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Abstract
It is theoretically shown that the tunnelling dynamics of light between two
sinusoidally curved coupled optical waveguides of different sizes exactly
mimics the population dynamics of a two-level system with nonzero diagonal
dipole matrix elements subjected to an applied sinusoidal electric field, thus
realizing an optical analogue of a two-level dipolar molecule in an external
ac field. Some characteristic dynamical features, including multi-photon
transitions, sinusoidal population oscillations built up in a series of stair steps or
square-wave population oscillations, are reproduced in the optical waveguide
system. Design parameters for their observation are given with reference to
lithium-niobate optical waveguides.

1. Introduction

In the understanding of the coherent interaction between radiation and matter, the two-level
problem [1], in which two individual quantum states have interactions only with each other
and with external fields, is perhaps the most basic and widely studied model. In the simplest
and most studied case of atomic levels with a well-defined parity interacting with the electric
field of an electromagnetic wave, the diagonal dipole matrix elements µ11 and µ22 vanish and,
for a monochromatic wave and in the weak field regime, appreciable population transfer with
typical sinusoidal periodicity (the familiar Rabi oscillations) is observed for electric-dipole
allowed transitions solely when the frequency ω of the applied field is in resonance with the
atomic transition frequency ω0 (one-photon transition). A more complex population dynamics
may occur for frequency modulated fields, including off-resonance complete population
transfer [2], population trapping and square-wave oscillations [3, 4], or more complicated
dynamical features associated with periodic level crossings [4–6]. The response of a two-level
system with permanent dipole moments to an applied field, such as a dipolar molecule, shows
additional and very appealing features, the most notable one being two-photon (or multi-
photon) transitions which are forbidden for the two-level atom with µ11 = µ22 = 0 [7–11].
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Many effects arising from permanent dipole moments on the two-level dynamics (polar
two-level model) have been studied in the literature, especially in connection with dipolar
molecules; among others, we just mention enhanced two-photon transitions [9, 12], nonlinear
absorption and dispersion [13], harmonic generation [14–16], Raman scattering and wave
mixing [17], optical bistability [18–20] and two-photon phase conjugation [21].

Owing to the strong similarities between light propagation in waveguide structures and
electron dynamics in quantum systems [22, 23], photonic waveguides have been proven on
many occasions to provide an ideal laboratory system to study coherent dynamical effects typi-
cal of quantum systems in the presence of external fields, such as optical Bloch oscillations [24],
quantum tunnelling enhancement and suppression by external driving fields [25, 26], Landau–
Zener dynamics [27, 28], wavepacket dichotomy and atomic stabilization [29] and coherent
population transfer by stimulated Raman adiabatic passage [30]. By the use of a Kramers–
Henneberger transformation it has been shown that the effect of an external ac driving field
can be simulated in the optical waveguide system by introducing a periodic axis bending of
the waveguide [26, 31]; in particular, two identical coupled waveguides with a periodic or ape-
riodic axis bending provide the optical analogue of a two-level atomic system with zero diag-
onal dipole matrix elements subjected to an applied frequency-modulated or frequency-swept
field [26, 28]. The use of optical waveguides to study coherent quantum dynamics may offer
a few advantages, such as the absence of dephasing effects that may destroy coherence [24],
the possibility of observing the evolution dynamics as a stationary spatial field distribution
along the propagation direction rather than as a fast temporal effect [24]1 and the possibility of
investigating dynamical regimes not yet experimentally accessible in the atomic or molecular
physics context [29].

In this paper, we propose an optical realization of a polar two-level molecular dynamics
based on two single-mode coupled waveguides with different sizes and with a sinusoidally
curved axis. Coupled-mode equations describing light propagation along the two waveguides
are shown to be equivalent to those of a two-level system with permanent dipole moments,
the periodic curvature of waveguide axis playing the role of the external coupling field. Some
characteristic dynamical regimes of the polar two-level system, including light tunnelling due
to multi-photon resonances and light dynamics that mimics periodic stair steps or square-wave
population oscillations, are found in the optical waveguide system. The predictions based on
the polar two-level model are confirmed by a direct numerical analysis of the original paraxial
wave equation. The paper is organized as follows. In section 2 the basic model and the
equivalence with the two-level dipolar molecule problem are presented. Section 3 presents
the main results of light dynamics characteristic of the dipolar two-level model and provides
design parameters for their observation in lithium-niobate waveguides. Finally, in section 4
the main conclusions are outlined.

2. Description of the optical system and the dipolar two-level model

2.1. The optical waveguide system

The optical system under investigation consists of two single-mode channel optical
waveguides, with different designs and placed at a distance a, whose axis is not straight
but it is periodically curved along the propagation z direction with a bending profile x0(z)

(see figure 1). For strong guidance of light in the vertical y direction and weak guidance in the
x direction, light propagation can be described by a scalar model for the electric field envelope

1 The spatial evolution of light along straight or bent optical waveguides can be experimentally measured by the use
of near-field scanning optical microscopy techniques, as demonstrated in several works (see, for instance, [32]).
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Figure 1. (a) Schematic of an asymmetric optical directional coupler made of two waveguides
of different sizes with a sinusoidally curved axis. (b) Typical behaviour of the potential
V (x) = ns − n(x) corresponding to the asymmetric directional coupler.

ψ(x, z) using a parabolic paraxial wave equation for an effective nonuniform structure with a
one-dimensional confinement only in the x direction (see, e.g., [33]). Precisely, the paraxial
light propagation at wavelength λ = 2π/k in the two optical waveguides can be described by
an effective Schrödinger-like wave equation (see, e.g., [22, 26]):

ih̄
∂ψ

∂z
= − h̄2

2ns

∂2ψ

∂x2
+ V (x − x0(z))ψ, (1)

where h̄ ≡ λ/(2π) = 1/k is the reduced wavelength of light, V (x) ≡ [
n2

s − n2(x)
]
/(2ns) �

ns − n(x), ns is the substrate refractive index and n(x) is the effective index profile of the
coupler in the transverse x direction. Note that, identifying h̄ with the Planck constant and z

with time, equation (1) is equivalent to the Schrödinger equation for a particle of mass ns in
a periodically shaken potential V (x), which describes the dynamics of a charged particle in
the static potential V (x) subjected to an external ac electric field in a Kramers–Henneberger
reference frame (see, e.g. [31]). By means of a Kramers–Henneberger transformation

x ′ = x − x0(z), z′ = z, (2)

φ(x ′, z′) = ψ(x ′, z′) exp

[
−i

ns

h̄
ẋ0x

′ − i
ns

2h̄

∫ z′

0
dξ ẋ2

0(ξ)

]
(3)

(where the dot indicates the derivative with respect to z′), equation (1) takes in fact the form

ih̄
∂φ

∂z′ = − h̄2

2ns

∂2φ

∂x ′2 + V (x ′)φ − E(z′)x ′φ, (4)

where

E(z′) ≡ −nsẍ0(z
′), (5)

provides the relationship between waveguide axis bending and amplitude of the external
periodic driving field E(z′) in the electric dipole approximation. In the following, we will
assume for the sake of definiteness a sinusoidal bending profile (see figure 1(a)) with a spatial
period � and an amplitude A, x0(z) = A cos(2πz/�), corresponding to a sinusoidal applied
electric field

E(z′) = E0 cos(2πz/�), (6)

with amplitude

E0 = 4π2nsA/�2. (7)
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Figure 2. Refractive index profile (thick solid curve) and numerically computed profiles of the
two supermodes (dotted curves) of a lithium-niobate waveguide coupler. The thin solid lines,
partially overlapped with the dotted curves, are the profiles of the two individual waveguide
modes. Parameter values are ns = 2.1381,	n = 0.005, a = 11 µm, w1 = 2.8 µm, w2 = 2 µm,
Dx = 1 µm and λ = 1.5 µm.

2.2. The Dipolar two-level model

In this section, we derive coupled mode equations describing light propagation in the two-
waveguide coupler and show their equivalence with the standard two-level problem describing
the dynamics of a two-level dipolar molecule subjected to an applied ac field [11]. To this
aim, let us observe that, since the optical waveguides are assumed to have different widths
and/or peak index changes (figure 1(b)), the potential V (x) shows a typical asymmetric
profile made of two different wells. In our analysis, we will assume that each waveguide
of the coupler supports a single mode and that the full Hamiltonian of the straight coupler
H0 = −(h̄2/2ns)∂

2/∂x2 +V (x ′) admits solely two non-degenerate bound states (supermodes)
u1(x) and u2(x) with propagation constants β1 and β2, i.e. H0u1,2(x) = h̄β1,2u1,2(x), with the
normalization condition 〈ui |uk〉 = δik (i, k = 1, 2). Since the two waveguides are of different
designs, the two supermodes u1(x) and u2(x) are well approximated, at leading order, by
the two individual waveguide modes, thus localizing light mostly in one of the two wells.
This situation is very different from that of two identical waveguides, where the supermodes
of the coupler are conversely quasi degenerate and well approximated by the symmetric and
anti-symmetric linear combinations of the two individual waveguide modes [26]2.

In the numerical examples discussed in the following we will adopt for the sake of
definiteness an effective refractive index profile for each waveguide of the form

nw(x) = ns + 	n
erf[(x + w1,2)/Dx] − erf[(x − w1,2)/Dx]

2 erf(w1,2/Dx)
, (8)

which applies to waveguides fabricated by diffusion processes [34]. In equation (8), 2w1 and
2w2 are the channel widths of the two waveguides, Dx is the lateral diffusion length and 	n

is the peak refractive index change, which is assumed to be the same for the two waveguides.
As an example, figure 2 shows the refractive index profile of a coupler and the numerically
computed profiles of the two supermodes for parameter values which apply to lithium-niobate
waveguides operating at λ = 1.55 µm wavelength. Eigenvalue and eigenmode computation

2 The asymmetry of the two waveguides plays a major role in the two-level dipolar molecule equivalence discussed
in this work. In fact, for a symmetric waveguide coupler it was previously shown [26] that the light propagation is
described by two-level equations analogous to those of a two-level atom (µ11 = µ22 = 0) subjected to a frequency-
modulated field. The condition for destruction of light tunnelling reported in [26] is in fact analogous to the population
trapping condition predicted, in the atomic physics context, in [3, 5].



Dynamics of driven two-level systems with permanent dipole moments 1989

have been performed by discretizing the operator H0 on a 60 µm wide domain with 512 grid
points and by standard matrix eigenvalue computation of the discretized matrix operator. The
eigenvalue analysis shows that the two-waveguide system does not support other bound modes
and, as one can see from figure 2, each supermode confines light mostly in one of the two
waveguides of the coupler.

To reduce the beam dynamics in the periodically curved waveguide coupler to a two-level
problem, we neglect excitation of radiation (unbounded) modes and adopt a standard reduction
procedure of the dynamics on the basis of u1(x

′) and u2(x
′) states. After setting

φ(x ′, z′) = a1(z
′)u1(x

′) exp(−iβavz
′) + a2(z

′)u2(x
′) exp(−iβavz

′), (9)

where βav ≡ (β1 + β2)/2, using the orthonormal properties 〈ui |uk〉 = δi,k , substitution of
equation (9) into equation (4) yields

i
d

dz′

(
a1

a2

)
=

(	β

2 0
0 −	β

2

)(
a1

a2

)
− E(z′)

h̄

(
µ11 µ12

µ21 µ22

) (
a1

a2

)
, (10)

where we have set µik ≡ 〈ui |x ′|uk〉 (i, k = 1, 2) and 	β ≡ β1 − β2. In the present form,
equations (10) exactly describe the dynamics of a two-level system with permanent dipole
moments, such as a two-level dipolar molecule, interacting with a time-dependent electric field
E(z′) in the electric dipole approximation, the energy separation between the two involved
quantum states being h̄	β (see, e.g., [11, 16, 20]). Note that µ12 = µ∗

21 can be assumed to
be real valued and related to an integral overlap of adjacent waveguide modes, whereas the
diagonal dipole matrix elements µ11 and µ22 do not vanish and, at leading order, are given
by µ11 ∼ −µ22 ∼ a/2, where a is the separation between the two waveguides. For two
waveguides not too close to each other, one then has |µ12| � |µ22 − µ11|, i.e. the two level
system is strongly dipolar. Note also that, as in the quantum physics context |a1|2 and |a2|2
describe the populations in the two quantum molecular levels, in our optical systems |a1|2 and
|a2|2 are basically the fractional light power trapped into the two waveguides. Different though
equivalent forms for the two-level equations (10) can be considered [8, 11, 16, 19, 20], which
may be more suited to study the two-level dynamics under the rotating-wave approximation
(for a fast field oscillation) or in the adiabatic limit (for a slow field oscillation). After the
phase transformation

a1,2(z
′) = ā1,2(z

′) exp

[
i
µ11 + µ22

2h̄

∫ z′

0
E(ξ) dξ

]
, (11)

one obtains the second form for the polar two-level problem:

i
d

dz′

(
ā1

ā2

)
=

(−ϕ(z′) 0
0 ϕ(z′)

) (
ā1

ā2

)
− E(z′)

h̄

(
0 µ12

µ21 0

)(
ā1

ā2

)
, (12)

where we have set

ϕ(z′) ≡ −	β

2
+

µ11 − µ22

2h̄
E(z′). (13)

Equations (12) and (13) clearly show that, if the two-level system has permanent dipoles
and if µ11 	= µ22, the applied electric field not only couples the two states through the off-
diagonal dipole matrix element µ12, but also modulates the energy separation of the two levels
around the value h̄	β. In particular, for strong fields periodic level crossing, corresponding
to ϕ(z′) = 0, can be attained. A third form for the polar two-level problem can be finally
obtained after the further phase transformation

ā1,2(z
′) = c1,2(z

′) exp

[
±i

θ(z′)
2

]
, (14)
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where

θ(z′) ≡ 2
∫ z′

0
ϕ(ξ) dξ = −	βz′ +

µ11 − µ22

h̄

∫ z′

0
E(ξ) dξ. (15)

One obtains the third form for the two-level equations

i
d

dz′

(
c1

c2

)
= −E(z′)

h̄

(
0 µ12 exp[−iθ(z′)]

µ21 exp[iθ(z′)] 0

) (
c1

c2

)
. (16)

The last form of the polar two-level problem is suited for an application of the rotating-wave
approximation in the high-frequency limit [7, 11, 16, 20].

3. Light tunnelling dynamics

In this section we present a few optical tunnelling effects in the periodically curved asymmetric
waveguide coupler that provide the optical analogue of corresponding population dynamic
effects of the dipolar two-level model (equations (10), (12) or (16)) previously studied mainly
in the context of dipolar molecules. The general solution to the two-level equations for
a sinusoidal driving field E(z′) = E0 cos(2πz′/�) can be obtained for general parameter
values only by direct numerical simulations, using the Floquet theory of periodic systems.
There are nevertheless two limiting cases that deserve particular attention: the high-frequency
modulation and low-field limit, in which population transfer effectively occurs under certain
resonance conditions (multi-photon transitions), and the low-frequency modulation and strong-
field limit, in which the population dynamics is mainly governed by periodic level crossings.
In the former case, one can employ a rotating-wave (or averaging) approximation to obtain
approximate analytical results; one of the major results of the analysis is that, as opposed to
the non-polar (atomic) two-level model, a two-photon (or multi-photon) transition is allowed
in the dipolar two-level model (dipolar molecule) [7, 11]. The population dynamics in the
low-frequency modulation limit is mainly governed by periodic level crossing and is expected
therefore to show similar features (such as square-wave population oscillations) to those
observed in the non-polar (atomic) two-level model subjected to frequency-modulated laser
fields [3, 6] or related two-level models (see, e.g. [4, 35]).

3.1. Multi-photon transitions

For periodically curved waveguides, from equations (15) and (16) one can see that the
coupling term I (z′) ≡ −[µ12E(z′)/h̄] exp[−iθ(z′)] between states c1 (light trapped in the
right waveguide) and c2 (light trapped in the left waveguide) contains terms oscillating at
frequencies −	β + l�, where � = 2π/� is the spatial modulation frequency and l is an
integer number. If the frequency � is sufficiently larger than the coupling term µ12E0/h̄, the
rapidly oscillating terms do not contribute effectively to the coupling between the two states,
unless a resonance condition n� ∼ 	β is satisfied for some integer n. In this case, the
leading-order evolution equations describing the mode coupling can be obtained by averaging
the coupling term I (z′) over the spatial period � (rotating-wave approximation), i.e. one can
write

i
d

dz′

(
c1

c2

)
=

(
0 〈I (z′)〉

〈I (z′)∗〉 0

)(
c1

c2

)
, (17)

where the bracket denotes a spatial average. Taking into account equation (15), by an
integration by parts one can readily show that one can write

〈I (z′)〉 = −µ12

h̄
〈E(z′) exp[−iθ(z′)]〉 = 	β

µ12

µ22 − µ11
〈 exp[−iθ(z′)]〉, (18)
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that is

〈I (z′)〉 = 	β
µ12

µ22 − µ11

〈
exp

[
i	βz′ + i

µ22 − µ11

h̄

∫ z′

0
E(ξ) dξ

]〉
. (19)

In particular, for a sinusoidal field, E(z′) = E0 cos(�z′), assuming the n-photon resonance
condition (n� ∼ 	β), one has (see also [7, 11, 16, 19])

〈I (z′)〉 = 	β
µ12

µ22 − µ11
Jn(κ) exp[i(	β − n�)z′], (20)

where Jn is the Bessel function of order n and where we have set

κ ≡ (µ11 − µ22)E0

h̄�
= 4π2nsA(µ11 − µ22)

λ�
. (21)

In this case the solution to equations (17) shows a typical sinusoidal Rabi flopping,
corresponding to periodic tunnelling of light between the two coupled waveguides, with
complete light tunnelling in the perfect resonance case, provided that Jn(κ) 	= 0. In fact,
the solution to equations (17) corresponding to the initial excitation of the right waveguide
(c1(0) = 1, c2(0) = 0) is given by [1]

c1(z
′) =

[
cos(�Rz′) − i

δ

�R

sin(�Rz′)
]

exp(iδz′), (22)

c2(z
′) = −i

σ

�R

sin(�Rz′) exp(−iδz′), (23)

where we have set δ ≡ (	β − n�)/2, σ ≡ µ12	βJn(κ)/(µ22 − µ11) and �R ≡ (σ 2 + δ2)1/2.
The fractional power of light tunnelled in the left waveguide thus changes periodically during
propagation, at a frequency 2�R , according to

|c2(z
′)|2 = σ 2

σ 2 + δ2
sin2(�Rz′), (24)

and complete tunnelling occurs in the perfect resonance case δ = 0. Note that, as the
modulation amplitude A (or field strength E0, see equation (7)) is increased from zero to reach
the condition Jn(κ) = 0, light tunnelling is inhibited within the rotating-wave approximation,
a condition which is similar to coherent destruction of tunnelling in the symmetric optical
directional coupler [26].

We checked the validity of the polar two-level model to describe the tunnelling light
dynamics in the sinusoidally curved asymmetric optical directional coupler by a direct
numerical integration of the paraxial wave equation describing beam propagation. For the
sake of simplicity and readability of the results, we integrated the paraxial wave equation
in the Kramers–Henneberger reference frame (equations (2)–(4)), where the two waveguides
appear to be straight. A standard split-step beam propagation technique has been used to
integrate equation (4), with absorbing boundary conditions to simulate radiation losses and
with typical 1024 discretization points in the transverse x ′ direction (for more details see [31]).
The geometry and parameters of the asymmetric waveguide coupler used in the numerical
simulations are shown in figure 2, which apply to a typical lithium-niobate waveguide coupler
operating at the 1.5 µm wavelength of optical communications. For such a structure, numerical
computation of supermodes and corresponding dipole matrix elements yields the numerical
values µ11 � 5.42 µm, µ22 � −5.41 µm and µ12 � −1.01 µm. The propagation constant
difference turns out to be |	β| = 3.073 mm−1, so that n-photon resonance is attained for
a sinusoidal axis bending modulation of period �n � 2.045 × n (mm). As an example,
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Figure 3. (a) Numerically computed beam evolution in a L = 5 cm long asymmetric waveguide
coupler corresponding to one-photon resonance. Parameter values of sinusoidal bending are
� = 2045 µm and A = 6 µm (corresponding to κ ∼ 1.79). The other design parameters of the
coupler are the same as in figure 2. (b) Numerically computed behaviour of the fractional beam
power in the two waveguides (solid lines) versus propagation distance. The dashed line in the
figure represents the total beam power, normalized to its input value, contained in the 60 µm wide
transverse integration domain. (c) Behaviour of the fractional beam power in the two waveguides
as obtained by a numerical analysis of the dipolar two-level equation (10).
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Figure 4. Same as figure 3, but for parameter values corresponding to two-photon resonance
(� = 4090 µm and A = 20 µm, corresponding to κ ∼ 2.98).

figures 3(a) and 4(a) show snapshots of the numerically computed beam intensity evolution
|φ(x ′, z′)|2 along a L = 5 cm long waveguide coupler for parameter values corresponding to
one-photon (figure 3(a)) and two-photon (figure 4(a)) resonances when the right waveguide
is excited at the entrance facet in its fundamental mode. Figures 3(b) and 4(b) show the
corresponding fractional beam power localized in each of the two waveguides along the
propagation distance (calculated as |ck(z

′)|2 = |〈φ|uk〉|2), together with the total beam power,
normalized to its input value, contained in the transverse integration domain (dashed curves).
Note that, for the chosen parameter values, radiation losses are kept at a low level and, for
exact resonances (δ = 0) as in the figures, complete light tunnelling oscillations are observed
with a periodicity which is very close to the analytical value predicted within the dipolar
two-level model. The obtained numerical results, based on a direct numerical integration of
the paraxial wave equation (4), turn out to be in good agreement with those predicted by
the dipolar two-level model. This is shown in figures 3(c) and 4(c), where the evolution of
fractional beam power |ck(z

′)|2 in the two waveguides is reported as numerically computed
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Figure 5. Same as figure 4, but for parameter values corresponding to a detuned two-photon
resonance (� = 3800 µm and A = 20 µm, corresponding to κ ∼ 3.2).
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Figure 6. Same as figure 4 (two-photon resonance) but for parameter values corresponding to a
zero of Bessel function J2 (� = 4090 µm and A = 34.5 µm, corresponding to κ ∼ 5.14).

by integration of equations (10) using a fourth-order Runge–Kutta technique. According to
the theoretical analysis (see equation (24)), we observed periodic light tunnelling between the
two waveguides even under a detuned condition (δ 	= 0); however in this case the tunnelling
is incomplete, as shown in figure 5. The rotating-wave approximation predicts suppression
of tunnelling when the effective coupling parameter κ (equation (21)) is a root of the Bessel
function Jn. As an example, figure 6 shows the suppression of resonant light tunnelling at the
two-photon resonance when the modulation amplitude A of axis bending is increased, from
the value of figure 4, to reach the first root of the Bessel function J2 (κ ∼ 5.14).

3.2. Square-wave tunnelling

As the spatial modulation period � increases, the high-frequency and rotating-wave
approximations introduced in the previous section fail to correctly describe the tunnelling
dynamics of light between the two waveguides, and a direct numerical analysis of
equations (10) is in order. The failure of the rotating-wave approximation is clearly visible
when considering higher-order resonance conditions: as the spatial modulation frequency
� = 2π/� decreases, from e.g. the one-photon to the three-photon resonance (see figures 3,
4 and 7), the tunnelling oscillations of light between the two waveguides change from
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Figure 7. Same as figure 3, but for parameter values corresponding to a three-photon resonance
(� = 6135 µm and A = 40 µm, corresponding to κ ∼ 3.97).

a periodic and nearly sinusoidal profile, as predicted by the rotating-wave approximation
(figure 3), to a sinusoidal oscillation built up in a series of stair steps (figures 4 and 7)
which may become aperiodic (figure 7). In the low-frequency modulation limit from
equations (12) one can see that, for a field strength E0 larger than h̄|	β|/|µ11−µ22|, one obtains
a picture of periodic level crossing (see, e.g. [4, 6, 35]). In each modulation period, there are
two positions z′ at which the energy separation 2h̄ϕ(z′) of the two levels vanishes: between
two successive crossings one has adiabatic following, and for sufficiently high values of
|ϕ(z′)| (namely, for |ϕ(z′)| 
 |µ12E0/h̄) light tunnelling between the waveguides is basically
inhibited. Nonadiabatic transitions, corresponding to non-negligible Landau–Zener tunnelling
of light between the waveguides, may occur at each linear level crossing3. Though a semi-
quantitative analysis of tunnelling dynamics might be obtained by the use of nonadiabatic
techniques (see, e.g. , [6]) and different dynamical effects may be observed, here we just limit
ourselves to show, by a direct numerical analysis of equations (12), the existence of periodic
square-wave tunnelling, corresponding to square-wave population oscillations in the quantum
analogy. To this aim, let us note that in the general case the light tunnelling dynamics turns out
to be aperiodic: in fact, indicating by ±if (with f real-valued) the Floquet exponents of the
periodic system (12), the condition for periodicity is attained whenever the product f � is a
fractional multiple of 2π .4 Such a condition may be realized for special design parameters of
the waveguide coupler, as will be shown below. An example of periodic tunnelling dynamics,
corresponding to square-wave oscillations, is shown in figure 8 for a waveguide coupler of
length L = 8 cm, modulation period � = 17 mm and with the same refractive index profile
as in figure 2. For the chosen modulation period � and for the modulation amplitude A

leading to a period tunnelling dynamics, the two crossing points in each modulation cycle
are very close to each other (see figure 8(d)), so that tunnelling may effectively occur in the
short distance separating the two crossing points, where the energy level separation 2h̄ϕ(z′) is
small. This is clearly visible with the help of figures 8(c) and (d), in which the evolution of the

3 If the field strength E0 is close to h̄	β/|µ11 − µ22|, the two crossing points in each period are close to each other
and nonadiabatic effects result from a parabolic (rather than linear) level crossing. This is the case, for instance,
considered in figure 8 depicting square-wave tunnelling oscillations.
4 According to the Floquet theory, the propagator �(z′) that maps the state of system (12) at initial position z′ = 0
to its state at position z′, ā(z′) = �(z′)ā(0) (where ā = (ā1, ā2)

T ), has the form �(z′) = exp(Rz′)P(z′), where
P(0) = I is the identity matrix, P(z′ + �) = P(z′) and R is a z′-independent 2 × 2 matrix whose eigenvalues
±if are the Floquet exponents. If there exist two irreducible integers m and n such that nf � = 2πm, then one has
�(n�) = exp(Rn�) = I, so that ā(n�) = ā(0), i.e. the solution is periodic with period n�.
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Figure 8. Same as figure 3, but for parameter values leading to square-wave tunnelling oscillations
(� = 17 mm and A = 260 µm; the waveguide length is now L = 8 cm). Part (d) shows the
behaviour of the local two-level separation ϕ(z′) (see equation (13)), with periodic level crossing
at the intersections with the dashed horizontal line.
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Figure 9. Numerically computed Floquet exponent f , normalized to the inverse of the modulation
period �, versus bending modulation amplitude A for a waveguide coupler with parameter values
as in figure 8. The horizontal dashed line corresponds to f = π/(2�) (� periodic solution). The
shaded area corresponds to the values of A for which level crossing is prevented.

fractional beam power in each waveguide is plotted and compared to the local level separation
ϕ(z′). The amplitude A of waveguide bending leading to a periodic tunnelling dynamics can
be determined by a numerical computation of the Floquet exponent f versus the amplitude
A; the behaviour of the curve f = f (A) is shown in figure 9. The shaded region in the figure
corresponds to low amplitude values for which level crossing does not occur, whereas the
horizontal dashed line corresponds to � = π/2. Note that, for such a particular value of the
Floquet exponent (attained at A � 260 µm, the value of A used in the plots of figure 8),
the functions ck(z

′) turn out to be periodic (both phase and amplitude) with period 4�.
As shown in figure 8(c), the periodicity of |ck(z

′)|2 is nevertheless given by 2�.

4. Conclusions

To conclude, in this work we have theoretically shown that light propagation in an asymmetric
optical directional coupler with a sinusoidally curved axis provides an interesting optical
realization of a polar two-level quantum system, such as a two-level dipolar molecule. Design
parameters for the observation of typical coherent dynamical effects of dipolar two-level
systems, including multi-photon resonances and square-wave population oscillations, have
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been provided for a lithium-niobate optical directional coupler. As waveguide-based optical
systems have been shown in recent years to provide an ideal laboratory system to study
coherent dynamical effects in solid-state [24, 27] or atomic [29, 30] quantum systems, the
present analysis indicates that optical waveguides can be designed and used also to realize in
an optical system coherent quantum effects typical of dipolar molecules.
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