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Propagation and localization of electromagnetic waves in quasiperiodic serial loop structures
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We study the propagation of electromagnetic waves in one-dimensional quasiperiodic photonic band gap
structures made of serial loop structures separated by segments. Different quasiperiodic structures such as
Fibonacci, Thue-Morse, Rudin-Shapiro, and double period are investigated with special focus on the Fibonacci
structure. Depending on the lengths of the two arms constituting the loops, one can distinguish two particular
cases. (i) There are symmetric loop structures, which are shown to be equivalent to impedance-modulated
mediums. In this case, it is found that besides the existence of extended and forbidden modes, some narrow
frequency bands appear as defect modes in the transmission spectrum inside the gaps. These modes are shown
to be localized within only one of the two types of blocks constituting the structure. An analysis of the
transmission phase time enables us to derive the group velocity as well as the density of states in these
structures. In particular, the stop bands (localized modes) may give rise to unusual (strong normal) dispersion
in the gaps, yielding fast (slow) group velocities above (below) the velocity of light. (ii) There are also
asymmetric loop structures, where the loops play the role of resonators that may introduce transmission zeros
and hence additional gaps unnoticed in the case of simple impedance-modulated mediums. A comparison of the
transmission amplitude and phase time of Fibonacci systems with those of other quasiperiodic systems is also
outlined. In particular, it was shown that these structures present similar behaviors in the transmission spectra
inside the regions of extended modes, whereas they present different localized modes inside the gaps. Experi-

ments and numerical calculations are in very good agreement.
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I. INTRODUCTION

The study of elementary excitations in multilayered struc-
tures with constituents arranged in quasiperiodic sequences
has been an active field of research during the last decade
[1]. Among them, optical waves in quasiperiodic photonic
crystals have received a great deal of attention so as to show
the localization of light incident on dielectric multilayers
[2-14]. These structures have been proposed to design opti-
cal microcavities [15] and omnidirectional reflectors [16] of
practical interest. Recently, it was shown [7] experimentally
that Fibonacci and aperiodic dielectric multilayers with inter-
nal symmetry may have potential applications in multiwave-
length narrow band optical filters and wavelength division
multiplexing systems. Also, it was demonstrated [8] that
these systems can provide an interesting alternative to regu-
lar photonic crystals for the realization of photonic devices,
such as optical filters with a self-similar spectrum and a high
wavelength selectivity in the band edge region. Because of
their noninteracting nature, electromagnetic waves provide
an excellent tool for probing the localization phenomena
[3,4] in comparison with other excitations such as electronic
waves. Until now, as far as we know, mainly electromagnetic
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wave propagation in one-dimensional (1D) quasiperiodic
systems has been studied in 1D Fibonacci lossless multilay-
ered media [3-8].

In the present paper, we consider a different quasiperiodic
photonic crystal made of segments and loops (Fig. 1), called
a Fibonacci loop structure (FLS). Such a structure may
present similar results to those of layered media for sym-
metrical loops. However, the results are quite different for
asymmetrical loops as the latter may introduce transmission
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FIG. 1. (a) and (b) Schematic illustrations of the A and B blocks
from which the Fibonacci structure is composed. Each block A (B)

*Corresponding author. Electronic address: is constructed from a loop of length d;+d, (d;+ds) connected to a
Abdellatif. Akjouj @univ-lille1.fr segment of length d3 (dg).
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zeros and hence new gaps in the transmission spectrum un-
noticed in layered media. Also, when the media constituting
the FLS are made of standard coaxial cables of the order of
I m with small cross sections, the propagation becomes
monomode and one can obtain very accurate experimental
results that may be fitted with a simple 1D theoretical model.
In two recent papers [17,18], we have presented these results
in the case of periodic loop structures (PLSs) made of co-
axial cables. In particular, we have shown that these struc-
tures may present large stop bands and are good candidates
for photonic band gap (PBG) materials [19]. In addition,
measurements of the amplitude and the phase of the trans-
mission enabled us to deduce several properties of the wave
propagation through such structures, such as dispersion
curves, phase times, or equivalently density of states, as well
as group velocities. We have also shown that the introduction
of a single defect in the PLS gives rise to well-defined defect
modes inside the band gaps in the transmission spectra.
Based on the above knowledge in periodic loop structures,
the object of this paper is to put emphasis on similar phe-
nomena in quasiperiodic loop structures which have not been
investigated before. The results are also compared with those
of the periodic structures obtained before. In particular, we
show that besides to extended modes that characterize peri-
odic structures, quasiperiodic systems may exhibit new
modes showing self-similarities in the amplitude and the
phase of the transmission spectrum. These modes are related
to the quasiperiodicity of the system and are without analog
in periodic systems.

In a recent work [20], Zhang et al. studied theoretically
and experimentally three-dimensional PBG systems formed
by segments and symmetrical loops made of coaxial cables
arranged in a diamond structure. In addition to the Anderson
localized state observed in random structures, defect modes
are introduced in the gap by changing the length of one loop
in an ordered network. However, the peak associated with
the defect mode is not well defined because of the dissipation
in the cables. In this article, we show that a 1D structure
made of segments and loops may clearly show the origin of
the band gap of Fibonacci structures as a function of the
different lengths of segments and loops. In addition, we
show that in addition to the transmission amplitude, an
analysis of the transmission phase time enables us to deter-
mine the density of states as well as the group velocities in
these structures. The quasiperiodic structures are generally
formed as substitutional sequences built of two different
building blocks A and B. One of the well-known examples is
the Fibonacci sequence S;,;=S§;S;_; with the initial condi-
tions S;=A, S,=AB, where j is the generation number. For
example S;=ABA, S,=ABAAB, Ss=ABAABABA,... and the
number of building blocks A and B in the infinite order se-
quence is equal to the golden mean number 7=(1++v5)/2 for
large j. In this work, we consider that the block A (B) is
constructed of a loop of length d, +d, (d,+ds) connected to a
segment of length d5 (dg) (all the six lengths are considered
to be different from each other; see Fig. 1). Let us notice that
some preliminary results of this work are presented else-
where [21].

The theoretical system developed here falls within the
framework of the Green’s function method, which we recall
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briefly in Sec. II. Section III is devoted to a numerical dis-
cussion of the theoretical results and the comparison to the
experimental measurements of the electromagnetic transmis-
sion spectra through a finite FLS composed of standard co-
axial cables. A comparison of the Fibonacci transmission am-
plitude and phase time with those obtained in other
quasiperiodic structures is illustrated in Sec. I'V. Finally some
conclusions are drawn in Sec. V.

II. METHOD OF THEORETICAL AND NUMERICAL
CALCULATION

A. Interface response theory of continuous media

Our theoretical analysis is performed with the help of the
interface response theory of continuous media [22], which
allows calculating the Green’s function of any composite
material. In what follows, we present the basic concept and
the fundamental equations of this theory [22]. Let us con-
sider any composite material contained in its space of defi-
nition D and formed out of N different homogeneous pieces
located in their domains D;. Each piece is bounded by an
interface M, adjacent in general to j (1 <j<J) other pieces
through subinterface domains M;;. The ensemble of all these
interface spaces M; will be called the interface space M of
the composite material. The elements of the Green’s function
g(DD) of any composite material can be obtained from [22]

g(DD) = G(DD) - G(DM)G™ (MM)G(MD)
+G(DM)G ' (MM)g(MM)G™ (MM)G(MD),
(1)

where G(DD) is the reference Green’s function formed out
of truncated pieces in D; of the bulk Green’s functions of the
infinite continuous media and g(MM) is the interface ele-
ment of the Green’s function of the composite system. The
inverse of g(MM) is obtained as a superposition of the dif-
ferent [g;(M; M)]"', where g,(M; M, is the interface
Green’s function for each constituent i of the composite sys-
tem [22]. Knowledge of the inverse of g(MM) is sufficient to
calculate the interface states of a composite system through
the relation [22]

det[g~'(MM)]=0. (2)

Moreover if U(D) represents an eigenvector of the refer-
ence system, Eq. (1) enables the calculation of the eigenvec-
tors u(D) of the composite material and

u(D)=U(D) - UM)G"(MM)G(MD)
+UM)G (MM g(MM)G™\(MM)G(MD). (3)

In Eq. (3), U(D), U(M), and u(D) are row vectors. Equa-
tion (3) provides a description of all the waves reflected and
transmitted by the interfaces, as well as the reflection and
transmission coefficients of the composite system. In this
case, U(D) is a bulk wave launched in one homogeneous
piece of the composite material [23].
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B. Inverse surface Green’s functions of the elementary
constituents

We consider an infinite homogeneous isotropic dielectric
wire i characterized by its characteristic impedance Z;. The
Fourier transformed Green’s function between two points x
and x' of this wire is

iZ ,
Gilx,x') = Ll 4)
2
with
w —
a;=—j—g;, (5)
C

where ¢; is the relative permittivity, w the angular fre(&ency
of the wave, c¢ the speed of light in vacuum, and j=v-1.

Before addressing the problem of a FLS, it is helpful to
know the surface elements of its elementary constituents,
namely, the Green’s function of a finite segment of length d;,
of a loop (k,I) made of two wires k and [ of lengths d; and d,,
respectively, and of a semi-infinite wire s. The finite segment
is bounded by two free surfaces located at x=-d,;/2 and x
=+d;/2. These surface elements can be written in the form
of a (2X2) matrix g;(MM), within the interface space M,
={-d;/2,+d;/2}. The inverse of this matrix takes the follow-
ing form [23]:

G L
ZiSi ZiSi
Lol =| T, ©)

for the segments i=3 in the block A and i=6 in the block B
(Fig. 1).
In the same way, the inverse of the Green’s function of the
loop (k,1) is obtained as [23]
o C, 1 1
=L _ _
LSk ZiS LSk ZiS
1 1 o C,
= Zk =
LS LS LSy ZiS,
where (k,I)=(1,2) in the block A and (4,5) in the block B
(Fig. 1). C;=cos[(w/c)Ve;d;] and S;=sin[(w/c)Ved;] in Egs.

(i (MM)] ™ = . (D

-2jg; ' (L,r)/Z,
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(6) and (7). The inverse of the surface element of a semi-
infinite waveguide s characterized by its impedance Z; is
given by

g

[¢,(0,0)]" =~ Z

(8)

From Eq. (7) one can deduce that a symmetric loop made
of identical wires of lengths d;=d; and impedances Z;=Z, is
equivalent to a single segment of length d; and characterized
by the impedance Z;/2. Therefore, each block (Fig. 1) be-
comes equivalent to two different segments connected to-
gether (bisegment). Experimental evidence of the existence
of band gaps and defect modes in 1D periodic photonic sys-
tems constructed by two alternative coaxial cables of differ-
ent characteristic impedances was presented recently [24,25].
However, the advantage of the symmetric loop structure lies
in the fact that it is not necessary to have two segments of
different nature to realize the contrast between the two con-
stituent media of each block. This property could be of po-
tential interest in optical waveguide structures.

C. Transmission coefficient

The 1D FLS waveguide can be considered as a finite
number of blocks A and B pasted together according to the
Fibonacci sequence. The interface domain is made of all the
connection points between finite segments and loops. Within
the total interface space of the finite FLS, the inverse of the
matrix giving all the interface elements of the Green’s func-
tion g is a finite tridiagonal matrix formed by linear super-
position of the elements [g,(MM)]™' [Eqgs. (6) and (7)]. The
explicit expression of the Green’s function elements of the
finite FLS may be written as

g (€.0) g}lW))

9
g (r0) g;'(r.r) ©

g7 (MM) = (
where the labels € (left) and r (right) refer to the two inter-
faces bounding the FLS. The four matrix elements are real
quantities, functions of the different elements of the constitu-
ent’s elements g;,(MM) [Egs. (6) and (7)]. If the finite com-
posite system is connected on both sides to two homoge-
neous waveguides labeled s, then an incident plane wave
launched from the left waveguide gives rise to the transmis-
sion function in the right waveguide as

Cr= .
T g 008 () - [g7 (LN - (1122 - jlg7 (6,0 + g7 (. VZ,

The transmission function can be written in an explicit
complex form as Cy=a+ jb=\Te/? where T is the transmis-
sion coefficient, ¢=arctan(b/a)+m1r is the phase associated
with the transmission field, and m is an integer. The first
derivative of ¢ with respect to the frequency is related to the

(10)

delay time taken by the wave to traverse the structure. This
quantity, called phase time, is defined by [26,27]

de
T¢=£.

(11
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From Egs. (10) and (11), one can deduce that the phase
time can be written as

d
T‘P = E arg{g;l(€,€)g;1(r’ V) _ [g]:l(g,r)]Z _ (I/Zé)z

d
— g7 (60 + g7 () VZJ ™" + -~ arglg; (€.1)].

(12)

Furthermore, the density of states (DOS) of the present
composite system from which we have subtracted the DOS
of the same volumes of the semi-infinite waveguides s is
given by [22,27]

1 d
An(w) = . arglg; ' (€,0)g;' (r,r) = [g7 (6,1 = (1/2,)

- jle; .0 + g5 (r) Yz (13)

From Egs. (12) and (13) one can deduce two cases, as
follows.

(i) The case of symmetrical loop structures that do not
present transmission zeros [i.e., g}l(f,r)vﬁo in Eq. (10)].
Then arg[g;l(&r)]:O and 7,=7A,(w).

(ii) The case of asymmetrical loop structures, where trans-
mission zeros occur at some frequencies we denote by w,
[ie., g;1(€,r)=0 in Eq. (10), n=1,2,...]. Then the transmis-
sion coefficient changes sign at w, and its phase exhibits a
jump of . In other words, the second term at the right-hand
side of Eq. (12) becomes [28]

d d
o arelg ()] =7, sgn(a[g}l(f ,r)]mmn) S~ w,)

(14)

where sgn means the sign function. This result means that
7,7 mA,(w) as 7, [Eq. (12)] may exhibit & functions at the
transmission zeros that do not exist in the variation of the
DOS [Eq. (13)]. Both of these cases (i) and (ii) will be illus-
trated below in relation to symmetric and asymmetric FLSs,
respectively.
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III. NUMERICAL AND EXPERIMENTAL RESULTS

For the sake of simplicity, we have limited ourselves to
the case of media constituting a FLS made of standard
coaxial cables [ie., Z;=Z=50 and g=£=23 (i
=1,2,...,6)]. Also in order to understand the effect of seg-
ments and loops in the FLS, we shall emphasize two particu-
lar cases.

(1) The case where the loops in each block are symmetri-
cal and identical (i.e., d;=d,=ds=ds=d=1 m) while the seg-
ments are supposed to be different (we labeled d;=d, in the
block A and dg=djy in the block B) (see Fig. 1). This struc-
ture is equivalent to the one studied in Ref. [29] where each
block is composed of a bilayer (see also Sec. II B).

(2) The case where the segments are considered to be
identical (i.e., d3=ds=d=1 m) whereas the loops are sup-
posed to be different. We have kept a symmetrical loop in the
A block (i.e., dj=d,=d=1 m) and chosen an asymmetrical
loop in the B block (i.e., dy # ds# 1 m, without changing the
total length of the loop ds+ds=2 m) (see Fig. 1).

A. Case of symmetrical and identical loops in A and B blocks

As mentioned in Sec. II B, the symmetrical loops in A and
B blocks are equivalent to segments of the same length d
=1 m but with half impedance Z/2=25 (), while the seg-
ments in A and B blocks have different lengths, dy=1 m in
block A and dg=2 m in block B, and are characterized by the
same impedance Z=50 (). Figures 2(a)-2(e) show the trans-
mission coefficient for the generations S (three blocks), S,
(five blocks), S5 (eight blocks), S¢ (13 blocks), and S; (21
blocks), respectively. The solid curves represent the theoret-
ical results whereas the dotted curves correspond to the ex-
perimental ones. The experiments were performed using
standard coaxial cables assembled together with metallic
T-shaped connectors. The cross section of the cables being
negligible compared to their length and to the propagation
wavelength, the assumption of monomode propagation is
then satisfied. The transmission measurements have been re-
alized by using the tracking generator coupled to a spectrum
analyzer in the frequency range of 10—300 MHz. The attenu-
ation inside the coaxial cables was simulated by introducing
a complex relative dielectric permittivity (e=¢’—je"). The
attenuation coefficient ¢’ can be expressed as ’=&"w/c. On
the other hand, the attenuation specification data supplied by
the manufacturer of the coaxial cables in the frequency range
of 10-300 MHz can be approximately fitted with the expres-
sion In(a”)=a+b In(w), where a and b are two constants.
From this fitting procedure, a useful expression for &” as a
function of frequency can be obtained under the form &”
=0.017f7% where the frequency f is expressed in hertz. The
experimental results are very well fitted by the 1D model
using the Green’s function method. One can notice in Fig. 2
that for a given generation the attenuation inside the cables
induces transmission depletion especially at high frequen-
cies. Two regions of frequencies may be distinguished in
Figs. 2(a)-2(e): the regions where the transmission falls
down rapidly to zero as the generation number increases
[these regions correspond to the forbidden modes (gaps)] and
the regions where the transmission is more noticeable around
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FIG. 3. Theoretical (a) and experimental (b) variations of the
transmission coefficient versus the number of blocks in each gen-
eration for three frequencies 100, 200, and 300 MHz lying inside
the middle of the bulk bands of Fig. 2.

0, 100, 200, and 300 MHz [these regions correspond to the
allowed modes (bands)]. In the middle of the gaps around
50, 150, and 250 MHz appear some peaks as defect modes.
The frequencies of these modes are independent of the gen-
eration number, whereas their intensities increase as function
of the generation number, presenting a maximum value at the
fifth generation and then decreasing for higher generations. It
is worth noticing that in the absence of absorption, this maxi-
mum occurs for the fifth and eighth generations as well as for
higher generations with a step of order 6 (i.e., the 11th and
14th generations respectively). On the other hand, the trans-
mission inside the bands decreases as the generation number
increases as can be seen in Fig. 3 where we have plotted the
transmission versus the block numbers for three frequencies
100, 200, and 300 MHz lying in the middle of the bands. The
transmission decreases exponentially as a function of the
number of blocks in each generation and falls down to zero
(30 dB) beyond the tenth generation. This effect is due to
the absorption inside the cables [30] which limits the study
of high generation structures.

In order to understand the spatial localization of the dif-
ferent modes in Fig. 2, we plotted in Fig. 4 the calculated
local density of states (LDOS) as a function of the space
position x for two frequencies 50 and 80 MHz belonging,
respectively, to defect modes and bulk bands of Fig. 2(c)
(fifth generation). The LDOS reflects the square modulus of
the electric field inside the structure. As expected, the mode
lying inside the band (f=80 MHz) shows a propagating
character (extended mode) in the whole structure [Fig. 4(b)],
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FIG. 4. The theoretical local density of states
(in arbitrary units) as a function of the space po-
sition for two frequencies (a) 50 and (b) 80 MHz
belonging to narrow and large bands of Fig. 2(c),
respectively.

FIG. 5. Theoretical (solid
curves) and experimental (dotted
curves) variations of the transmis-
sion coefficient as a function of
the frequency for different struc-
tures. (a) The periodic structure
made of only A blocks. (b), (c),
(d) Same as (a) when one, three,
and four A blocks are substituted
by B blocks, respectively. (e)
Same as (a) but for a periodic
structure with only B blocks.
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whereas the mode associated with the peak inside the first
gap (f=50 MHz) shows a strong localization in the B blocks
and in particular in the segment regions of length dp=2 m
[Fig. 4(a)]. The same results are obtained for the other gen-
erations. These results clearly show that the modes inside the
gaps are localized modes induced by the different segments
inside the B blocks (see also the discussion of Fig. 7 below).
The experimental verification of the nature of the defect
modes inside the gaps is presented in Fig. 5. Figure 5(a)
presents the transmission coefficient of a periodic structure
made of only A blocks (8A4). It can be seen that the band gap
structure does not show any features inside the gaps. Now,
by substituting one A block in the structure by one B block
[Fig. 5(b)], small defect peaks appear in the middle of the
gaps. By increasing the number of B blocks substituted in the
periodic 84 blocks [Figs. 5(c) and 5(d)], other modes detach
from the allowed bands and fall inside the gaps, giving rise
to new ordered bulk bands when all the A blocks are replaced
by the B blocks [Fig. 5(e)]. These results show that the trans-
mission coefficient of the Fibonacci structure [Fig. 5(c)]
composed of binary A and B blocks may be considered as an
intermediate one between those associated with finite peri-
odic systems formed by A blocks and by B blocks, respec-
tively.

The existence of localized waves in FLSs may be used as
a tool to reduce the group velocity of waves in such struc-
tures. Indeed, as was argued recently [31], the presence of a
single defect in an otherwise periodic system made of two
alternating different coaxial cables may reduce considerably
the group velocity in a narrow frequency band below the
normal propagation speed in the cables. Now, by introducing
more than one defect in these structures as in Fibonacci sys-
tems, one can obtain a narrow frequency band where the
velocity may be slower. These results are illustrated in Figs.
6(a)-6(k) where we have plotted the phase (top panel), the

50 100

phase time 7, (middle panel), as well as the group velocity
v=LIT, [3210 (bottom panel) versus the frequency for three
structures: the 8A blocks [Figs. 6(a)-6(c)], the fifth Fi-
bonacci generation [Figs. 6(d)-6(f)], and the 8B blocks
[Figs. 6(g)-6(k)]. L is the total length of the finite structure,
i.e., the sum of the lengths of the A and B blocks constituting
the structure (see Fig. 4 for the fifth generation). As demon-
strated in Sec. I C, symmetric loop structures do not exhibit
transmission zeros and hence the phase of the transmission
increases monotonically as function of the frequency (top
panel of Fig. 6). Consequently, the phase time (middle panel)
is equivalent to the density of states in these 1D photonic
crystals and the group velocity is equivalent to the inverse of
the density of states [32]. In the case of periodic structures
[Figs. 6(a)-6(c) and 6(g)-6(k)], an anomalous dispersion oc-
curs inside the gaps and superluminal velocities are expected
such that 3¢ <v,<3.5c [18,25]. This result is not at odds
with either causality or the Einstein theory of special relativ-
ity, because it results exclusively from interference between
the different frequency components of the pulse in an
anomalous dispersion region [25]. Inside the passbands, the
group velocity is equal to 0.66¢, which is the normal speed
of wave propagation in the cables used in these experiments.
In the case of a FLS [Figs. 6(d)-6(f)], the structure is disor-
dered, which induces large phase times inside the gaps [Fig.
6(e)] and therefore small group velocities (v,~0.3c) lower
than the normal speed in the cables [Fig. 6(f)]. This value is
the same as the one found by Munday and Robertson [31] in
different coaxial cable structures. The slower group velocity
may be explained by the time spent by the photon (trapping
time) inside the segments of the B blocks (cavities) before its
transmission. Another interesting result in Fig. 6 concerns
the behavior of the phase time and the group velocity near
the band gap edges. Indeed, it is well known that in infinite
1D periodic systems, the density of modes approaches infin-
ity at the band edge and the group velocity becomes very
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small. In a finite system, however, the electromagnetic mode
density is an oscillating function rather than a monotonic
function [Figs. 6(b) and 6(h)]. The enhancement of the phase
time (density of states) at the band edges induces a small
group velocity (v,~0.2¢) [Figs. 6(c) and 6(k)] which has
been shown to be of potential interest in application to band
edge loss and optical delay lines [33]. In the case of a FLS
[Figs. 6(e) and 6(f)] the phase time and the group velocity
present similar behaviors at the band edges. However, it was
shown recently [8] that the band edge resonances in periodic
photonic systems are not localized states since their exten-
sion scales linearly with the system size and they do not
decay to zero. In contrast, the Fibonacci band edge reso-
nances will decay via a power law due to their critically
localized nature.

In order to show the effect of the length of the segments
in the B blocks, we have plotted in Fig. 7(b) the theoretical
dispersion curves (the frequency f as a function of dj) for the
fifth generation. All other wires in the loops and segments
are supposed to be of identical length (d=1 m). These fre-
quencies are obtained from the maxima of the phase time
(density of states). Figure 7(c) gives an enlargement of Fig.
7(b) in the frequency region below 100 MHz. The open
circles correspond to the frequencies obtained from the
maxima of the experimental phase time as shown in Fig. 8
for a few values of dg. The arrows on the frequency axis in
Figs. 7(b) and 7(c) indicate the limits of the gaps of the
periodic structure (dg=1 m). Figures 7(b) and 7(c) clearly
show that the bulk modes are weakly dependent upon dj,
while the defect modes display a strong variation with this
length. The localized modes emerge from the bulk band, de-
crease in frequency when dp increases, and finally merge into
a lower bulk band. The evolution of the three localized
branches inside the gap is shown by vertical arrows in Fig. 8.
At each frequency inside the gaps of Figs. 7(b) and 7(c),
there is a periodic repetition of the localized modes as a
function of dp. This is due to the fact that the functions
involving the variable dj are periodic functions [see Eq. (6)].
Figure 9 presents the same results as Fig. 8 but for the trans-
mission coefficient. One can notice that the three branches
inside the gap are not well distinguished one from each other
as was the case for the phase time (Fig. 8).

Until now, we have shown that FLSs present similar re-
sults as periodic loop structures, but with additional features
inside the gaps. These resonances present a certain recursive
order which is a characteristic of Fibonacci systems. This
property, called the scaling relation [2,3], has been inter-
preted as a sign for localization of the waves in Fibonacci
systems. Kohmoto et al. [2] have shown the existence of an
invariant / which remains constant at every step of the recur-
sive procedure. In the present system, this expression is
given by [29]

! 1<ZB ZA>2'2( sdic)sinlwe(dy - d,)/c]

= — - — S / Sin / - B

Az, 7, in“(w\ed/c)sin[ w\e(dy — d,)/c
(15)

where Z,=25 Q) and Zz=50 Q) are the impedances of the
loops and segments, respectively. Also, it has been demon-

PHYSICAL REVIEW E 72, 056601 (2005)

A B A A B A B A

Frequency (MHz)

0
100 e

Frequency (MHz)
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FIG. 7. (a) Schematic illustration of the fifth Fibonacci genera-
tion. (b) Projected band structure: frequency as a function of the
segment length dg=dp. The other parameters are the same as in Fig.
2. The dots are obtained from the maxima of the theoretical phase
time. (c) The same as (b) but enlarged in the frequency region
below 100 MHz. The open circles correspond to the frequencies
obtained from the maxima of the experimental phase time. The
arrows on the frequency axis show the limits of the gaps of the
periodic structure composed of only A blocks (dg=1 m). The
modes around the frequencies 10, 100, 200, and 300 MHz corre-
spond to the extended modes, whereas the modes falling inside the
gaps represent localized modes.

strated [2,3] that one can expect scaling around &= wv\ed/c
=wve(dy—dg)/c=(m+1/2)m where the quasiperiodicity is
most effective (m is an integer). This implies that the trans-
mission coefficient should exhibit a self-similar behavior
around the central frequency f.=(2m+1)49.4 MHz with
T;3=T; (the period of the transmission coefficient is three
recursion). The scaling behavior of the transmission coeffi-
cient is characterized by the scale factor [2,3]

F=\1+4(1+D%+2(1+1). (16)

For the central frequency f.=(2m+1)49.4 MHz, I
=0.526 and thus F=6.4061. Figures 10(a)-10(d) (left panel)
show the transmission coefficient for the generations Ss, Sy,
Sg, and Sy, near f.. Note the scale change of the frequency
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d) time as function of the frequency for a few values
of dg. The vertical arrows indicate the evolution
of the positions of the three branches lying inside
the first gap.
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axis in Figs. 10(a) and 10(b) and Figs. 10(c) and 10(d). Sur-
prisingly, we remark that Sy (Sg) and S, (S,4) resemble each
other near f. with a periodicity of 6 instead of 3 and with a
scaling factor F2~41 instead of F as was found by Kohmoto
et al. [3]. However, these results are in agreement with those
found theoretically by other authors [6,11] on multilayered
media by using the transfer matrix method and the complex
effective wave number. This discrepancy is due to the fact
that Kohmoto et al. [3] considered a specific structure in
which each block A and B is composed of only one layer and
the two substrates are equivalent to the A layer. This was
mentioned also by Albuquerque and Cottam [1]. As men-
tioned above (Fig. 3), the dissipation in the cables limits the
experimental study of high Fibonacci generations; therefore
we have neglected the absorption in the transmission coeffi-
cients of Figs. 10(a)-10(d) so as to give a theoretical verifi-
cation of the Fibonacci scaling property. This means that this
property may be experimentally verified in the case of loss-
less media [3—7]. In addition, Figs. 10(e)-10(h) (right panel)
show that the scaling property is also a characteristic of the
transmission phase time and therefore of the group velocity.
It is worth noticing here also that as long as we are dealing
with symmetric loop structures, the phase of the transmission

100

(not shown) increases monotonically as a function of the
frequency.

B. Case of asymmetrical loops in B blocks

In Fig. 7 we have shown the effect of the length of the
segments in the B blocks on the dispersion curves, while the
lengths of the other wires were kept constant. Now we em-
phasize the effect of an asymmetric loop in the B block (i.e.,
d,#ds# 1 m in Fig. 1) on the dispersion curves, while the
lengths of the other wires are kept constant (i.e., d;=d,=d;
=ds=d=1 m). In particular, we suppose that the difference
between the wires of the loop in the B block AL=d,—d; is
variable, while the whole length of the loop is kept constant
(i.e., L=dy+ds=2 m). Figure 11 displays the dispersion
curves (i.e., the frequency versus AL for the fifth generation.
The frequencies (dots) are obtained from the maxima of the
theoretical phase time calculated in the absence of absorption
in the wires. In addition to the resonances lying inside the
bulk bands, one can also notice the existence of some reso-
nances that occur at the crossing of two bulk bands. For
instance, this happens around AL=0 or 2 m at the frequen-
cies f=100, 200, and 300 MHz; around AL=0.66 and

056601-9



AYNAOU et al.

PHYSICAL REVIEW E 72, 056601 (2005)

dB =1m ()
0 T —
1
dB =15m (b)
0 : ;
1
c
o
0N
& ()
G
g FIG. 9. The same as Fig. 8 but for the trans-
- mission coefficient.
-
(d)
T T T (e)
i dg =‘3.5 m | ‘ ‘ . | | o
0 10 20 30 40 50 60 70 80 90 100
Frequency (MHz)

1.3 m at f=300 MHz; and around AL=1m at f
=200 MHz. The intensities of the associated peaks in the
phase time decay as long as AL goes away from the values
mentioned above. The dashed horizontal and curved lines
correspond to the frequencies at which the transmission
through a single asymmetric loop is equal to zero. They are
given by [18]

sin(wVeL/2)=0 and cos(wVeAL2)=0. (17)

It is worthwhile to notice that almost similar dispersion
curves as in Fig. 11 are obtained from the maxima of the
transmission coefficient, except for the resonances (discussed
above) that occur at the crossings of two bulk bands. This
difference is due to the fact that the above resonances in Fig.
11 are located in the close vicinity of zeros of transmission
(horizontal dashed lines in Fig. 11), and therefore the power
transmission displays a dip instead of a peak. In the particu-
lar case where AL=0 in Fig. 11 (i.e., dy=ds=d=1 m, sym-
metric loop) the FLS becomes a PLS with 84 blocks and
therefore the gaps around 50, 150, and 250 MHz are intro-
duced by the periodicity of the structure. These stop bands

are weakly dependent upon the variation of AL. However,
when AL increases, some additional gaps of a lozenge pat-
tern appear at the crossing of the horizontal and curved
dashed lines. These gaps are the consequence of the trans-
mission zeros induced by the asymmetric loops in the B
blocks, which play the role of resonators. There are also
some narrow minigaps along the dashed curved lines; these
gaps are produced by the quasiperiodicity of the structure
[18]. For AL=2 m (i.e., d4=2 m, ds=0 m), one can show
that these loops are equivalent to two dangling side branches
of lengths d,/2=1 m. As mentioned in Sec. I C, the trans-
mission phase time in asymmetric loop structures is different
from the DOS because of the transmission zeros that induce
jumps of 7 in the phase and thus negative & functions in the
phase time. The discussion of the relation between the DOS
and the phase time is very well clarified in Refs. [27,28].
Some experimental verifications of these results are given in
Ref. [18] in the case of one asymmetric loop structure. Simi-
lar results are found by other authors [34] in two-
dimensional photonic crystals of spheres, where it was
shown clearly that taking into account the absorption in the
system, the DOS increases monotonically whereas the phase
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shift exhibits a jump at the frequencies of the dips in the
transmission coefficient. In the case of periodic and quasip-
eriodic asymmetric loop structures studied here, we have
checked theoretically that the phase increases monotonically
and exhibits jumps of 7 at the frequencies given by Eq. (17).
Experimentally, we also observe a monotonic increase of the
phase in the allowed bands of the structure; however, in the
forbidden bands around the transmission zeros, the transmis-
sion is too weak to be detected with enough accuracy and the
corresponding phase behaves randomly. That is why we have
avoided giving results for the phase time in this case. Nev-
ertheless, in order to give an experimental verification of the
band gap structure of Fig. 11, we plotted in Fig. 12 some
transmission amplitude spectra for AL=0 [Fig. 12(a)], 1
[Fig. 12(b)], and 2 m [Fig. 12(c)]. The vertical dashed lines
give the positions of the common gaps for different values of
AL (Fig. 11). One can notice in Figs. 11 and 12 that contrary
to Fig. 7 the variation of AL does not induce new modes
inside the gaps but rather splits the bulk bands by opening
new gaps especially for AL=1 [see Fig. 12(b) around f
=100 and 300 MHz]. It is worth noticing that the dips that
appear in the middle of the bands of Figs. 12(a)-12(c)
around 100, 200, and 300 MHz are due to the fact that AL is
slightly different from O, 1, and 2 because of the small addi-
tional lengths due to the T connectors used in the connection
of the different cables in the loops and segments. Also, in
detail, the modes displayed in Fig. 12 do not exactly corre-

49.31 49.32 40.33 48.34 48.35 49386

spond to those shown in Fig. 11 because, contrary to the
latter case, the results of Fig. 12 take account of the absorp-
tion phenomena in the wires. However, both figures display
the same information about the positions of the allowed and
forbidden bands.

The dispersion curves presented in Fig. 11 are also very
dependent upon the length L of the loop. In particular, if L is
slightly different from 2 m, very narrow (almost flat) bands
appear in the vicinity of f=100, 200, and 300 MHz. When L
approaches the value of 2 m, these minibands become totally
flat and coincide with the dashed horizontal lines (a discus-
sion about these minibands is given in Ref. [35]).

IV. COMPARISON WITH OTHER QUASIPERIODIC
STRUCTURES

The Fibonacci sequence is considered as the 1D represen-
tation of quasicrystals [36]. Its Fourier transform [37] is a
pure point, characteristic of a true quasicrystal-like structure.
There exist also other aperiodic structures that involve two
different blocks A and B such as the Thue-Morse and double
period structures [38]. The Thue-Morse structure is not qua-
siperiodic but deterministically aperiodic for the singular
continuous Fourier spectrum [39]. The Thue-Morse sequence
can be defined through the inflation rules A—AB and B
— BA. Therefore, the Thue-Morse generations are Sp=A,
S1=AB, S,=ABBA, S3=ABBABAAB, ..., and the numbers of
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building blocks A and B in the sequence are equal. The
double period sequence can be defined through the inflation
rules A— AB and B— AA. Therefore, the double period gen-
erations are Sy=A, S1=AB, S,=ABAA, S3=ABAAABAB,...,
and the ratio of the number of building blocks A to the num-
ber of building blocks B is not constant; it tends to 2 as the
number of generations goes to infinity. The final aperiodic
structure, called the Rudin-Shapiro structure [40], is more
complicated, it involves four different blocks ABCD follow-
ing the Rudin-Shapiro substitution rules A—AC, B—DC,
C—AB, and D — DB. Therefore, the Rudin-Shapiro genera-
tions are Sy=A, S;=AC, S,=ACAB, S3;=ACABACDC,....
However, in order to compare the transmission coefficient of
this structure with the others cited above, we suppose that the
blocks C and D in the Rudin-Shapiro generations are equiva-
lent to A and B, respectively. Let us mention that a numerical
comparative study between the transmission amplitudes of
Fibonacci, Thue-Morse, and double period structures has
been given before for layered media [11]; however, to our
knowledge, no comparative study of the phase times of these
different structures has been developed.

In what follows, we shall give a theoretical and experi-
mental comparative study of the transmission amplitude and
phase time (Fig. 13) between the following structures: (i) a
finite sixth Fibonacci generation [Figs. 13(a) and 13(e)] hav-
ing the structure ABAABABAABAAB involving 13 blocks
(84 blocks and 5B blocks); (ii) a finite fifth Thue-Morse
generation [Figs. 13(b) and 13(f)] having the structure
ABBABAABBAABABBA involving 16 blocks (84 blocks

and 8B blocks); (iii) a finite fifth double period generation
[Figs. 13(c) and 13(g)] having the structure
ABAAABABABAAABAA involving 16 blocks (11A blocks
and 5B blocks); (iv) a finite fifth Rudin-Chapiro generation
[Figs. 13(d) and 13(h)] having the structure
AAABAABAAAABBBAB involving 16 blocks (104 blocks
and 6B blocks). All these structures could be considered as a
periodic A structure with different B blocks embedded as
defects at different positions in this structure. The transmis-
sion amplitude and the phase time of these different struc-
tures exhibit almost the same behavior inside the frequency
regions corresponding to the extended modes. However,
these structures present different features inside the first gap
around f=50 MHz. In particular, the phase time (right panel
of Fig. 13) shows more details about the distribution of the
different localized modes induced by the B blocks inside the
gap. Indeed, the phase time is less sensitive to the absorption
in the cables; that is why the phase time spectra in Fig. 13
give also the density of modes [27] as demonstrated in Sec.
IT C. An analysis of the local density of states as a function
of the space position (not given here) shows that the different
modes lying inside the first gap are localized within the seg-
ments belonging to the B blocks, whereas the modes lying
inside the bulk bands are extended modes within the whole
structure.

V. CONCLUSIONS

In this paper, we have given experimental and theoretical
evidence for the localization of electromagnetic waves in a
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FLS made of standard coaxial cables. The symmetric loop
structure may play the role of simple alternating layers,
which enables us to check easily different localization prop-
erties of Fibonacci 1D layeredlike media. However, when the
loops are asymmetrical, they play the role of resonators that

may introduce transmission zeros and hence new gaps unno-
ticed in the case of layered media. An analysis of the trans-
mission amplitude and the local density of states clearly
shows the origin of the different modes propagating through
the FLS. The experimental results are very well fitted by the

FIG. 13. (a)-(d) (left panel):
The transmission coefficient as
function of the frequency for the

sixth Fibonacci (a), fifth Thue-
Morse (b), fifth double period (c),
and fifth Rudin-Shapiro (d) gen-
erations. (e)—(h) (right panel):

Same as (a)—(d) but for the phase

time.
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1D theoretical model using the Green’s function method. An
analysis of the phase of the transmission function enables us
to deduce several properties of the wave propagation through
such structures such as the dispersion curves, the phase times
and therefore the density of states, as well as the group ve-
locities. In particular, we have shown that the propagation of
electromagnetic waves in FLSs may give rise to a strong
normal dispersion inside the gaps and therefore a slow group
velocity. Finally, we have given a comparative study of the
amplitude and phase time of different quasiperiodic struc-
tures such as Fibonacci, Thue-Morse, double period, and
Rudin-Shapiro structures. All these structures present similar
behaviors in the transmission spectra inside the regions of

PHYSICAL REVIEW E 72, 056601 (2005)

extended modes; however, they present different localized
modes inside the gaps.
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