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Conductance and persistent current of a quantum ring coupled to a quantum wire
under external fields
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The electronic transport of a noninteracting quantum ring side coupled to a quantum wire is studied via a
single-band tunneling tight-binding Hamiltonian. We found that the system develops an oscillating band with
antiresonances and resonances arising from the hybridization of the quasibound levels of the ring and the
coupling to the quantum wire. The positions of the antiresonances correspond exactly to the electronic spec-
trum of the isolated ring. Moreover, for a uniform quantum ring the conductance and the persistent current
density were found to exhibit a particular odd-even parity related with the ring order. The effects of an in-plane
electric field were also studied. This field shifts the electronic spectrum and damps the amplitude of the
persistent current density. These features may be used to control externally the energy spectra and the ampli-
tude of the persistent current.
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I. INTRODUCTION

Progress in nanofabrication of quantum devices has
lowed one to study the electron transport through quan
rings in a very controllable way. Interesting quantum int
ference phenomena have been predicted and measur
these mesoscopic systems in presence of a magnetic
such as the Aharonov-Bohm oscillations in the conducta
and persistent currents.1–3 Also, optical spectroscopy mea
surements have allowed a determination of the energy s
tra of closed semiconducting rings.4 Recently, Fuhrer re-
ported magnetotransport experiments on closed ri
showing the Aharonov-Bohm effect on the energy spectr5

On the other hand, the future miniaturization of electro
devices have directed attention to the study of discrete st
tures, such as arrays of quantum dots and also wires
rings at the atomic level.6–8 A recent experiment report
measurements of the conductance through an atomic
placed between two macroscopic contacts, which exhi
odd-even parity behavior.9 This effect was predicted
theoretically,10,11 and arises from the discrete nature of t
system.12 In this article we address a theoretical study of t
transport properties of a quantum ring side coupled to a
fect quantum wire in presence of electric and magnetic fie
The ring may be thought as a chain of quantum dots
atoms.

The problem of a mesoscopic ring coupled to a reserv
was discussed theoretically by Bu¨ttiker,13 in which the reser-
voir acts as a source of electrons and an inelastic scatt
Takai and Otha considered the case where a magnetic
and an electrostatic potential were applied simultaneous14

The occurrence of persistent currents along a normal m
loop connected to two electron reservoirs was a
discussed.15 Moreover the serial of ring attached to a wi
was studied.16 All these works are based on the solutions
the one-electron Schro¨dinger equation for the ring system
and other systems involving rings have been studied with
0163-1829/2003/68~19!/195321~7!/$20.00 68 1953
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tight-binding model.17–20 This formalism allows a detailed
analysis of the variation of the conductance and the per
tent current with the size of the ring.

In contrast to the quantum ring with two contacts, t
transmission through the side-coupled quantum ring cons
of the interference between a ballistic channel~the wire! and
the resonant channels from the quantum ring. Working in
tight-binding formalism, we show that this system develo
an oscillating band with resonances~perfect transmission!
and antiresonances~perfect reflection!. In addition, an odd-
even parity of the number of sites of the ring was foun
Namely, pinning the Fermi energy at the site energy of
quantum ring, if this number is even perfect transmiss
takes place and the persistent current density vanishes
any value of the magnetic flux. If the number is odd t
conductance and the persistent current density oscillate
the magnetic flux. The effects of an in-plane electric fie
applied to the ring on the transport along the wire wavegu
were also investigated. It is shown that the electric fie
modulates the position of the resonances and antiresona
of the linear conductance, and also the period, amplitu
and phase of the persistent current as a function of
magnetic-flux oscillation.

II. MODEL

The system under consideration is a quantum ring oN
atomic sites connected by tunnel coupling to a quantum w
waveguide, as depicted schematically in Fig. 1. A magne
flux is assumed to thread the ring and an electric field app
perpendicular to the wire is also considered. The full syst
is modeled by a single-band tight-binding Hamiltonia
within a noninteracting picture, which can be written as

H5HW1HR1HWR, ~1!

with
©2003 The American Physical Society21-1
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HW52v (
^ iÞ j &

~ci
†cj1cicj

†!,

HR5(
l 51

N

« ldl
†dl2Vc~ei2pwd1

†dN1h.c.!

1 (
l 51

N21

~Vc dl
†dl 111h.c.!,

HWR52V0~d1
†c01h.c.!, ~2!

whereci
† anddl

† are the creation operators of an electron
site i andl in the wire and the ring, respectively,v(Vc) is the
corresponding hopping energy in the wire~ring!, andV0 is
the ring-wire tunneling coupling. The site energies of t
wire and the ring are set at zero and« l , respectively. The
magnetic flux is measured in terms of the elemental quan
flux Fo5hc/e as w5F/F0. We adopt the singular gaug
for the vector potential associated with the magnetic field
which all the effects of the field are included explicitly in th
hopping energy between the first (1) and last~N! sites of the
ring.21

The eigenstates of the wire Hamiltonian (HW) may be
written as

uk&5 (
j 52`

`

eikd ju j &, ~3!

where d is the atomic spacing andu j & denotes a Wannie
state localized at sitej. The dispersion relation associate
with these Bloch states reads«(k)522v cos(kd), where the
wave vectork is defined within the corresponding first Bri
louin zone@2p/d,p/d#.

The stationary states of the complete Hamiltonian@Eq.
~1!# may be written as

uck&5 (
j 52`

`

aj
ku j &1(

l 51

N

bl
ku l &, ~4!

where the coefficientaj
k (bl

k) is the probability amplitude to
find the electron in the sitej ( l ) of the quantum wire~ring! in
the statek.

FIG. 1. Schematic view of the quantum ring attached to qu
tum wire.
19532
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Solving the eigenvalue problem forH one obtains the
following linear set of coupled equations

«aj
k52v~aj 21

k 1aj 11
k !2V0b1

kd j 0 ,

«b1
k5«1b1

k2Vce
i2pwbN

k 2Vcb2
k2V0a0

k ,

«bl
k5« lbl

k2Vcbl 21
k 2Vcbl 11

k for l 52, . . . ,N21,

«bN
k 5«NbN

k 2VcbN21
k 2Vce

2 i2pwb1
k . ~5!

The relationship between the probability amplitudes at
junction is then given by

b1
k5

2D2,N~«!

D̃N~«!
V0a0

k , ~6!

whereD̃N(«) 5det(«I 2HR), andDn,m(«) is given by

Dn,m~«!

5detF «2«n Vc 0 ••• 0

Vc «2«n11 Vc ••• 0

0 Vc ••• ••• •••

••• ••• ••• «2«m21 Vc

0 ••• 0 Vc «2«m

G .

~7!

Following standard methods of quantum waveguide tra
port, one may calculate the transmission coefficient and
tain the probability amplitudesaj

k via an iterative
procedure.22 As usual, electrons are described by a pla
wave incident from the far left with unit amplitude and
reflection amplituder, and at the far right by a transmissio
amplitudet. For a given transmission amplitude, the asso
ated incident and reflection amplitudes may be determi
by matching the iterated function to the proper plane wave
the far left. Fora0

k one gets

a0
k5t5

2ivsin~kd!

2iv sin~kd!2V0
2D2,N~«!/D̃N~«!

~8!

5
D̃N~«!

D̃N~«!1 iGD2,N~«!
, ~9!

whereG(k)[G0 /sin(kd), with G05V0
2/2v. The transmission

probability is given byT5utu2.
The linear conductance at the Fermi level is calculated

the one-channel Landauer formula at zero temperature.
tually, the conductance is the experimentally access
quantity related to the transmission probabilityT,

G~«!5
2e2

h
T~«!5

2e2

h

uD̃N~«!u2

uD̃N~«!u21G2uD2,N~«!u2
.

~10!

-
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FIG. 2. Dimensionless conductance as a fun
tion of u @u5arccos(«/2Vc)# for rings composed
of ~a! 5, ~b! 6, ~c! 11, and~d! 12 atomic sites and
for a magnetic flux equal to 0.3.
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One observes thatG(«) vanishes whenD̃N(«) is zero, and is
equal to 2e2/h for null values ofD2,N(«). One should note
that the zeros ofD̃N(«) correspond to the energy spectrum
the isolated ring. Thus, the energy spectrum of a partic
ring configuration may be obtained by measuring the ze
of the conductance.

In the case of a magnetic flux threading the ring, o
knows that a persistent current is generated through the
cular system. The persistent current densityJ along the ring,
in the energy intervald« around«, is obtained from23

J5
2eVc

\
Im~bl 11* bl !. ~11!

As this quantity does not depend on the sitel, one may
evaluate it between any pair of coupled sites. For simplic
we choosel 51 and 2. It follows from Eqs.~5! that for a ring
of N sites,b2

k is given by

b2
k5V0Vc

~D3,N~«!1cos~Np!e2 i2pwVc
N22!

D̃N~«!
a0

k , ~12!

which together with Eqs.~6!, ~9!, and~11! gives

J52
2ev
\

sin~2pw!
cos~Np!G0Vc

ND2,N~«!

uD̃N~«!u21G2uD2,N~«!u2
. ~13!

It is worth noting that whenD2,N50 andD̃NÞ0, the trans-
mission is perfect (G52e2/h) and the persistent curren
density vanishes. On the other hand, whenD̃N50, the linear
conductance vanishes and the persistent current densit
cillates regularly with the magnetic flux with periodF0.

III. ZERO ELECTRIC FIELD

Let us introduce the dimensionless conductanceg
5G/(2e2/h) and persistent current densityj 5J/(2ev/\).
For zero electric field, we assume here the particular cas
a uniform ring where the ring site energies are« l5«o50
~for l 51, . . . ,N). The dimensionless conductanceg(«) can
19532
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be written in a compact form, which depends explicitly o
the size of the ring,

g~«!5
1

11h~«!
, ~14!

where

h~«!5

S )
i 51

N21

@«22Vccos~p i /N!# D 2

G2

S )
i 50

N21

$«22Vccos@2p~ i 1w!/N#% D 2 . ~15!

The occurrence of resonances@g(«)51# are then expected
at «52Vccos(pi/N) ( i 51, . . . ,N21) and are independen
of the magnetic flux, whereas antiresonances„that is, g(«)
50… take place at energies«52Vccos@2p(i1w)/N# ( i
50, . . . ,N21). Introducing the energy parameter defin

by u5arccos(12 «/Vc), h(«) may be written~see details in
the Appendix! as

h~«!5
~G/2Vc!

2sin~Nu!2

sin~u!2@cos~Nu!2cos~Np!cos~2pw!#2
. ~16!

Results for the conductance as a function ofu are shown
in Fig. 2 for rings of different sizes and considering a ma
netic flux w50.3 andG05Vc . The conductance clearly ex
hibits an oscillating pattern of resonances and antiresona
for particular energies which depend on the number of s
in the ring. As mentioned above, the corresponding antire
nant energies give us the energy spectrum of the ring.
quantum wire conductance dependence on the magnetic
is explicitly shown in Fig. 3 for two values ofN (N511 and
12!, considering a Fermi energy equal to 0.3Vc . The oscil-
latory period of a quantum of flux is found, independent
the ring order, as expected from the analytical expression
the conductance@Eq. ~16!#. This behavior is compatible with
the results found by Shi and Gu for the case of one ring s
attached to leads.16 Let us now calculate the persistent cu
rent density. For a regular ring this reduces to
1-3
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j ~«!5
~G0/2Vc!cos~Np!sin~Nu!sin~u!sin~2pw!

sin2~u!@cos~Nu!2cos~Np!cos~2pw!#21~G/2Vc!
2sin~Nu!2

. ~17!
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One clearly notes thatj is an oscillating function of the Ferm
energyu and of the magnetic fluxw. Moreover, in the limit
G→0 the current density exhibits ad function behavior in
the energies of the isolated ring~this limit corresponds to the
disconnected ring!.

It is straightforward to show from Eq.~16! that when the
Fermi energy is pinned at zero (u5p/2), the dimensionless
conductanceg reduces to

g5
cos~2pw!2

cos~2pw!21~G/2Vc!
2

, N odd,

g51, N even, ~18!

and the corresponding persistent current density is

j 5
~G0/2Vc!sin~2pw!

cos~2pw!21~G/2Vc!
2

, N odd,

j 50, N even. ~19!

Note that for a uniform ring of evenN, perfect transmis-
sion takes place (g51) and the persistent current dens
vanishes (j 50) for any value of the magnetic flux. Th
transmission is perfect in this case because for this en
the electron does not enter the ring~in fact, it can be shown
that its phase remains unaltered!, and therefore the magneti
flux does not play any role in the conductance. This a
explains that the persistent current density is zero. For odN,
the transmission and the persistent current density osci
regularly with the magnetic flux.

FIG. 3. Dimensionless conductance as a function of the m
netic fluxw5F/Fo for rings composed of~a! 11, and~b! 12 atomic
sites.
19532
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The persistent current density as a function of the dim
sionless energy«* («* 5«/2Vc) is depicted in Fig. 4 for two
ring configurations (N511 and 12) for a magnetic fluxw
50.3. The expected oscillatory behavior with the energy
clearly evidenced, as well as the dependence on the mag
flux, as shown in Fig. 5 for the fixed energy«* 50.1, and for
both an odd and an even ring number configuration.

IV. ELECTRIC-FIELD EFFECTS

Within the tight-binding approximation, and assuming
in-plane ring electric field perpendicular to the wire, the d
pendence of the site energy on the field may be expresse

« l5~eEdN/2p!cos„2p~ l 21!/N…

5~eVc!~E* N/2p!cos„2p~ l 21!/N…,

where we define the dimensionless electric field stren
E* 5Ed/Vc . The determinantsD̃N(«) andD1,N(«) are now
calculated iteratively~see details in the Appendix!. Figure 6
shows the dimensionless conductance as a function of
Fermi energy for a ring withN511 sites, magnetic fluxw
50.3, and two electric field values. The main effects of t
electric field are to shift and squeeze the resonances
antiresonances of the linear conductance.

The energy spectrum of an isolated ring (N511) in the
presence of both magnetic and electric field is also analyz
The dependence of the spectrum on the electric field ene
is displayed in Fig. 7~a!, for w50.3, whereas Fig. 7~b! shows

g- FIG. 4. Dimensionless current density as a function of the Fe
energy for rings withN511 ~solid curve! and N512 ~dot line!
atomic sites, for a magnetic flux equal to 0.3.
1-4
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FIG. 5. Dimensionless current density as a function of the m
netic flux for a Fermi energy equal to 0.1Vc and for~a! N511 and
~b! N512.

FIG. 6. Dimensionless conductance as a function of the Fe
energy, for a ring withN511, a magnetic fluxw50.3, and for
distinct electric field intensities,~a! E* 50.05, and~b! E* 50.15.
19532
the explicit dependence on the magnetic flux for an elec
field E* 50.1. One of the main effects of the electric field
the suppression of the Aharonov-Bohm oscillations in
edges of the energy spectra, being as the lowest and hig
lying energy levels are almost independent on the magn
flux. For energies in the center of the energy spectrum n
oscillations with the quantum-flux period are develope
Quite similar results were found before for the case o
finite-width semiconducting quantum ring.24

As expected, the current density is also affected by
electric field. Figure 8 shows the dimensionless current d
sity as a function of the magnetic flux for different values
the electric field. As we can appreciate, the persistent cur
density decreases with the electric field strength. This
shown more clearly in Fig. 9. This figure shows the norm
ized current densityj / j 0 associated with the lowest level o
the energy spectrum as a function of the electric fi
strength for a fixed magnetic flux (j 0 denotes current densit
at zero magnetic flux!. The current density decays expone
tially with the electric-field strength. This way, the electr
field can be used to control the persistent current in quan
rings.

V. SUMMARY

The conductance and the persistent current density, at
temperature, of a side ring attached to a quantum wire w
investigated. We found that the system develops an osci
ing band with antiresonances and resonances arising f
the hybridization of the quasibound levels of the ring and

-

i

FIG. 7. Electronic spectrum of an 11 sites ring as a function
~a! the electric field strength for a magnetic flux ofw50.3, ~b! the
magnetic flux for an electric field strength ofE* 50.1. The energy
is in units of 2Vc .
1-5
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coupling to the quantum wire. The positions of the antire
nances correspond exactly to the electronic spectrum of
isolated ring. For a uniform ring we found that the syste
shows odd-even parity in the conductance and also in
persistent current density. Namely, when the Fermi energ
pinned at zero, if the number of sites in the ring is ev
perfect transmission takes place and the persistent cu
density vanishes for any value of the magnetic field. Wh
this number is odd, the transmission and current density
cillate periodically with the magnetic flux. The effects of a
in-plane electric field were also studied. We found that t
shifts the electronic spectrum and damps the amplitude of
persistent current density. These features may be used to
trol externally the energy spectra and the amplitude of
persistent current.

FIG. 8. Dimensionless current density inN511 sites ring as a
function of magnetic flux for different values of electric field.E*
50.0 ~solid line!, E* 50.1 ~dash line!, E* 50.2 ~dot line!, andE
50.3* ~dash-dot line!.

FIG. 9. Dimensionless current density inN511 sites ring as a
function of electric field strength for fixed magnetic fluxw50.3
~solid line! andw50.4 ~dash line!.
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APPENDIX

We present here the properties of the determinantDn,m(«)
which is defined by Eq.~5!. It is easy to show that the fol
lowing recurrence relation is valid

Dn,m5~«2«n!Dn11,m2Vc
2Dn12,m ,

n51,2 . . . ,m, m53,4, . . . ~A1!

with Dm,m5«2«m and Dm21,m 5(«2«m21)(«2«m)
2Vc

2 . Mainly for a uniform case«m50 for all m’s, the
expression forDn,m[Dn can be found in a explicit form. In
fact, Dn(«) is related with the type-II Chebyshev polyno
mial,

Dn~«!5Vc
nUn~ 1

2 «/Vc!. ~A2!

Then it is straightforward to show that

Dn5Vc
n sin„~n11!u…

sinu
5)

i 51

n

@«22Vccos„p i /~n11!…#.

~A3!

The determinantD̃N can be written in function of the
determinantDn,m as

D̃N5~«2«1!D2,N2Vc
2~D3,N1D2,N21!

22Vc
Ncos~Np!cos~2pw!. ~A4!

In the particular case when«m50 for all m’s, the expres-
sion for D̃N can be written in terms of the eigenvalues ofHN

@« i52Vccos„2p( i 1w)/N…#.

D̃N5)
i 51

N

@«22Vccos„2p~ i 1w!/N…#. ~A5!

Additionally, from Eq.~A2! we can write the determinan
D̃N as a function ofu,

D̃N5«DN2122Vc
2DN222Vc

Ncos~Np!cos~2pw!

52Vc
N@cos~Nu!2cos~Np!cos~2pw!#. ~A6!
1-6
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