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Quintessence restrictions on negative power and condensate potentials
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We study the cosmological evolution of scalar fields that arise from a phase transition at some energy scale
A.. We focus on negative power potentials given \by cAé””df” and restrict the cosmologically viable
values ofA . andn. We make a complete analysis \éfand impose SN1a conditions on the different cosmo-
logical parameters. The cosmological observations ruled out models where the scalar field has reached its
attractor solution. For models where this is not the case, the analytic approximated solutions are not good
enough to determine whether a specific model is phenomenologically viable or not and the full differential
equations must be solved numerically. The results are not fine-tuned since a change of 45% in the initial
conditions does not spoil the final results. We also determine the valiésafdN; that give a condensation
scaleA ; consistent with gauge coupling unification, leaving only four models that satisfy unification and SN1a
constraints.
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[. INTRODUCTION approximate analytical solutions.
Tracker solutions are widely favored because they do not
Recent cosmological results given by the superonovdave a fine-tuning problem in the initial conditions. But even
project SN141] and the Maxima and Boomerahg] obser-  more, they are independent of the initial conditions since the
vations have led us to conclude that the universe is flat and isinge of the initial conditions can vary by up to 100 orders of
expanding with an accelerating velocity. This conclusiongmagnitude. The models with<<5 do depend on the initial
show that the universe is now dominated by an energy derconditions but it is important to remark that thég nothave
sity with a negative pressure witl ,=0.7=0.1 andw ,< a fine-tuning problem. The initial conditions can vary by up
—2/3[3]. This energy is generically called the cosmologicalto 45%; the solutions are still fine and the values of the initial
constant. An interesting parametrization of this energy deneonditions are completely “natural,” i.e., they are of the
sity is in terms of a scalar field with only a gravitational same order of magnitude as the other relevant cosmological
interaction called quintessenp#]. The evolution of the sca- parameters. So, to conclude, one thing is to have a model
lar field has been widely studied and some general apwith no dependence on the initial conditions and another is
proaches can be found [,6]. The evolution of the scalar to have a fine-tuning problem. “Natural” models in physics
field ¢ depends on the functional form of its potentisand ~ should not have fine-tuning problems but they do in general
a late time accelerating universe constrains the form of thelepend on the initial values as it is the case for our models.
potential[6]. However, for any initial conditions we will end up with
In this paper we will concentrate on negative power po-—1swy,<—2/(2+n)=w,, where n gives the inverse
tentials because they lead to an acceptable phenomenologpwer andw,, is the tracker value.
and because they are naturally obtained from gauge group Negative power potential®—11] can be obtained using
dynamics. Negative power potentials have been extensiveline Affleck-Dine-Seiberg(ADS) superpotential[13]. The
studied[4—-11] first in [7] and then as tracker fields [#]. = condensation scald. of the gauge group SW{.) can be
Steinhardet al.[4] showed that a scalar field with a negative determined from the high energy scal&)(using renormal-
power potentiaV=c¢ " with n>5 has already reached its ization group equations in terms &f.,N;, and it is then
tracker solution but is not cosmologically acceptable becauseatural to ask if it is possible to have a common gauge cou-
it has w,>—0.52. However, if the scalar field has not pling unification with the standard modéM) gauge groups
reached its tracker solution by today, we will show that the[11]. We will show that this is indeed possible and we will
models may lead to an acceptable phenomenology and thgve the values oN.,N; where gauge coupling unification is
final results depend on the initial conditions and on the valuechieved.
of n. Contrary to the tracker models, no analytic solution is The cosmological picture in the case of gauge coupling
good enough to determine the valuengf, (from now on the  unification is very pleasing. We assume gauge coupling uni-
subscripto will refer to present day valugand it is sensitive fication at a scale\ for all gauge groupgas predicted by
to the whole dynamics. We will solve the differential equa- string theory and then let all fields evolve. At the beginning
tions numerically and we will constrain the valuesf cos-  all fields, SM and those from the SNf) gauge group, are
mologically viable models, including the big bang nucleo- massless and redshift as radiation until we reach the conden-
synthesis (NS) constraints [12]. We will also give sation scale\.. Below this scale the fields of the SNY)
group will dynamically condense and we use the ADS po-
tential to study their cosmologically evolution. Interestingly
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is close to zero for a long period of time, which may include However, the complete Kahler potentiglis in general not
nucleosynthesis, until very recentlaround onee-fold of  known. The canonically normalized field’ can be defined

inflation). The energy density of the universe is at presenby ¢’ =g(¢, ) with the functiong given by solving the

time dominated by the scalar field wifh,=0.7 and a nega- ierential equatiork §=(g+ ¢g,+ ¢gy)2. For <1 we
tive pressurew, < —2/3 leading to an accelerating universe do not expect any large contributions to the kinetic term but

[S]I'I'he paper is organized as follows. In Sec. Il we give thefo.r ¢~1 the Kahler po_tential could give a significant con-
. ' ” tribution and could spoil the runaway and quintessence be-
general framework to derive the scalar potential gofrom
non-Abelian gauge dynamics using the ADS potential. In
Sec. lll we analyze the cosmological evolutiondfand we
concentrate on the nonattractor regime. We derive analyti
formulas forw ,, and ¢, as functions of the initial conditions . . ) r 112 -
and ofn, and we discuss in detail the possible choices of2lly nqrmﬁlllzed. f'eldgs by ¢’ =(K3)"“¢, the potential in
initial conditions and show that the models do not have aEq' (1) is then given by
fine-tuning problem. In Sec. IV we constrain the values of
in order to havew 4,< — 2/3, while in Sec. V we comment on
the possibility of having models with a gauge coupling con-
stant unified with the couplings of the standard model and
we explicitly give these models. In Sec. VI we give further
examples. Finally, we summarize and conclude in Sec. VII.

havior of ¢. In order to see this, we can expand the Kahler
potential as a power seridé=|¢|2+3;a;|#|%/2i with a
some constants of order 1 and to be determined by the spe-
&ific model. If we approximate, for simplicity, the canoni-

V:(K$)71|W¢|2:C2A§+n¢7n(Kg)7l
:CZAg+n¢/ 7n(K$)n/27l. 2

Forn<2 the exponent term d(ﬁ in Eq. (2) is negative so it
will not spoil the runaway behavior o, but for n>2 the
extra terms could stabilize the potential. In the absence of a
better understanding oK we will work with canonically

In this work we study the quintessence fidktalay ¢  Normalized fields, but we should keep in mind that for
with negative power potentials that arise from a phase tran=2 the results are robust while for>2 the contribution
sition at some stage of the evolution of the universe. Thérom the Kahler potential could spoil our results and must be
energy scale of the phase transition is givenfyand the — determined.
initial value of the scalar fieldp is naturally given byg,
=A. since it is the relevant scale for the transition. The A. ADS potential
potential we will consider is of the type

Il. POTENTIALS OF THE FORM V=cA:*"¢™"

The potential in Eq(1) can be obtained from the nonper-
turbative dynamics of a non-Abelian asymptotically free
gauge group SW.) with N¢ chiral + antichiral fieldsQ in
N=1 supersymmetric theory. At energy scales much larger
than the condensation scale the gauge coupling constant is
small and theQ fields are free elementary fields. As the
universe expands and cools down, the energy of the elemen-
tary fieldsQ becomes smaller while the gauge coupling con-

o ) 4 . stant grows. When the gauge coupling constant has the criti-
transition energy scalé a potentiaV(Ac)=Ac and afield o5 yaiue to condense tH@ fields, then all the elementary

$(Ac)=A are generated. Below, the ¢ field becomes e igs will no longer be free and they will form “mesons”
dynamic and it evolves to its minimum. The cosmological 5,4 “baryons,” as in QCD. This effect takes place at the
evolution depends on the functional form dfand for Eq.  congensation scald, and below this scale the correct de-
(1) with n>0 we expects to roll down its potential. ThiS  scription of the dynamics of the non-Abelian gauge group is

class of potential has been chosen because they can be Gherms of the condensates In order to study the dynamics
iained from a phase transition of non-Abelian gauge d_ynambf these fields we use the ADS superpotential, which is
ics (see Sec. |1 A[13] and because they lead to a quintes-gyact (e, it does not receive radiative or nonperturbative
sence interpretation of the field. However, if some other contributions  and is  given by W(é)=(N

C

physical process also leads to an inverse power scalar poten- 3N~ N¢ =\ TN~ Ny
tial the cosmological evolution studied in Sec. Il and the (A /de{QQ)) ™™™ [13]. In terms of the

conclusions remain valid. gauge singlet combination of chiral and antichiral bilinear
The energy scale\. is expected to be considerably terms¢=(QQ) the globally supersymmetric scalar potential
smaller than the reduced Planck mass,, so the initial is given by Eq.(2) with c=2Njs, de(Qb)=H?';1¢f, and
value ¢; /mp;=A/mp; is much smaller than 1 and this has n=2+4N;/(N.—N;) [9-11].
interesting consequences for the cosmological evolutiah of If we wish to study models with €n< 2, which are cos-
(from now on we will set the reduced Planck mass to 1,mologically favored as we will see in Sec. IV, we need to
m3,=G/8r=1). consider the possibility that not aN; condensates); be-
The normalization of the field is important and we will come dynamic but only a fraction (with Ny=»=1), and
consider, for simplicity, thep field to be canonically normal- we also needN;>N,. It is important to point out that even
ized, Li=(K$) Yd,¢/* with K$=1 and K,=dK/d¢.  though it has been argued that fig>N, there is no non-

V=c?AL g " 1)

with ¢ a constantwe will comment on the value afin Sec.
IV) and has a runaway behavior.

This class of models will have a vanishing potential
=0 for energy scales above, since the phase transition has
not taken place yet and there is o field. At the phase
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perturbative superpotenti®V generated13] this is not al- 4
ways the cas¢l4]. The possibility of havingz# N; can be 3
reached with a gauge group with unmatching numbers of
chiral and antichiral fields or if some of the chiral fields are

also charged under another gauge group. In this latter case 2.
we havec=2v,n=2+4v/(N.—N;), and Ny—» conden-
satezs fixed at their vaccum expectation valM&V) (QQ) 1
=AZ [11]. '

A

=0 N WL,

Ill. EVOLUTION OF ¢ 0.

(6]

\

We will now determine the cosmological evolution of a 5 10 15 20
scalar field¢ with an inverse power potential regardless of N
what physical process caused it. We will concentrate on po- . . .
tentian ghat h£/e not reached the tracker solution yet, silrame FIG. 1. EVOIUt'Qn of\ fﬂr n=1.The vertical line marks the

. O time at{) ,,=0.7 with Nyo5=17.04.
they can give the correct value @f,,, and we will give
approximately analytic solutions fav,, and ¢, . i )

The cosmological evolution ap with an arbitrary poten- constr?nt parametey, . In the parnc_ula}r case given by
tial V(¢) can be determined from a system of differential *1/¢" we findA—0 in the asymptotic limit. If we think the
equations describing a spatially flat Friedmann-Robertsonsc@lar field appears well after Planck times we have
Walker universe in the presence of a barotropic fluid energy~ " Mpi/Ac>1 (the subscripti corresponds to the initial
densityp,, that can be either radiation or matter; they are value of a quantity An interesting general property of these

models is the presence of a maeyold scaling period in
which \ is practically a constant arfd ,<1. Figure 1 shows

H==5(py*tpP,+ #%), the rapid arrival and long permanence of this parameter at its
constant value, together with the final decay to zero. In this

= —3H(p+p) last regime we have\.—0, which implies xy/x<0 and

p pTEh yn/y>0 [6], leaving us withQ,=x?+y?—1 and w,,

) dV( ) =(x?>—y?)/(x*+y?)— —1, which are in accordance with a

¢=—3Hop— W 3 universe dominated by a quintessence field whose equation

of state parameter agrees with positively accelerated expan-
sion. The development d®, can be in agreement with the
restriction of the nucleosynthesis stadg(NS)<0.1[12] as
well as with the observational resik,,= 0.7 (the subscript
o refers to present day quantitje§his can be observed in
Fig. 2, together with the evolution af, which satisfies the
3 3 conditionw 4,<—2/3[3].
- vy 2 2 Cy2_\2 The analysis of inverse power potentials has been exten-
Xn=—3x+ \/;)\y * ZX[ZX Fy(I=xyAl, sively studied[4-11]. However, the analysis has not been
specific enough to determine their viability in describing the
\/> 3 ) s 5 late evolution of our universe. I4] the scalar field was
YNT T\ SAXY T §y[2X Ty, (1=x=y9)], required to track before the present day and this imposes a
constraint om to be larger than 5, thus ruling this model out

whereH is the Hubble paramete,=d¢/dt, andp (p) is the
total energy densitypressurg We use the change of vari-

ablesx= ¢/\/6H andy=\V/\/3H and Eqgs(3) take the fol-
lowing form [15,6]:

3 since it hasw,,>—0.52 in contradiction to the SN1a data.
Hy=— 5 H[2X*+ y,(1=x*=y?)], @
1f=====-="="—=
\
whereN is the logarithm of the scale factay N=In(a), fy ! /
=df/dN for f=x,y,H, y,=1+w,, and A\(N)=—-V'/V 0.5

with V' =dV/d¢. In terms ofx,y the energy density param-
eter is() ;=x*+y? while the equation of state parameter is
given byw,=p,/p,= (x>~ y?)/(x*+y?).

The Friedmann or constraint equation for a flat universe

Qp Wy 0 \

Q,+0,=1 must supplement Eq$4), which are valid for -0.5

any scalar potential as long as the interaction between the \

scalar field and matter or radiation is gravitational only. This -1 Ve [T =
set of differential equations is nonlinear and for most cases 0 3 10 13 20
has no analytical solutions. A general analysis for arbitrary N

potentials was performed i6]; the conclusion there is that FIG. 2. Evolution of) 4 (solid curve andw,, (dashed curvefor
all model dependence falls on two quantiti@¢N) and the n=1. The vertical line marks the time & ,,=0.7.
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ligible values; the third is the so-called scaling period; and in
the fourth(}, is again considerable, eventually reaching the

0.8 L, N value 0.7.

0.6 . . The phase plane-y provides an illustrative approach,
¥ ‘ : useful for the analysis. We see, from Fig. 3, that the system

0.4p - ' follows a circular path at first witk=x?+y?=(Q 4 constant,

0 ol ' and ends up withk?=Q ,>y?. Thenx andy decrease to

negligible values; this situation prevails throughout the scal-
ing period. Finally, a growth in both parameters cau3gdo
-1 -0.5 0 0.5 1 reach what we set as the final value 0.7 preferred by obser-
® vational results. From the restriction over the equation of
FIG. 3. Phase plane-y for n=1. Starting point i50,0.5. The ~ State parametew,<—2/3 and the observational range for
region defined by ,< —2/3 and( 4,=0.7+0.1 is shown. 0 4,=0.7=0.1, we can define a region limited by the ex-
pressionsy?=[(1—w,)/(1+w,)]x* with wz=—2/3 and
The models we will concentrate on are, therefore, modeld” = 40— x> With 0.6<( 4,<0.8.

with n<5 where¢ has not reached its tracker value. ~ The minimal valueyp;, of y after its initial steep descent
For future reference we give now the scaling valukgf  is given from Eq.(4) with yy=0, xX*=Q ;, and\x/3/2=
[4]: —Hyn/H=3y,/2 by
A n/2
¢i+ \/6Qd)i for Q¢|<1/2, ymin:yi<¢_(f> ,
min
= 1 1 Qi
bsc (piJr\/EEJrzlog(l_gI ) for Q4>1/2. n
” ) Pmin= 71604, ®

The scaling value depends only on the initial conditions2nd We have approximatet},,=H; in Eq.(8). Shortly after
Q,; itis independent of\ . ,H;, since¢;<1. The tracker Y reaches its minimum value the scaling period begins. In

value ofw is given by[4] this period we neglect the term proportionalitan Egs.(4)
to find
n
=—1+—o YN Hy

and it is an attractor solution valid for large when ¢ is  which leads toyH=H,,;.Ymin=HiYmin- Notice that the de-

already tracking. In the tracker limit], i.e.,n=5, from Eq.  pendence ok ony andH is given byh=A (yH)?" with A

(6) one hasw;,=—0.28 but the value obtained numerically a constant; therefore from E@9) we have\=const(i.e.,

is only w,= —0.52 for(} 4;>0.25. For smallen the discrep-  ¢=const) during all of the scaling period; this holds for any

ancy is even worse since the scalar field has not reached its Furthermore, we may neglect squared terms andy in

tracker value, obtained from Eq&) and (15), the third equation of systei), since they are small, to get
the expressions

bom /n(2+;1)Q¢o, R0 H=H,e 3"N72

o . y:yminesyVle- (10
which is larger thanpg if €0 ,;<[n(2+n)/18]€ ;.

A semianalytic approach is useful to study some properThe quantityy has an increasing exponential form for almost
ties of the differential equation system given by E@s. To  the whole process, so the duration of this regime can be seen
do this we initially consider only the terms that are propor-as the total timgsee Fig. 4. Now, in order to calculate the
tional to\, sincex>1; then we follow the evolution af,y, number ofe-folds from the initial value to the present day,
andH so that every period has a characteristic set of simpliwe consider Eq(10), to end up with
fied differential equations. The paramefey, is adequate to
divide the process into four periods, the first one being a N —Eln
short lapse in whiclf) ,=const, easy to recognize in Fig. 3; total™ 3
the second is defined from the fall of this parameter to neg-

with yni, given by Eqg.(8) and y,=0.8 (to have Q,,
=0.7W4,<—2/3). The evolution of In(), In(y), and In@H)
'our value of ¢, differs in the case of),>1/2 by a factor of ~ as functions oN is seen in Fig. 4.

Yo ) @

min

1/\/2 from that in[4] and the authors di] useM p;=1 instead of If we consider Eqs(10) and assume that the end of the
mp,=Mp, /\8w=1 as we do. scaling period is very close to today we get an approximated
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—osfi

10
N

15 20

FIG. 4. Evolution forn=1 of In(x), In(y), and In{2,) (dashed,
dotted, and solid lines, respectivilyThe vertical line marks the
time atQ,,=0.7.

equation y,Ho=HpinYmin=HiYi (¢. I émin). This, together
with Eq. (8) and the definition of/?=c?A2/3H?, establishes

an expression foA ., the energy scale at which the scalar

field appears, in terms of, ,H,

NERE
CZ

n/(4+n)
min

12| L)
) (12

and ¢pin=(n/4)\6(1 4. The latter expression is a semiana-

lytic calculation of the initial energy scale of a specific
model. Finally, the valug, is set to be of the order of 0.8 to
satisfy simultaneously ,,=0.7 and the conditiorw ,,<
—2/3.

Of course, we could have guessed express$i@ using
the definition ofy2=(c?A2""/3H2) ¢, " to give[9]

OyO

AC— >

n\ 1/(4+n)
) — H§/(4+ n) , (13)

C
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exact value of¢, Eq. (15 is not very useful. In order to
determine¢, we evolve Eqs(14) and Eq.(4) from present
day values to the scaling regime whewg.~—1 and xsC
<ySC Q 45 With the condition(2 ,,=0.7. This evolution is
model mdependent if §wy+1<1 [16] and from the defi-
nition of y? we have

2

C
§A4+n_yo od’o ychgcd’gm (16)

and we obtain

ySC SC¢SC

ygd’g - ¢ch¢ov (17)

O

where we have used /H~—3(1 Q,)2HIJHE=(1
—Q 00N, and Vo= Q4= Q40 3N (1-Qy,
+Q 400 3*N), AN>1 [16]. Using Egs.(17), (15), and(5)
we can solve easily fop, and/ory, in terms of(2 ,,, n, and
Qi (Via ¢so),

2

. n
$o— Do "~ G Loo=0 (18
or equivalently
nzﬂz n/2
¢
Yo G(Q—_OyZ)> = ¢3Q g0 (19
@0 o}

In order to analytically solve Eq€18),(19) we need to fix
the value ofn, and we can determinw ,, by putting the
solution of Eq.(18) into Eqg. (15). Equation(18) can be re-
written as ¢o= ps(1—n%Q 40/6¢5) "Y" and we see that
bo> dsc and p,>n\ (1 ,4/6 and thate, is of the order of 1
(2 4o~0.7) regardless of the initial conditions. However, the

and the last equality holds approximately since we expect texact value does indeed depend on the initial conditions, but

havey,, ¢, of the order of 1.

Now, we wish to determine the values wf,,, y,, and
¢, . We use the differential equation for,=w,+1 and(},,
[16]

¢0

Q )
-1/,
Ve

3

(7¢)N:37¢(2_7¢)(7\

(QIN=3(7,= 7)) Qy(1=Qy).

We see thaty is extremized awv,=1vy,—1=-1,1 and at
Wy=—1+\ Q #13= —1+n%Q 4/3¢2. We have checked

that the value ot/v¢ at the maximum evaluated &, is a

very good approximatiofwithin 5% of the numerical valye

(14

N0 4o
3¢2

Equation(15) should be compared witf®] which differs by
the factor of( 4,=0.7. Of course, if we do not have the

for any initial conditions we will have- 1sw y,<w, .
If y4=n Q¢0/6¢0<1 one has ¢,=d¢s. and for
the simple cases ofn=1,2, and 4 we can solve

explicitly for ¢o. We find ¢o|n—1= dsd2+ VIPZ+ 6 4o/
6, yo|n 1~ d’sc( 3¢sc+ V9¢sc+6Q¢o) ¢o|n 2
=gt 20 40/3, Yoln—o= 3¢SCQ¢0/(3¢SC+ZQ¢O) and

¢o n= 4_ \/4Q¢0/3+ \/9¢sc+ 1694)0/3 yo|n 4= Q¢o
-807° pol (4Q g0t \/9¢52C+ 16Q 4,), respectively. Notice that
the values Ofpy, Wyo at(Q 4,=0.7 do notdepend orH; or
H, and depend only of 4 (through bso) andn.

We show in Fig. 5 howw,, varies for different initial
conditions ) 4 with n=18/7=2.57 fixed. We see that for
larger(} ,; we end up with a smallew 4, and this is a generic
result as can be seen from E@%8),(5), and(15) since for
larger (), one has a largeps., b, and therefore a smaller
W4o. This can be seen also from Fig. 6 where for snh};

a plateau arises iw, (the field ¢ has already reached its
tracker value by the present dayrom Eqgs.(15),(18) we
notice that for smallen one gets a smallew ,, (see Fig. 7.
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-0.8}] Weee =—0.8
-0.9}i
i — -0.85
-1
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Q
-0.95
FIG. 5. Variations of() 4 lead to different physical situations 1 1.5 2 2.5 3
given byw,,. We have takerf) ,;=0.9,0.25,10'° (dashed, solid, n
and dotted lines, respectivelyThe vertical line marks the time at

FIG. 7. Restriction om from wg<<—0.7 withc=1 and (),

Q40=0.7. =0.35.

A. Initial conditions not have the same values in all cases but depen@ gras

It is well known that an inverse power law potential leads¢@n be seen from Eq$15) and (18). However, the depen-
to attractor solutionf4] that are therefore independent of the deénce on(},; is mild since, for example, fon=1 one has
initial conditions(one has 100 orders of magnitude range forthat ¢, only depends as/Q2,,;. For this reason oncHl, and
Q). However, as pointed out by Steinhaedtal. [4], thisis (4 are fixed we still have a wide range of values (@,
only the case fon>5; for smaller values ofi the field¢ has ~ 9iving the correct phenomenology, i.e\(),=45%. For
not necessarily reached its tracker value at the present tim&4i<1, i.e., y;=CA./H;<1, with a fixed A; one has a
However, even though in these cases the present day qua@rgerH; and the time of expansion up to the present day is
tities depend on the initial conditions there is no fine-tuningalso larger. In this case it is possible that tefield has
problem since we can vary the initial conditions over a widealready reached its tracker value, even for5, and we
range of valuegi.e., 45% and the end results are still physi- Would havew ,,=w;, = —2/(2+n). Indeed, it can be seen
cally acceptable. from Eq. (18) that Q) ,;<1 results ing,~ny 1 4,/6 and in-

The differential equations given in Eq&l) depend on  dependent of the initial conditiorfs=or any initial conditions
values ofx,y, A\=n/¢ but they do not depend on the abso- we will end up with—1<=w  ,<w, .
lute value ofH, i.e., we have the same evolution fqy, H as

for x,y, H' =kH wherek is an arbitrary constant. This scal- IV. QUINTESSENCE RESTRICTION ON n
ing freedom allows us to set the normalizationtbfas we ¢ \zing th . L
wish, and in particular to have 4o=0.7 atH=H, for any Before analyzing the quintessence restriction imposed on

values of the initial conditions; , y; . This implies that we 1 We would like to comment on the value oin the potential
can have a quintessence model for arbitrary initial condiEd- (1. It can take different values with different physical
tions. OnceH, is fixed we getA ,=H2“*" [Eq. (20)] and interpretations.
H.=cAZy, (from the definition ofy;). One of the main For simplicity of argument let us assume thazt V\Qe have no
. . I o S
differences from the tracker solution is thaf,, and ¢, do !".”_e“c energy at th_e bggmnmg and thgj .V' cAc .ZTt:e
initial energy density i() ;= p i /p.. Taking p4=Cc°A¢,

1 — with c=2v, andp,=E* we have that the initial energy den-
0 75 v / / sity is given byQ 4= (2v)?(A./E)*. In this case we see that
0 s ! i / the initial energy density depends on the ratio between the
' 'l : condensation scalé\; and the critical energy densit
0.25 Co / =pl4.
Q Wy 0 ‘l Another possibility is to take 4 =g4T* and pc=gyoT*
-0.25 | whereg;,; andg, are the total and quintessence number of
0.5 f { degrees of freedom, respectively, at a temperafud@a this
075 \\ /f\ ——— 1=~ case we havé) ,;=g,/d: and it depends only on the ratio
NERY, | ~ of quintessence and total degrees of freedom and not on the
5 10 15 20 energy scales. The condensation scale is thép
N =(94/c®)YT andp4=g,T*=Cc?A¢=V;.
FIG. 6. Evolution of Q, and w, for n=1. Parameter, Let us now study the restrictions to the valuesnofin

evolves in a similar way forQ),=0.25 (solid line) and Q both cases mentioned above we get similar restrictions so we
=10"1° (long-dashed ling varying only in the total timeN,,,  Will consider only the first one.

=16.7 or 21.1 in the previous order. A discrepancy between the two

cases af(),,=0.7 is seen for parametav, because it has for

Q,;=0.25 a local maximum withw,,= —0.93 (dotted ling while 2We would like to stress that EqgL8) and(17) are valid only for
for Q4= 10710 (short-dashed linea plateau appears WItW = O0=w,+1<1 and in the tracker regime this condition is no longer
—0.76. The vertical lines mark the time 8t,,=0.7. satisfied.
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TABLE 1. Models with A;=A,. The first five haveAN;
-0.875 <0.05 while the other six havAN;<0.10 discrepancy from an
0.7 integer.
0.725 Number N Ny v n A¢ (GeV)
Wetf -0.75
0. 775 1 3 5.98 1 0.66 & 108
’ 2 6 14.97 3 0.66 69108
0.8 3 7 18.05 4 0.55 161078
-0.825 4 8 5.97 5.97 13.83 1,310
0.3 0.35 0.4 0.45 0.5 0.55 5 8 6.96 3 13.55 78101
Qo1 6 3 1.90 1 5.66 1.810°
FIG. 8. Restrictionw,;<<—0.7 avoided by increasin@ 4 with 7 S 3.91 2 9.38 4%10°
n=3 (c=1). 8 6 5.09 2 10.85 310
9 7 5.08 5.08 12.64 3910t
For a fixedn we take the following conditionsi, mustbe 19 ) 20.90 4 6.75 24107
in the range 0.Z20.1 and(},, must belong to the interval 11 8 21.10 5 0.47 5710°°

0.6-0.8. We can restriat according to different physical
arguments. These restrictions are encountered while numeri-
cally solving the differential system settled by E¢$). The  the energy scale of the phase transition. However, if the in-
first restriction comes from the observational value of theverse power potential EqR) is obtained from a non-Abelian
relevant parametew,,, . The limitw,,<—2/3 can be trans- asymptotically free gauge group then we can relate the con-
lated towe<—0.7 [3]. Notice that in this potentialves;  densation scald . to other energy scales using the renormal-
<W,,, contrary to the general argumeid, and the reason ization group equation. The one-loop evolution of the gauge
is thatw is still growing by today. From this analysis we coupling constant for a SW() gauge group wittN; chiral
find that, in order to satisfy theves; condition,n must be fields gives a condensation scét#rong couplingy~2<1)
smaller than 2.74 as shown in Fig. 7 f6r,=0.25. The
value ofw,, depends not only on but also on( , and it _ —1/2b,g>
decreases¢with increasiy,; . If we fix nand incr(éasél(ﬁi Ac=Ae " 20
we find that examples originally discarded by the<
—0.7 restriction now enter the physically permitted group.
The example witm=3 is depicted in Fig. 8. An equiparti-
tion value of(d; is 0.25 but if we allow); to be as large | o e the original chiral field® are weakly coupled.
as 0.75 then the' rgstrlctlon anis only n<5.2. . Itis well known that the gauge coupling constants of the
A further restr_|ct|0n comes from big bang nUCIeOSynthes'sstandard model become unified at an energy scaler
results that requir€l ,(NS)<<0.1 at the energy scale range of ~10% GeV with a coupling constanggyr~ VAmI257
NS: 0.1-10 Me\M[12]. To account for this either we have to [18] GuT '
consider(,;<0.1 or, for example, ifQ} ,;=0.25 we must '

. S We want to impose gauge coupling unification on our
take out 1.2.n<<2.1 because for this range the initial value . . .
H; lies within the range of values ¢iys. For all the values model, i.e., the coupling of the gauge group responsible for

of n allowed byw,; and NS restrictions, a variation of 45% quintessence should be unified &7 with the standard

on (4 can be performed without disturbing the permanenceg1 Od(ezlo??ggtzgotﬁgﬂ\,ﬂiljgsih'i Xase we r:equwAXén%x \;\? e
in the observed ranges éf, and() . g x=Aeut, 9=Jeur

haveAC=AGUTexp[—1/2)ogéUT]. This is not a necessary
condition but opens the possibility of thinking of the model
as coming from string theory after compactifying the extra

The condensation scal&é. used in Eqg.(1) is from an  dimensions, or of a grand unification scheme where all gauge
elementary particle point of view an arbitrary scale that setoupling constants are unified.

where b,=(3N.—N;)/167? is the one-loop beta function
and A, and g, are the arbitrary energy scale and coupling
constant, respectively, which include the high energy scale

V. UNIFICATION OF GAUGE COUPLING CONSTANTS

TABLE Il. Numerical solutions for different values af with c=1 and(} 4 =0.25.

n Hi (GeV) P:<Lp/i4 (GeV) Ac (GeV) Weo Weft Ntotal
1/2 1.33<10 % 7.48x10°° 3.74x10°° -0.97 -0.98 10.72
213 1.16x10 % 6.99x 108 3.49x10°8 -0.97 -0.98 12.96
1 3.46x10° % 3.82x10°6 1.91x10°° -0.93 -0.95 16.97
2 4.68<10 %2 4.44x10°? 2.22x107°2 -0.77 -0.83 26.33
18/7 1.68<10° 18 2.66 1.33 -0.65 -0.73 30.42
3 3.41x 10716 37.92 18.77 -0.57 —-0.65 33.07
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TABLE llIl. Numerical solutions for different values @2, with c=1 andn=3.

Qg H; (GeV) P A¢ (Gev) Wgo Wes Niotal
1x10°° 5.48x< 10”1 480.90 19.12 —0.55 —0.50 35.69
0.25 3.3410°16 37.54 18.77 —0.57 —0.65 33.07
0.5 2.85¢ 10716 34.68 20.62 -0.76 -0.83 32.88
0.75 3.05¢ 1016 35.88 23.61 -0.88 -0.92 32.75
0.99 51310 16 46.53 32.82 -0.97 -0.98 32.20

Of course, not all values @ ,N; will give an acceptable tion n<2.74 (for ,=<0.25) requiresN{/N.<0.15 and
phenomenology. This is because the cosmological evolutiothereforeN.>7. ForN.=8, N;=1 one han=18/7=2.57,
of ¢ and the gauge coupling unification set independent conand using 24 =0.25 one obtainsw ,,=—0.65, Wq¢i=
strains on the condensation scalg and onN.,N¢. Froma —0.73, ¢,=2.01, N,=30.3, M;=2.3 GeV, and A,
cosmological point of viewA . depends on the inverse power =1.6 GeV, while forN;=7, Ny=1 one hasn=8/3, w,
n [see Eq.(13)], which is a function ofN.,N¢, and from =-0.64, wg;=—-0.71, ¢,=2.04, N,=30.9, M,
gauge unification\ . depends also oN.,N; throughb, [see  =4.2 GeV, and\;=3 GeV. However, these models do not
Eg. (20)]. These two constraints drastically reduce the al-haveA,=A,, i.e., they are not unified with the SM gauge
lowed values ofN.,N¢ and we also requir®ly=1 andN.  groups.
=2 to be integers.

In Table | we give the different values ®.,N;,v for VII. CONCLUSIONS
which we have gauge coupling unification. We can see that
there are only a small number of possible modély. The
first five models have aN; that differs from an integer by
less than 0.05, while the other six models differ at most b
0.10. All other combinations dfl.,N¢,» have a larger dis-
crepancy and do not lead to,= A, . If we further constrain
the models to agree with the cosmological observatioas

We studied negative power potentials and constrained the
initial conditions and the power of the potential to satisfy the
SNla results. Fon larger than 5, the scalar fiel¢ has

y . .
already reached its tracker value amg, is too large. So we
need to concentrate on potentials witkt5 to comply with
SN1la results. We gave a semianalytic solutiowg andA .
in terms ofH,, Q4 , andn and we solved numerically for

W4o<—0.7 requiringn<<5) we are left with only four mod- :
elgo(numbers 1,2,3,11 of Tablg.IAll of these four models some releyant cases. We_ ob_tamed 'Fhe resullw%@tdepends
Lo on (), ,n; it decreases with increasing,; while it becomes

haven<2 and the quantum corrections to the Kahler poten'smaller for largen. If we assume equipartition initial condi-
tial are, therefore, not dangerous. Notice as well that onl

two models(4.9) haves=N; and in both cases>12. Yions withQ 4;<0.25 them is constrained to be smaller than

. : . 2.74; however, if we allow fof) ,;=0.75 the constraint is
As an example of a model with gauge coupling unifica-
. - g - _ relaxed ton<5.2. We have shown that one can vary the
tion we have a gauge groug.=3 with Ny=6 andv=1

W entals & Valu? 213 sccoring G024/, 11 Corions by up b 5% vt poing e coser
—N¢)=2/3[11]. For this model we find, from the numerical 9 b ' Y

4 i X initial conditions we will end up with—1<w  ,<w;, .
solution, a total timéN, 5= 12.96 which does not superpose . $o="0r
on the NS range 19.6-27.2. The, ;< — 0.7 restriction is We have seen that the negative power potentials can be

satisfied withw, (= —0.98 and the condition from experi- derived from the Affleck-Dine-Seiberg potential and in order

. S to avoid problems with the Kahler potential one requines
mental central valuels,=0.7 and() 4,=0.7 is also satisfied, C
. . . < >
taking 0, =0.25. The condensation scale io=4.2 2, which implies thatN;>N_. and that not all condensates

s . ; ; . become dynamicali.e., v#N;). For »=N; one needs
E;%]O GeV. A full analysis of this model is presented in N{/No<0.15 to havew,,,< —2/3. Furthermore, we have
' shown that it is possible to have a quintessence model with
gauge coupling unification for all gauge groups, standard
VI. FURTHER EXAMPLES model and the gauge group responsible for quintessence, but

We have already given some example in the previous sedn® number of models is quite limiteidour).

tions. In Table Il and Il we show the numerical results for

different values oh with initial condition(2 4;=0.25 and for

different initial conditions withn=3 fixed, respectively. This work was supported in part by CONACYT project
Other interesting examples are whersN;. The condi- 32415-E and DGAPA, UNAM project IN-110200.
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