 @6#, leaving us with Vf[x21y2→1 and wfo
[(x22y2)/(x21y2)→21, which are in accordance with
universe dominated by a quintessence field whose equa
of state parameter agrees with positively accelerated ex
sion. The development ofVf can be in agreement with th
restriction of the nucleosynthesis stageVf(NS),0.1 @12# as
well as with the observational resultVfo50.7 ~the subscript
o refers to present day quantities!. This can be observed in
Fig. 2, together with the evolution ofwf which satisfies the
conditionwfo,22/3 @3#.

The analysis of inverse power potentials has been ex
sively studied@4–11#. However, the analysis has not bee
specific enough to determine their viability in describing t
late evolution of our universe. In@4# the scalar field was
required to track before the present day and this impose
constraint onn to be larger than 5, thus ruling this model o
since it haswfo.20.52 in contradiction to the SN1a dat

FIG. 1. Evolution ofl for n51. The vertical line marks the
time atVfo50.7 with Ntotal517.04.

FIG. 2. Evolution ofVf ~solid curve! andwf ~dashed curve! for
n51. The vertical line marks the time atVfo50.7.
0-3
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A. de la MACORRA AND C. STEPHAN-OTTO PHYSICAL REVIEW D65 083520
The models we will concentrate on are, therefore, mod
with n,5 wheref has not reached its tracker value.

For future reference we give now the scaling value of1 f
@4#:

fsc5H f i1A6Vf i for Vf i,1/2,

f i1A6F 1

A2
1

1

2
logS Vf i

12Vf i
D G for Vf i.1/2.

~5!

The scaling value depends only on the initial conditio
Vf i ; it is independent ofLc ,Hi , sincef i!1. The tracker
value ofw is given by@4#

wtr5211
n

21n
~wg11!, ~6!

and it is an attractor solution valid for largen, when f is
already tracking. In the tracker limit@4#, i.e.,n55, from Eq.
~6! one haswtr520.28 but the value obtained numerical
is only wo520.52 forVf i.0.25. For smallern the discrep-
ancy is even worse since the scalar field has not reache
tracker value, obtained from Eqs.~6! and ~15!,

f tr5An~21n!Vfo

3
, ~7!

which is larger thanfsc if Vf i,@n(21n)/18#Vfo .
A semianalytic approach is useful to study some prop

ties of the differential equation system given by Eqs.~4!. To
do this we initially consider only the terms that are prop
tional tol, sincel@1; then we follow the evolution ofx,y,
andH so that every period has a characteristic set of sim
fied differential equations. The parameterVf is adequate to
divide the process into four periods, the first one being
short lapse in whichVf5const, easy to recognize in Fig. 3
the second is defined from the fall of this parameter to n

1Our value offsc differs in the case ofVf i.1/2 by a factor of
1/A2 from that in@4# and the authors of@4# useM Pl51 instead of
mp5M Pl /A8p51 as we do.

FIG. 3. Phase planex-y for n51. Starting point is~0,0.5!. The
region defined bywfo,22/3 andVfo50.760.1 is shown.
08352
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ligible values; the third is the so-called scaling period; and
the fourthVf is again considerable, eventually reaching t
value 0.7.

The phase planex-y provides an illustrative approach
useful for the analysis. We see, from Fig. 3, that the sys
follows a circular path at first with[x21y25Vf i constant,
and ends up withx2.Vf i@y2. Then x and y decrease to
negligible values; this situation prevails throughout the sc
ing period. Finally, a growth in both parameters causesVf to
reach what we set as the final value 0.7 preferred by ob
vational results. From the restriction over the equation
state parameterwf,22/3 and the observational range fo
Vfo50.760.1, we can define a region limited by the e
pressionsy25@(12wf)/(11wf)#x2 with wf522/3 and
y25Vfo2x2 with 0.6<Vfo<0.8.

The minimal valueymin of y after its initial steep descen
is given from Eq.~4! with yN50, x2.Vf i , andlxA3/25
2HN /H53gg/2 by

ymin5yi S Lc

fmin
D n/2

,

fmin5
n

4
A6Vf i , ~8!

and we have approximatedHmin.Hi in Eq. ~8!. Shortly after
y reaches its minimum value the scaling period begins.
this period we neglect the term proportional tol in Eqs.~4!
to find

yN

y
52

HN

N
, ~9!

which leads toyH5Hminymin.Hiymin. Notice that the de-
pendence ofl on y andH is given byl5A (yH)2/n with A
a constant; therefore from Eq.~9! we havel5const ~i.e.,
f5const) during all of the scaling period; this holds for a
n. Furthermore, we may neglect squared terms inx andy in
the third equation of system~4!, since they are small, to ge
the expressions

H5Hie
23ggN/2,

y5ymine
3ggN/2. ~10!

The quantityy has an increasing exponential form for almo
the whole process, so the duration of this regime can be s
as the total time~see Fig. 4!. Now, in order to calculate the
number ofe-folds from the initial value to the present da
we consider Eq.~10!, to end up with

Ntotal5
2

3
lnS yo

ymin
D ~11!

with ymin given by Eq. ~8! and yo.0.8 ~to have Vfo
50.7,wfo,22/3). The evolution of ln(x), ln(y), and ln(H)
as functions ofN is seen in Fig. 4.

If we consider Eqs.~10! and assume that the end of th
scaling period is very close to today we get an approxima
0-4
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equation yoHo.Hminymin5Hiyi(f i /fmin). This, together
with Eq. ~8! and the definition ofyi

25c2Lc
4/3Hi

2 , establishes
an expression forLc , the energy scale at which the scal
field appears, in terms ofyo ,Ho :

Lc5S 3yo
2Ho

2

c2 D 1/(41n)

fmin
n/(41n) ~12!

andfmin5(n/4)A6Vf i . The latter expression is a semian
lytic calculation of the initial energy scale of a specifi
model. Finally, the valueyo is set to be of the order of 0.8 t
satisfy simultaneouslyVfo50.7 and the conditionwfo,
22/3.

Of course, we could have guessed expression~12! using
the definition ofyo

25(c2Lc
41n/3Ho

2)fo
2n to give @9#

Lc5S 3Ho
2yo

2fo
n

c2 D 1/(41n)

.Ho
2/(41n) , ~13!

and the last equality holds approximately since we expec
haveyo ,fo of the order of 1.

Now, we wish to determine the values ofwfo , yo , and
fo . We use the differential equation forgf5wf11 andVf
@16#

~gf!N53gf~22gf!S lAVfo

3gf
21D ,

~Vf!N53~gg2gf!Vf~12Vf!. ~14!

We see thatgf is extremized atwf5gf21521,1 and at
wf5211l2Vf/35211n2Vf/3f2. We have checked
that the value ofwf at the maximum evaluated atfo is a
very good approximation~within 5% of the numerical value!

wfo5211
n2Vfo

3fo
2

. ~15!

Equation~15! should be compared with@9# which differs by
the factor ofVfo.0.7. Of course, if we do not have th

FIG. 4. Evolution forn51 of ln(x), ln(y), and ln(Vf) ~dashed,
dotted, and solid lines, respectively!. The vertical line marks the
time atVfo50.7.
08352
to

exact value offo Eq. ~15! is not very useful. In order to
determinefo we evolve Eqs.~14! and Eq.~4! from present
day values to the scaling regime wherewfsc.21 andxsc

2

!ysc
2 .Vfsc with the conditionVfo50.7. This evolution is

model independent if 0<wf11!1 @16# and from the defi-
nition of y2 we have

c2

3
Lc

41n5yo
2Ho

2fo
n5ysc

2 Hsc
2 fsc

n , ~16!

and we obtain

yo
2fo

n5
ysc

2 Hsc
2 fsc

n

Ho
2

5fsc
n Vfo , ~17!

where we have usedHN /H.23(12Vf)/2,Hsc
2 /Ho

25(1
2Vfo)e3DN, and ysc

2 .Vf5Vfoe23DN/(12Vfo

1Vfoe23DN), DN@1 @16#. Using Eqs.~17!, ~15!, and ~5!
we can solve easily forfo and/oryo in terms ofVfo , n, and
Vf i ~via fsc),

fo
22fsc

n fo
22n2

n2

6
Vfo50 ~18!

or equivalently

yo
2S n2Vfo

2

6~Vfo2yo
2!
D n/2

5fsc
n Vfo . ~19!

In order to analytically solve Eqs.~18!,~19! we need to fix
the value ofn, and we can determinewfo by putting the
solution of Eq.~18! into Eq. ~15!. Equation~18! can be re-
written as fo5fsc(12n2Vfo/6fo

2)21/n and we see tha
fo.fsc andfo.nAVfo/6 and thatfo is of the order of 1
(Vfo;0.7) regardless of the initial conditions. However, t
exact value does indeed depend on the initial conditions,
for any initial conditions we will have21<wfo<wtr .

If gfo5n2Vfo/6fo
2!1 one has fo.fsc and for

the simple cases ofn51,2, and 4 we can solve
explicitly for fo . We find foun515fsc/21A9fsc

2 16Vfo/

6, yo
2un515fsc(23fsc1A9fsc

2 16Vfo), foun52

5Afsc
2 12Vfo/3, yo

2un5253fsc
2 Vfo /(3fsc

2 12Vfo), and

foun545A4Vfo/31A9fsc
2 116Vfo/3, yo

2un545Vfo

28Vfo
2 /(4Vfo1A9fsc

2 116Vfo), respectively. Notice tha
the values offo , wfo at Vfo50.7 do notdepend onHi or
Ho and depend only onVf i ~throughfsc) andn.

We show in Fig. 5 howwfo varies for different initial
conditionsVf i with n518/7.2.57 fixed. We see that fo
largerVf i we end up with a smallerwfo and this is a generic
result as can be seen from Eqs.~18!,~5!, and ~15! since for
largerVf i one has a largerfsc ,fo and therefore a smalle
wfo. This can be seen also from Fig. 6 where for smallVf i
a plateau arises inwf ~the field f has already reached it
tracker value by the present day!. From Eqs.~15!,~18! we
notice that for smallern one gets a smallerwfo ~see Fig. 7!.
0-5
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A. Initial conditions

It is well known that an inverse power law potential lea
to attractor solutions@4# that are therefore independent of th
initial conditions~one has 100 orders of magnitude range
Vf i). However, as pointed out by Steinhardtet al. @4#, this is
only the case forn.5; for smaller values ofn the fieldf has
not necessarily reached its tracker value at the present t
However, even though in these cases the present day q
tities depend on the initial conditions there is no fine-tun
problem since we can vary the initial conditions over a w
range of values~i.e., 45%! and the end results are still phys
cally acceptable.

The differential equations given in Eqs.~4! depend on
values ofx,y, l5n/f but they do not depend on the abs
lute value ofH, i.e., we have the same evolution forx,y, H as
for x,y, H85kH wherek is an arbitrary constant. This sca
ing freedom allows us to set the normalization ofH as we
wish, and in particular to haveVfo50.7 atH5Ho for any
values of the initial conditionsxi , yi . This implies that we
can have a quintessence model for arbitrary initial con
tions. OnceHo is fixed we getLc.Ho

2/(41n) @Eq. ~20!# and
Hi5cLc

2/yi ~from the definition ofyi). One of the main
differences from the tracker solution is thatwfo andfo do

FIG. 6. Evolution of Vf and wf for n51. ParameterVf

evolves in a similar way forVf i50.25 ~solid line! and Vf i

510210 ~long-dashed line!, varying only in the total time,Ntotal

516.7 or 21.1 in the previous order. A discrepancy between the
cases atVfo50.7 is seen for parameterwf because it has for
Vf i50.25 a local maximum withwfo520.93 ~dotted line! while
for Vf i510210 ~short-dashed line! a plateau appears withwfo5
20.76. The vertical lines mark the time atVfo50.7.

FIG. 5. Variations ofVf i lead to different physical situation
given bywfo . We have takenVf i50.9,0.25,10210 ~dashed, solid,
and dotted lines, respectively!. The vertical line marks the time a
Vfo50.7.
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not have the same values in all cases but depend onVf i as
can be seen from Eqs.~15! and ~18!. However, the depen
dence onVf i is mild since, for example, forn51 one has
that fo only depends asAVf i . For this reason onceHo and
Vf i are fixed we still have a wide range of values ofVf i
giving the correct phenomenology, i.e.,DVf i545%. For
Vf i!1, i.e., yi5cLc /Hi!1, with a fixed Lc one has a
largerHi and the time of expansion up to the present day
also larger. In this case it is possible that thef field has
already reached its tracker value, even forn,5, and we
would havewfo5wtr522/(21n). Indeed, it can be see
from Eq. ~18! that Vf i!1 results info;nAVfo/6 and in-
dependent of the initial conditions.2 For any initial conditions
we will end up with21<wfo<wtr .

IV. QUINTESSENCE RESTRICTION ON n

Before analyzing the quintessence restriction imposed
n we would like to comment on the value ofc in the potential
Eq. ~1!. It can take different values with different physic
interpretations.

For simplicity of argument let us assume that we have
kinetic energy at the beginning and thatrf i5Vi5c2Lc

4 . The
initial energy density isVf i5rf i /rc . Taking rf i5c2Lc

4 ,
with c52n, andrc5E4 we have that the initial energy den
sity is given byVf i5(2n)2(Lc /E)4. In this case we see tha
the initial energy density depends on the ratio between
condensation scaleLc and the critical energy densityE
5rc

1/4.
Another possibility is to takerf i5gfT4 and rc5gtotT

4

wheregtot andgf are the total and quintessence number
degrees of freedom, respectively, at a temperatureT. In this
case we haveVf i5gf /gtot and it depends only on the rati
of quintessence and total degrees of freedom and not on
energy scales. The condensation scale is thenLc

5(gf /c2)1/4T andrf i5gfT45c2Lc
45Vi .

Let us now study the restrictions to the values ofn. In
both cases mentioned above we get similar restrictions so
will consider only the first one.

2We would like to stress that Eqs.~18! and~17! are valid only for
0<wf11!1 and in the tracker regime this condition is no long
satisfied.

o

FIG. 7. Restriction onn from we f f,20.7 with c51 andVf i

50.35.
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For a fixedn we take the following conditions:ho must be
in the range 0.760.1 andVfo must belong to the interva
0.6–0.8. We can restrictn according to different physica
arguments. These restrictions are encountered while num
cally solving the differential system settled by Eqs.~4!. The
first restriction comes from the observational value of
relevant parameterwfo . The limit wfo,22/3 can be trans-
lated to we f f,20.7 @3#. Notice that in this potentialwe f f
,wfo , contrary to the general arguments@4#, and the reason
is that wf is still growing by today. From this analysis w
find that, in order to satisfy thewe f f condition, n must be
smaller than 2.74 as shown in Fig. 7 forVf i50.25. The
value ofwfo depends not only onn but also onVf i and it
decreases with increasingVf i . If we fix n and increaseVf i
we find that examples originally discarded by thewe f f,
20.7 restriction now enter the physically permitted grou
The example withn53 is depicted in Fig. 8. An equiparti
tion value ofVf i is 0.25 but if we allowVf i to be as large
as 0.75 then the restriction onn is only n,5.2.

A further restriction comes from big bang nucleosynthe
results that requireVf(NS),0.1 at the energy scale range
NS: 0.1–10 MeV@12#. To account for this either we have t
considerVf i,0.1 or, for example, ifVf i50.25 we must
take out 1.2,n,2.1 because for this range the initial valu
Hi lies within the range of values ofHNS. For all the values
of n allowed bywe f f and NS restrictions, a variation of 45%
on Vf i can be performed without disturbing the permanen
in the observed ranges ofHo andVfo .

V. UNIFICATION OF GAUGE COUPLING CONSTANTS

The condensation scaleLc used in Eq.~1! is from an
elementary particle point of view an arbitrary scale that s

FIG. 8. Restrictionwe f f,20.7 avoided by increasingVf i with
n53 (c51).
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the energy scale of the phase transition. However, if the
verse power potential Eq.~2! is obtained from a non-Abelian
asymptotically free gauge group then we can relate the c
densation scaleLc to other energy scales using the renorm
ization group equation. The one-loop evolution of the gau
coupling constant for a SU(Nc) gauge group withNf chiral
fields gives a condensation scale~strong couplingg22!1)

Lc5Lxe
21/2bogx

2
~20!

where bo5(3Nc2Nf)/16p2 is the one-loop beta function
and Lx and gx are the arbitrary energy scale and coupli
constant, respectively, which include the high energy sc
where the original chiral fieldsQ are weakly coupled.

It is well known that the gauge coupling constants of t
standard model become unified at an energy scaleLGUT

.1016 GeV with a coupling constantgGUT.A4p/25.7
@18#.

We want to impose gauge coupling unification on o
model, i.e., the coupling of the gauge group responsible
quintessence should be unified atLGUT with the standard
model gauge groups@11#. In this case we requireLx , gx in
Eq. ~20! to take the valuesLx5LGUT , gx5gGUT and we
have Lc5LGUTexp@21/2bogGUT

2 #. This is not a necessar
condition but opens the possibility of thinking of the mod
as coming from string theory after compactifying the ex
dimensions, or of a grand unification scheme where all ga
coupling constants are unified.

TABLE I. Models with Lc5Lu . The first five haveDNf

,0.05 while the other six haveDNf,0.10 discrepancy from an
integer.

Number Nc Nf n n Lc (GeV)

1 3 5.98 1 0.66 631028

2 6 14.97 3 0.66 6.931028

3 7 18.05 4 0.55 1.631028

4 8 5.97 5.97 13.83 1.331012

5 8 6.96 3 13.55 7.631011

6 3 1.90 1 5.66 1.33106

7 5 3.91 2 9.38 4.73109

8 6 5.09 2 10.85 3.731010

9 7 5.08 5.08 12.64 3.931011

10 8 20.90 4 6.75 2.431027

11 8 21.10 5 0.47 5.731029
TABLE II. Numerical solutions for different values ofn with c51 andVf i50.25.

n Hi (GeV) rf i
1/4 (GeV) Lc (GeV) wfo we f f Ntotal

1/2 1.33310235 7.4831029 3.7431029 20.97 20.98 10.72
2/3 1.16310233 6.9931028 3.4931028 20.97 20.98 12.96
1 3.46310230 3.8231026 1.9131026 20.93 20.95 16.97
2 4.68310222 4.4431022 2.2231022 20.77 20.83 26.33
18/7 1.68310218 2.66 1.33 20.65 20.73 30.42
3 3.41310216 37.92 18.77 20.57 20.65 33.07
0-7
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TABLE III. Numerical solutions for different values ofVf i with c51 andn53.

Vf i Hi (GeV) rf i
1/4 Lc (GeV) wfo we f f Ntotal

131025 5.48310214 480.90 19.12 20.55 20.50 35.69
0.25 3.34310216 37.54 18.77 20.57 20.65 33.07
0.5 2.85310216 34.68 20.62 20.76 20.83 32.88
0.75 3.05310216 35.88 23.61 20.88 20.92 32.75
0.99 5.13310216 46.53 32.82 20.97 20.98 32.20
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Of course, not all values ofNc ,Nf will give an acceptable
phenomenology. This is because the cosmological evolu
of f and the gauge coupling unification set independent c
strains on the condensation scaleLc and onNc ,Nf . From a
cosmological point of viewLc depends on the inverse pow
n @see Eq.~13!#, which is a function ofNc ,Nf , and from
gauge unificationLc depends also onNc ,Nf throughbo @see
Eq. ~20!#. These two constraints drastically reduce the
lowed values ofNc ,Nf and we also requireNf>1 andNc
>2 to be integers.

In Table I we give the different values ofNc ,Nf ,n for
which we have gauge coupling unification. We can see
there are only a small number of possible models~11!. The
first five models have anNf that differs from an integer by
less than 0.05, while the other six models differ at most
0.10. All other combinations ofNc ,Nf ,n have a larger dis-
crepancy and do not lead toLc5Lu . If we further constrain
the models to agree with the cosmological observations~i.e.,
wfo,20.7 requiringn,5) we are left with only four mod-
els ~numbers 1,2,3,11 of Table I!. All of these four models
haven,2 and the quantum corrections to the Kahler pot
tial are, therefore, not dangerous. Notice as well that o
two models~4,9! haven5Nf and in both casesn.12.

As an example of a model with gauge coupling unific
tion we have a gauge groupNc53 with Nf56 and n51
which entails a valuen52/3 according ton5214n/(Nc
2Nf)52/3 @11#. For this model we find, from the numerica
solution, a total timeNtotal512.96 which does not superpos
on the NS range 19.6–27.2. Thewe f f,20.7 restriction is
satisfied withwe f f520.98 and the condition from exper
mental central valuesho50.7 andVfo50.7 is also satisfied
taking Vf i50.25. The condensation scale isLc54.2
31028 GeV. A full analysis of this model is presented
@17#.

VI. FURTHER EXAMPLES

We have already given some example in the previous
tions. In Table II and III we show the numerical results f
different values ofn with initial conditionVf i50.25 and for
different initial conditions withn53 fixed, respectively.

Other interesting examples are whenn5Nf . The condi-
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tion n,2.74 ~for Vf i<0.25) requiresNf /Nc,0.15 and
thereforeNc.7. ForNc58, Nf51 one hasn518/7.2.57,
and using Vf i50.25 one obtainswfo520.65, we f f5
20.73, fo52.01, No530.3, Mi52.3 GeV, and Lc
51.6 GeV, while forNc57, Nf51 one hasn58/3, wfo
520.64, we f f520.71, fo52.04, No530.9, Mi
54.2 GeV, andLc53 GeV. However, these models do n
haveLc5Lu , i.e., they are not unified with the SM gaug
groups.

VII. CONCLUSIONS

We studied negative power potentials and constrained
initial conditions and the power of the potential to satisfy t
SN1a results. Forn larger than 5, the scalar fieldf has
already reached its tracker value andwfo is too large. So we
need to concentrate on potentials withn,5 to comply with
SN1a results. We gave a semianalytic solution towfo andLc
in terms ofHo , Vf i , andn and we solved numerically fo
some relevant cases. We obtained the result thatwfo depends
on Vf i ,n; it decreases with increasingVf i while it becomes
smaller for largern. If we assume equipartition initial condi
tions withVf i<0.25 thenn is constrained to be smaller tha
2.74; however, if we allow forVf i50.75 the constraint is
relaxed ton,5.2. We have shown that one can vary t
initial conditions by up to 45% without spoiling the obse
vational cosmological values at the present time. For a
initial conditions we will end up with21<wfo<wtr .

We have seen that the negative power potentials can
derived from the Affleck-Dine-Seiberg potential and in ord
to avoid problems with the Kahler potential one requiresn
,2, which implies thatNf.Nc and that not all condensate
become dynamical~i.e., nÞNf). For n5Nf one needs
Nf /Nc,0.15 to havewfo,22/3. Furthermore, we have
shown that it is possible to have a quintessence model w
gauge coupling unification for all gauge groups, stand
model and the gauge group responsible for quintessence
the number of models is quite limited~four!.
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