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The existence and stability of discrete breathers is studied theoretically for a model magnetic

metamaterial composed of a periodic binary array of split-ring resonators with resonance frequency

mismatch. It is demonstrated that breathers can be excited spontaneously by frequency chirping of the

driving field, a method that is well suited for experiments.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The contemporary notion of metamaterials includes a wide
range of artificially structured materials that exhibit electromag-
netic properties and functionality unattainable from natural
materials [1–4]. A specific class of metamaterials that exhibit
significant magnetic properties at Terahertz and optical frequen-
cies is represented by the magnetic metamaterials (MMs) [5,6],
which are customarily composed of split-ring resonators (SRRs).
Dynamic control over metamaterials that makes possible the real-
time tuning of their effective parameters is of great importance
for potential applications. Thus, the possibility of dynamically
tuning MMs using nonlinearity has been explored (see Refs. [3,7]
and the references therein), and experiments on second harmonic
generation (SHG) in such materials have been reported [8].
Recently, nonlinear MMs operating in microwave frequencies
which are dynamically tunable by varying the input power have
been realized [9].

The combination of nonlinearity and discreteness in MMs
allows for the excitation of intrinsic localized modes or discrete
breathers (DBs), that oscillate for long times in a localized region of
space and may be produced generically in discrete lattices of
weakly coupled nonlinear elements [10]. Their existence has
been rigorously proved [11], and they can be constructed with
standard numerical algorithms [12,13]. DBs may appear sponta-
neously in a lattice either statistically [14,15] or by a purely
deterministic mechanism that relies on a fundamental instability
for wave propagation in nonlinear media (known as modulational
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instability, MI) [16,17]. Dissipative DBs (DDBs) in particular can be
produced by frequency chirping of an alternating driving field [17].
The existence and stability of DBs in nonlinear SRR-based MM
models, localized either in the bulk [18,19] or at the surface [20,21],
have been demonstrated numerically. Moreover, domain wall [22]
and solitonic excitations [23] may also appear in such systems.

Recently, a novel MM composed of two types of SRRs was
suggested and was demonstrated that in the nonlinear regime it is
suited for the observation of phase-matched parametric interac-
tion and enhanced SHG [24]. In the present work we investigate
the existence of both energy-conserving and dissipative DBs,
which are localized either in the bulk or at the surface of a model
nonlinear MM, composed of a one-dimensional (1D) array of two
types of SRRs [25]. There have been many studies on DBs that can
be excited in binary arrays in different context. A recent example
is that of the study of DBs in binary arrays of weakly coupled
waveguides within the framework of the discrete nonlinear
Schrödinger (DNLS) equation [26,27]. In the context of MMs, the
corresponding dynamic equation (see Section 2 below) modelling
a binary SRR chain is of second order, it includes damping and
forcing terms and, moreover, neighboring elements are coupled
through the second time-derivatives due to the nature of the
interaction. That makes our model radically different than
previously used ones. However, surface DBs in our system are
very similar to those in a DNLS model for a semi-infinite binary
waveguide array [27].
2. Model binary metamaterial

In its simplest version an SRR is just a metallic ring with a slit,
where a capacitance C is built up. Under certain conditions, it can
be treated as a series RLC circuit, featuring an inductive–capacitive
resonance at or C1=

ffiffiffiffiffiffi
LC
p

, with L being the self-inductance of the
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SRR and assuming that Ohmic losses are low ðRC0Þ. An SRR
becomes nonlinear either by insertion of a nonlinear dielectric [28]
or a varactor diode [9,29,30] in its slit. Both ways result in a
voltage-dependent SRR capacitance that can be approximated by
a cubic nonlinearity. The construction of an array of nonlinear
SRRs, that are weakly coupled through magnetic interactions
[18,19,22] results in a nonlinear tunable MM [9]. Consider a 1D
array in the axial geometry (Fig. 1), composed of two types of SRRs,
a and b, with resonance frequencies oa and ob, respectively,
placed at even-numbered and odd-numbered sites of the array
[25]. That nonlinear binary array is placed in an alternating
magnetic field perpendicular to the planes of the SRRs. Then, the
normalized dynamic equation for the charge qn accumulated in
the capacitor of the n-th SRR reads [25]

d2

dt2
½lqn�1þqnþlqnþ1�þg

dqn

dt þo
2
nqn � wo6

nq3
n ¼ e0sinðOtÞ; ð1Þ

where l is the coupling parameter (l40 in the axial geometry), g
is the loss coefficient, w is the nonlinearity parameter, o2

n ¼ 1=d
ðo2

n ¼ dÞ for n an odd (even) integer, with d�oa=ob being the
resonance frequency mismatch (RFM) parameter. The term on
the right-hand side of Eq. (1) is the electromotive force of
frequency O induced in each SRR due to the applied field. The
dispersion of low amplitude magnetoinductive waves [31] in the
binary MM is obtained as [25]

O2
7 ¼

D7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
� 4ð1� 4l2 cos2 kÞ

q

2ð1� 4l2 cos2 kÞ
; ð2Þ

where k is the normalized wavenumber and D¼ dþð1=dÞ.
This dispersion relation has two branches separated by a gap.
For g¼ 0 and e¼ 0, Eqs. (1) can be obtained from the Hamiltonian
H
E

Fig. 1. Schematic of a binary split-ring resonator array.
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Fig. 2. Typical Hamiltonian single-site surface breather profiles at maximum amplitud
H¼
P

nHn, whereHn is the discrete Hamiltonian density, given by

Hn ¼
1
2f
_q2

nþl _qnð _qn�1þ _qnþ1ÞgþVn; ð3Þ

with the nonlinear (cubic) on-site potential

Vn � VðqnÞ ¼
1
2 ðonqnÞ

2
½1� 1

2wo
2
nðonqnÞ

2
�: ð4Þ

3. Hamiltonian breathers

For the construction of DBs for the Hamiltonian (i.e., energy-
conserving) system, the standard algorithm relying on Newton’s
method [11,12] has been employed. We start from the antic-
ontinuous limit, where the coupling parameter vanishes ðl-0Þ, and
construct a trivial breather. For this purpose, we identify the
amplitude qa of a solution of a single SRR and calculate its frequency
oB. For the existence of Hamiltonian DBs it is required that oB and
its multiples do not fall into the linear frequency band(s). For
constructing a trivial breather we set the ‘coordinate’ qn of a selected
SRR, say the one at n¼ nB, equal to qa, i.e., qnB

¼ qa, and all the other
qns’ equal to zero (and also dqn=dt¼ 0 for any n). Then, by
continuation of the trivial DB solution to finite couplings l we can
construct DBs up to a maximum value where they cease to exist.
The DBs formed in this way oscillate with frequency oB. We have
constructed several types of Hamiltonian DBs using Newton’s
method that are localized either at the surface or in the bulk.
Importantly, one can get approximately the same results using
the rotating wave approximation (RWA) [25]. Typical single-site
Hamiltonian DB profiles are shown in Fig. 2 for oB ¼ 0:77
ðTB ¼ 2p=oBC8:16Þ, where we have set qa ¼ 1:7085 and 1:8164
for the DBs localized at odd and even sites, respectively. The one
shown in Fig. 2 a is a true surface DB since it is localized exactly at
the left end of the array ðn¼ 1Þ. The next two (Figs. 2 b and c) be also
characterized as surface DBs, since they are localized very close to
the surface (n¼ 2 and 3, respectively), but actually they are cross-
over states between surface and bulk DBs. Since the DBs shown here
are highly localized, they obtain their bulk form within a distance of
only a few sites from the surface, so that the DB shown in Fig. 2 d
(localized at n¼ 4) can be considered as a bulk DB.
0 0 5 10

n

e in a magnetoinductive binary array for d¼ 0:9, l¼ 0:1, o¼ 0:77, w¼ þ 1
6, N¼ 40.
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4. Dissipative breathers

Construction of DDBs: In typical experiments involving MMs, the
metamaterial is driven by an electromagnetic field of appropriate
polarization which can be chosen so that only its magnetic
component excites an electromotive force in the SRRs. For
constructing DDBs we use the algorithm designed in Ref. [13],
appropriately modified for the case of the binary array. We start
from the anticontinuous limit and identify attractors of the
damped-driven single SRR oscillators. In order to construct trivial
DDBs for the binary array we need to find, for at least one of
the oscillators, two different amplitude attractors. A single
SRR oscillator with cubic nonlinearity has either one or three
attractors. By varying a parameter, the number of attractors can
jump from one to three or vice versa through a pitchfork
bifurcation at some critical value of that parameter. Then, one
stable (unstable) attractor can suddenly split into three attractors,
from which two are stable (unstable) or vice versa. Those
attractors can be obtained accurately with RWA applied to a
single SRR oscillator [25]. For the parameters in Fig. 3 we obtained
for even-numbered SRRs a single stable attractor at qe

1 ¼ 0:5822,
while for odd-numbered ones we obtained two stable attractors at
qo

1 ¼ 1:330 and qo
2 ¼ 0:09968. A trivial DDB localized at n¼ 1 is

constructed as q1 ¼ 1:330, q2n ¼ 0:5822 and q2n�1 ¼ 0:09968
ðn41Þ. Then, by continuation of the trivial DB to finite l we get
DDBs up to l¼ lmaxC0:071. The obtained DDB profiles for
l¼ 0:02 and 0.05 are shown in Figs. 3 a and b, respectively. Two
more profiles, for DDBs localized at n¼ 3 and 19 (both for l¼ 0:02)
are shown in Figs. 3 c and d, respectively. DDB profiles obtained for
a different parameter set are shown in Fig. 4 for several values of l.
In this case we obtained two stable attractors both for even- and
odd-numbered SRRs. Specifically, for even-numbered SRRs we
obtained stable attractors at qe

1 ¼ 1:334 and qe
2 ¼ 0:02286, while

for odd-numbered ones at qo
1 ¼ 4:067 and qo

2 ¼ 0:1602. A trivial
DDB localized at n¼ nB ¼ 19 is now constructed as qnB

¼ � 4:067,
q2n ¼ � 0:02286 and q2n�1 ¼ � 0:1602 ðna ðnBþ1Þ=2Þ, whose
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Fig. 3. Dissipative low-amplitude surface breather profiles at maximum amplitude for

The central breather site is located on an odd-numbered SRR oscillator.
continuation results in the generation of DDBs up to
l¼ lmaxC0:19.

Induction of DDBs through frequency chirping: For a frequency
gapped linear spectrum, some of the linear modes become
unstable at large amplitude. If the curvature of the dispersion
curve in the region of that mode is negative and the lattice
potential is hard then, the large amplitude mode becomes
unstable with respect to the formation of a DDB in the gap above
the linear spectrum [17]. Below we exploit MI in order to generate
spontaneously DDBs in the driven binary array.

For the parameters in Fig. 5, the top of the upper linear band is
located at O0C1:42 where the curvature is negative. Moreover,
the SRRs are subjected to hard on-site potentials for wo0. The
(large amplitude) driver is initiated with its frequency just below
O0 and is then chirped with time to produce enough vibrational
amplitude to induce MI of the uniform mode, which then leads to
spontaneous DDB generation. At the end of the frequency chirping
phase, the driver frequency is well above O0, and only supplies
energy into the formed DDB(s). During that phase, a large number
of DDBs may be generated, which can move and collide and
eventually coalesce into a small number of high amplitude DDBs
that are frequency locked to the driver and, because of that, they
are trapped at particular SRRs. After that, the driving frequency is
kept constant and the high amplitude DDBs (and even some
low-amplitude ones) continue to receive energy falling into a
stationary state. When the driver is switched off all DDBs die out
in a short time interval.

In Fig. 5, the contours of the energy density Hn on the t2n

plane identify the evolution of the DDBs formed by the procedure
described above. There, the chirping phase lasts for
2000T0C8850 time units ðT0 ¼ 2p=O0Þ, where the frequency
varies linearly from Oi ¼ 0:997O0 to Of ¼ 1:020O0. The driver is
subsequently kept at constant frequency Of until it is switched off
after another 2000T0 time units. The upper and lower panels in
Fig. 5 correspond to the regions of the array close to the right and
left ends, respectively, where several DDBs have survived after the
n

λ = 0.05

λ = 0.02

0 0 10 20

0 0 10 20

d¼ 0:8, O¼ 0:92, w¼ þ 1
6, g¼ 0:01, e0 ¼ 0:04, N¼ 40, and l as shown in the figure.



ARTICLE IN PRESS

0

1

2

3

4

q n

10
n

0

1

2

3

4

q n

10
n

λ = 0.055 λ = 0.105

λ = 0.155

20 30 20 30

λ = 0.185

Fig. 4. Dissipative, high-amplitude bulk breather profiles at maximum amplitude for d¼ 2, O¼ 0:5, w¼ þ 1
6, g¼ 0:01, e0 ¼ 0:04, N¼ 40 and different values of the coupling

parameter l as shown in the figure. The central breather site is located on an odd-numbered SRR oscillator ðn¼ 19Þ in the middle of the array.
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Fig. 5. Contours of the energy density Hn for the binary array obtained with

frequency chirping, for d¼ 2, O0 ¼ 1:42, w¼ � 1
6, g¼ 0:001, e0 ¼ 2:85, and l¼ 0:05.

Only the parts of the array ðN¼ 256Þ where breathers exist in the constant

frequency phase of the driver are shown.
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chirping phase. There we observe clearly two high amplitude
DDBs at n¼ 5 and 247, along with some other DDBs of
considerably lower amplitude, that survive until the end of the
constant frequency phase. There are also some other DDBs of even
lower amplitude that are not locked to the driver and die out
during that phase.
5. Concluding remarks

The existence of energy-conserving and dissipative DBs in a
model binary MM with RFM is demonstrated, which can be
localized either in the bulk or at the surface. For the construction
of those excitations we have used standard numerical algorithms
along with the frequency chirping method that has been applied
for DDB generation both in actual experiments and simulations
of micromechanical cantilever arrays [17]. Magnetic metamaterials
are driven by alternating fields and thus it is expected that
dissipative DBs are relevant to these type of experiments when
nonlinearity is present. Since SRR-based MMs with approximately
cubic capacitive nonlinearities have been already constructed,
at least in the microwave frequency range [9], the realization of
a binary array is in principle possible. We propose that an
experiment with frequency chirped applied field can lead to DDB
generation in a fashion very similar to that described above.
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