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Conductance and persistent current of a quantum ring coupled to a quantum wire
under external fields
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The electronic transport of a noninteracting quantum ring side coupled to a quantum wire is studied via a
single-band tunneling tight-binding Hamiltonian. We found that the system develops an oscillating band with
antiresonances and resonances arising from the hybridization of the quasibound levels of the ring and the
coupling to the quantum wire. The positions of the antiresonances correspond exactly to the electronic spec-
trum of the isolated ring. Moreover, for a uniform quantum ring the conductance and the persistent current
density were found to exhibit a particular odd-even parity related with the ring order. The effects of an in-plane
electric field were also studied. This field shifts the electronic spectrum and damps the amplitude of the
persistent current density. These features may be used to control externally the energy spectra and the ampli-
tude of the persistent current.
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I. INTRODUCTION tight-binding modet’=2° This formalism allows a detailed
analysis of the variation of the conductance and the persis-
Progress in nanofabrication of quantum devices has alent current with the size of the ring.

lowed one to study the electron transport through quantum In contrast to the quantum ring with two contacts, the
rings in a very controllable way. Interesting quantum inter-transmission through the side-coupled quantum ring consists
ference phenomena have been predicted and measured ghthe interference between a ballistic chan(tiee wire) and
these mesoscopic systems in presence of a magnetic fluffle resonant channels from the quantum ring. Working in the
such as the Aharonov-Bohm oscillations in the conductancBght-binding formalism, we show that this system develops
and persistent currents® Also, optical spectroscopy mea- &" oscillating band with resonancégerfect transmission

surements have allowed a determination of the energy spe('il—nd anurgsonance(perfect reflec_t|oh In add|t_|0n, an odd-
tra of closed semiconducting ringsRecently, Fuhrer re- even parity O.f the numbe_r of sites of the ring was found.
ported magnetotransport experiments on closed ringglamely’ pinning th? Fermi energy at the site energy .Of _the
showing the Aharonov-Bohm effect on the energy spettra guantum ring, if this number is even perfect transmission
o . takes place and the persistent current density vanishes for
On the other hand, the future miniaturization of electronic

devi h di q ; h dv of di any value of the magnetic flux. If the number is odd the
evices have directed attention to the study of discrete struG:,,q,crance and the persistent current density oscillate with

tures, such as arrays of quantum dots and also wires anfle magnetic flux. The effects of an in-plane electric field
rings at the atomic levél:® A recent experiment reports anpjied to the ring on the transport along the wire waveguide
measurements of the conductance through an atomic Wirgere also investigated. It is shown that the electric field
placed between two macroscopic contacts, which exhibitgodulates the position of the resonances and antiresonances
odd-even parity behavidr. This effect was predicted of the linear conductance, and also the period, amplitude,
theoretically:®* and arises from the discrete nature of theand phase of the persistent current as a function of the
system*? In this article we address a theoretical study of themagnetic-flux oscillation.

transport properties of a quantum ring side coupled to a per-
fect quantum wire in presence of electric and magnetic fields.
The ring may be thought as a chain of quantum dots or

atoms. o . The system under consideration is a quantum ringNof
The problem of a mesoscopic ring coupled to a reservoigtomic sites connected by tunnel coupling to a quantum wire
was discussed theoretically by @iker,” in which the reser- \aveguide, as depicted schematically in Fig. 1. A magnetic
voir acts as a source of electrons and an inelastic scatterqfyy is assumed to thread the ring and an electric field applied
Takai and Otha considered the case where a magnetic flyerpendicular to the wire is also considered. The full system
and an electrostatic potential were applied simultanedfisly. is modeled by a single-band tight-binding Hamiltonian

The occurrence of persistent currents along a normal metglithin a noninteracting picture, which can be written as
loop connected to two electron reservoirs was also

discussed® Moreover the serial of ring attached to a wire
was studied® All these works are based on the solutions of

the one-electron Schdinger equation for the ring system,

and other systems involving rings have been studied within avith

Il. MODEL

H:HW+HR+HWR! (1)
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Solving the eigenvalue problem fdfl one obtains the
following linear set of coupled equations

Sa}(: _U(a;(—l—’—a;(-kl)_voblié\jO'
eb¥=g,bk—V e'?7¢bf — V bs— V,af,
ebf=g b= Vbl —Vcbf,, for 1=2,... N-1,

ebl=e\by—VcbK_,—V e 127¢bk . (5

The relationship between the probability amplitudes at the

junction is then given by
FIG. 1. Schematic view of the quantum ring attached to quan-

tum wire.
—D,\(e
b';=~2—'“()voa'g, 6)
Dn(e)
Hw=—v > (cfc;+cic)), B
(i) whereDy(e) =det(el —Hg), andD, n(¢) is given by

S Dy m(e)
. &
Hg= >, &dfd,—V(e?¢didy+h.c) nm
=1 " e—e, V. 0o - 0 7
N—-1
V. e—epr1 Ve - 0
+ > (Vedldia+he),
2, (Vedidiythe) el 0
t e—em-1 Ve
HWR: _Vo(d1C0+ h.C.), (2)
| O e 0 Ve £—€m]
wherec] andd/ are the creation operators of an electron at 7)
sitei andl in the wire and the ring, respectively(V.) is the
corresponding hopping energy in the wiring), andV, is Following standard methods of quantum waveguide trans-

th_e ring-wire t_unneling coupling. The site ene_rgies of theport' one may calculate the transmission coefficient and ob-
wire and the ring are set at zero and, respectively. The  ain  the probability amplitudesa® via an iterative
magnetic flux is measured in terms of the elemental quantu'ﬂrocedure’-z As usual. electrons aré described by a plane
flux ®,=hc/e as ¢=>/P,. We adopt the singular gauge \aye incident from the far left with unit amplitude and a
for the vector potential associated with the magnetic field ingqection amplitude, and at the far right by a transmission
which all the effects of the field are included explicitly in the amplitudet. For a given transmission amplitude, the associ-
hopping energy between the first (1) and lagtsites of the 5104 incident and reflection amplitudes may be determined

fing.= _ o by matching the iterated function to the proper plane wave at
The eigenstates of the wire Hamiltoniakl\{) may be the far left. Forak one gets
written as ' 0
© . . 2ivsin(kd) ®
k=2 &I, ® " 2ivsinkd)~V3D,n(e)/Dy(e)
whered is the atomic spacing anfj) denotes a Wannier Dy(e)
state localized at sit¢. The dispersion relation associated =— N , 9
with these Bloch states readgk) = — 2v coskd), where the Dn(e)+iTI'Dyn(e)

wave vectork is defined within the corresponding first Bril-
louin zone[ — w/d, wr/d].

The stationary states of the complete Hamiltonj&mj.
(1)] may be written as

wherel" (k) =T"q/sin(kd), with F0=V§/20. The transmission
probability is given byT =|t|2.

The linear conductance at the Fermi level is calculated via
the one-channel Landauer formula at zero temperature. Ac-

o N tually, the conductance is the experimentally accessible
lgn)= >, a}(|j>+2 b1, (4)  quantity related to the transmission probabillty
j=— =1
2 2 ™ 2
where the coefficiena (bf) is the probability amplitude to Gle)= Zi-r(s): 2e [Dn(e) _
find the electron in the sitgl) of the quantum wiréring) in h h |D\(8)|2+T2Dyn(e)|?

the statek. (10
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of (@) 5, (b) 6, (c) 11, and(d) 12 atomic sites and
for a magnetic flux equal to 0.3.
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One observes th&@ (&) vanishes whed(¢) is zero, and is  be written in a compact form, which depends explicitly on
equal to 2%/h for null values ofD,y(&). One should note the size of the ring,

that the zeros oD (&) correspond to the energy spectrum of

the isolated ring. Thus, the energy spectrum of a particular g(e)=7—r> (14)
. . . - . 1+h(e)

ring configuration may be obtained by measuring the zeros

of the conductance. where

In the case of a magnetic flux threading the ring, one (N—l 2

knows that a persistent current is generated through the cir- H [&—2V.cog mi/N)]| T2
cular system. The persistent current dengiglong the ring, i ¢

i=1
in the energy intervalle arounde, is obtained frorf®

h(e)=

(15

N—-1 2
poy (L[O {s—2Vccos{27r(i+cp)/N]})
J="——"Im(b},,b)). (12)
h The occurrence of resonandgy(e)=1] are then expected
As this quantity does not depend on the diteone may ate=2Vccos@i/N) (i=1,... N—1) and are independent
evaluate it between any pair of coupled sites. For simplicityof the magnetic flux, whereas antiresonan@st is, g(¢)

we choosé=1 and 2. It follows from Eqs(5) thatforaring =0) take place at energies =2V cod2n(i+¢)/N] (i
of N sites,b is given by =0, ... N—1). Introducing the energy parameter defined

by #=arccosbe/V.), h(s) may be written(see details in

(Dan(e)+cogNm)e 12meyii=2) i
b§=Vch 3N - c a(k), (12 the Appendix as
Dn(e) e (T/2V¢)?sin(N§)? 16
which together with Egs(6), (9), and(11) gives (e)= sin( H)Z[COS(NH)—cos(NTr)cos(Zmp)]z' (16)
Jo_ 2ev 5 cogNm)ToVeDop(e) 13 Results for the conductance as a functiordaire shown
T4 sin(2me) |5N(£)|2+F2|D21N(8)|2. in Fig. 2 for rings of different sizes and considering a mag-

5 netic flux ¢=0.3 andl’'y=V,.. The conductance clearly ex-
It is worth noting that wherD, =0 andDy#0, the trans-  hibits an oscillating pattern of resonances and antiresonances
mission is perfect G=2e%h) and the persistent current for particular energies which depend on the number of sites

density vanishes. On the other hand, withp=0, the linear  in the ring. As mentioned above, the corresponding antireso-
conductance vanishes and the persistent current density g3ant energies give us the energy spectrum of the ring. The
cillates regularly with the magnetic flux with perichbl,. guantum wire conductance dependence on the magnetic flux
is explicitly shown in Fig. 3 for two values df (N=11 and
12), considering a Fermi energy equal to 0.3 The oscil-
latory period of a quantum of flux is found, independent of
Let us introduce the dimensionless conductange the ring order, as expected from the analytical expression for
=G/(2€%/h) and persistent current densify=J/(2ev/#). the conductancfEq. (16)]. This behavior is compatible with
For zero electric field, we assume here the particular case afie results found by Shi and Gu for the case of one ring side
a uniform ring where the ring site energies afe=¢,=0 attached to lead. Let us now calculate the persistent cur-
(for I=1,... N). The dimensionless conductangés) can rent density. For a regular ring this reduces to

Ill. ZERO ELECTRIC FIELD
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- (T o/2V,) cog Nar)sin(N ) sin( 6)sin( 27 )
* sirR(9)[ cogN§) —cog Nm)cog 2m¢) 12+ (T/2V,) 2sin(N §)2

j(e) 17

One clearly notes thatis an oscillating function of the Fermi The persistent current density as a function of the dimen-
energyd and of the magnetic fluy. Moreover, in the limit  sionless energy* (¢* =¢/2V,) is depicted in Fig. 4 for two
I'—0 the current density exhibits & function behavior in  ring configurations =11 and 12) for a magnetic flux
the energies of the isolated ririthis limit corresponds to the =0.3. The expected oscillatory behavior with the energy is
disconnected ring clearly evidenced, as well as the dependence on the magnetic
It is straightforward to show from Eq16) that when the flux, as shown in Fig. 5 for the fixed energy =0.1, and for
Fermi energy is pinned at zer@€ 7/2), the dimensionless both an odd and an even ring number configuration.
conductance reduces to

IV. ELECTRIC-FIELD EFFECTS

cog2mgp)?
= > 2 odd, Within the tight-binding approximation, and assuming an
cog2me)+(I'/2Vc) in-plane ring electric field perpendicular to the wire, the de-
pendence of the site energy on the field may be expressed as
g=1, N even, (18

g=(eEdN2m)cod27(I—1)/N)
=(eV,)(E*N/2m)cog2m (] —1)/N),

and the corresponding persistent current density is

(T'of2V¢)sin(2mo) : . . L
|= 5 5 odd, where we define the dimensionless electric field strength
cog2me)”+(I'/2Ve) E*=Ed/V,. The determinant®(s) andD; (&) are now
) calculated iterativelysee details in the AppendixFigure 6
1=0, N even. (19 shows the dimensionless conductance as a function of the
_ . _ Fermi energy for a ring witiN=11 sites, magnetic flux
Note that for a uniform ring of eveN, perfect transmis-  — 3 and two electric field values. The main effects of the

sion_ takes_ placeg=1) and the persistent current density glectric field are to shift and squeeze the resonances and
vanishes [=0) for any value of the magnetic flux. The gniiresonances of the linear conductance.

transmission is perfect in this case because for this energy e energy spectrum of an isolated riny=£11) in the

the electron does not enter the rifig fact, it can be shown  yresence of both magnetic and electric field is also analyzed.
that its phase remains unalteyeend therefore the magnetic The gependence of the spectrum on the electric field energy

flux does not play any role in the conductance. This alsqq displayed in Fig. @), for ¢=0.3, whereas Fig.(B) shows
explains that the persistent current density is zero. FoNydd

the transmission and the persistent current density oscillate

regularly with the magnetic flux. 4 4 —N=11
&
1.0 2
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FIG. 3. Dimensionless conductance as a function of the mag- FIG. 4. Dimensionless current density as a function of the Fermi
netic flux o= ®/®,, for rings composed dfa) 11, and(b) 12 atomic  energy for rings withN=11 (solid curve and N=12 (dot line)
sites. atomic sites, for a magnetic flux equal to 0.3.
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0 ! 2 3 FIG. 7. Electronic spectrum of an 11 sites ring as a function of
(p (a) the electric field strength for a magnetic flux ¢ 0.3, (b) the

magnetic flux for an electric field strength Bf =0.1. The energy
FIG. 5. Dimensionless current density as a function of the magis in units of 2V, .
netic flux for a Fermi energy equal to ®d and for(a) N=11 and

(b) N=12. the explicit dependence on the magnetic flux for an electric

field E* =0.1. One of the main effects of the electric field is
the suppression of the Aharonov-Bohm oscillations in the
edges of the energy spectra, being as the lowest and highest-

m m ﬂ n lying energy levels are almost independent on the magnetic

flux. For energies in the center of the energy spectrum new
oscillations with the quantum-flux period are developed.
Quite similar results were found before for the case of a
finite-width semiconducting quantum rig.

As expected, the current density is also affected by the
electric field. Figure 8 shows the dimensionless current den-
sity as a function of the magnetic flux for different values of
the electric field. As we can appreciate, the persistent current
density decreases with the electric field strength. This is
shown more clearly in Fig. 9. This figure shows the normal-
m 0 | ized current density/j, associated with the lowest level of

1.0- (a) m m

=
i
L

the energy spectrum as a function of the electric field
strength for a fixed magnetic fluy { denotes current density

at zero magnetic flux The current density decays exponen-
tially with the electric-field strength. This way, the electric
field can be used to control the persistent current in quantum
rings.

1.0-. (b) ﬂ ﬂ

dimensionless conductance
[or)
=]

<
tn
1

00 T v T .
15 10 05 00 05 10 15 V. SUMMARY
8 The conductance and the persistent current density, at zero
temperature, of a side ring attached to a quantum wire were
FIG. 6. Dimensionless conductance as a function of the Ferminvestigated. We found that the system develops an oscillat-
energy, for a ring withN=11, a magnetic fluxp=0.3, and for ing band with antiresonances and resonances arising from
distinct electric field intensitiega) E* =0.05, and(b) E* =0.15. the hybridization of the quasibound levels of the ring and the
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g 0.4 APPENDIX

]

__g 0.6 We present here the properties of the determiban(e)

; . : . : , which is defined by Eq(5). It is easy to show that the fol-
290 lowing recurrence relation is valid

o
=
e
w
—
1=
-
h

Dn,m:(S_Sn)Dn+1,m_V(2:Dn+2,ma
FIG. 8. Dimensionless current density M= 11 sites ring as a

function of magnetic flux for different values of electric field*
=0.0 (solid ling), E* =0.1 (dash ling, E* =0.2 (dot line), andE n=12...m m=34,... (A1)
=0.3* (dash-dot ling

with Dym=e—en and Dy_1q =(e—em-1)(e—&py)

—Vg. Mainly for a uniform cases,,=0 for all m's, the
coupling to the quantum wire. The positions of the antireso~ Pression f.OD”vaD” can be found in a explicit form. In

) fact, D,(¢) is related with the type-Il Chebyshev polyno-

nances correspond exactly to the electronic spectrum of thrr-f\1 ial
isolated ring. For a uniform ring we found that the system '
shows odd-even parity in the conductance and also in the
persistent current density. Namely, when the Fermi energy is Dn(8)=VeUp(38/Vy). (A2)
pinned at zero, if the number of sites in the ring is even,
perfect transmission takes place and the persistent current Then it is straightforward to show that
density vanishes for any value of the magnetic field. When
this number is odd, the transmission and current density 0s-
cillate periodically with the magnetic flux. The effects ofan  p = n .
in-plane electric field were also studied. We found that this sind
shifts the electronic spectrum and damps the amplitude of the (A3)
persistent current density. These features may be used to con-
trol externally the energy spectra and the amplitude of the The determinanD, can be written in function of the
persistent current. determinanD, ,, as

SOEDD ] (o 2v,cosmitin+ 1],
=1

Dy=(e—e1)Dan—VE&(Dan+Don-1)

1.0
~ —— ¢=0.3 —2VcogNr)cod 27 ). (A4)
=esy  mm ¢=0.4
& 1\ In the particular case whet},,=0 for all m's, the expres-
= 06- \ sion forDy can be written in terms of the eigenvaluesHf
b= \ [e;=2V.cod27(i+ ¢)/N)].
g \
E 0.4+ \\ N
o N Dy=1] [e—2V.coq2m(i+¢)/N)]. (A5)
E 024 N i=1
() s - _ _
o0 e===ea.. Additionally, from Eq.(A2) we can write the determinant
000 002 004 %006 008 0.0 Dy as a function off,
E
FIG. 9. Dimensionless current density M=11 sites ring as a BNZSDN,l—2V§DN,2—VCNC03N77)003277¢)
function of electric field strength for fixed magnetic flyx=0.3 N
(solid line) and ¢=0.4 (dash line. =2V [cogN6)—cogNm)cog2me)]. (AB)
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