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Electron-phonon interaction in quantum dots: A solvable model
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The relaxation of electrons in quantum dots via phonon emission is hindered by the discrete nature of the dot
levels (“phonon bottleneck’). In order to clarify the issue theoretically we consider a systerN discrete
fermionic stategdot levelg coupled to an unlimited number of bosonic modes with the same effeisper-
sionless phononslin analogy to the Gram-Schmidt orthogonalization procedure, we perform a unitary trans-
formation into new bosonic modes. Since oNgN+ 1)/2 of them couple to the fermions, a numerically exact
treatment is possible. The formalism is applied to a GaAs quantum dot with only two electronic levels. If close
to resonance with the phonon energy, the electronic transition shows a splitting due to quantum mechanical
level repulsion. This is driven mainly by one bosonic mode, whereas the other two provide further polaronic
renormalizations. The numerically exact results for the electron spectral function compare favorably with an
analytic solution based on degenerate perturbation theory in the basis of shifted oscillator states. In contrast, the
widely used self-consistent first-order Born approximation proves insufficient in describing the rich spectral
features.

[. INTRODUCTION the relaxation process. A different argument includes Auger-
like electronic excitation for overcoming the sharp energy
Since the development of quantum well lasers there haveelection inherent to the LO-phonon relaxatfor’
been continuous attempts to manufacture laser structures A more general question concerns the appropriate theoret-
with even more reduced dimensions. The idea behind was fical tools for describing relaxation in zero-dimensional sys-
increase the efficiency by enhancing the density of statedems. Nonequilibrium Green’s functions are often too te-
However, zero-dimensional quantum structufgsiantum  dious to be used in realistic models. Therefore one is tempted
dot9 are characterized by a discrete spectrum, and the rdo look for the one-particle Green’s functions and their
combination probability does not depend on the radiativéoroadening as a signature for relaxattdn.However, stan-
rate alone. Rather, the relaxation pathway into the groundard self-energy approaches as the self-consistent first-order
state becomes decisive. Looking at the nearly monoenergetBorn approximation have to be questioned since they rely
longitudinal-opticalLO) phonons, an efficient relaxation be- implicitly on the existence of an electronic continuum that is
tween two dot levels seems to be possible only if level disimissing in zero-dimensional systems.
tance and LO energy mat¢hesonance conditionThis type In this paper we want to look closely at this question and
of argument has been callg@thonon bottleneck? to qualify the standard approximation schentas the self-
From the experimental side there is an ongoing intenseonsistent Born approximatiprin application to quantum
debate on whether or not the phonon bottleneck is seen in thdots. To compare with, we present results from an exact
data® However, the recently found ground-state lasing indiagonalization of the electron-phonon Hamiltonian. This
guantum dots under cw conditions seems to prove that thean be achieved even for an unlimited number of phonon
phonon bottleneck is not an obstacle when trying to increasenodes provided they have dispersionand uses a unitary
the laser efficiency by dimensional reductfbn. transformation among the phononsNtelectronic dot states
Nevertheless the theoretical concepts are still controverffermiong are considered, onlyN(N+1)/2 of the new
sial. Obviously, the bottleneck argument relies on the asmodes(boson$ couple to the electrons, and for moderate
sumption of strict energy conservation in the electron-numbers ofN the transformed Hamiltonian can be easily
phonon scattering, as dictated by Fermi's golden rule. A nextliagonalized numerically. An upper limit of the boson occu-
step towards a realistic description seems to incorporate thgation numbers can be fixed in accordance with temperature.
intrinsic lifetime broadening of dot levels. Krand Kha®  For N=1, this exact solution is known for a long time as
went along this way by calculating the complex electron selfindependent boson mod€lHere we present the extension to
energy due to the LO-phonon interaction. They claimed thaa finite number of levels with the important interlevel cou-
the convolution of initial and final state spectral functionspling (phonon transition A singleboson mode in resonance
gives rise to a broadening that is able to circumvent the phowith an equidistant series of electronic levels has been
non bottleneck. Arakawa and co-workefave treated the treated exactly in Ref. 13 predicting the phonon staircase
electronic transition and the LO modes in closed form byeffect.
wave function evolution. They pointed out that the final de- A related problem is the electron-phonon coupling in
cay of the LO phonon into acoustic phonons is decisive forsemiconductor point defects. Both the internal defect transi-
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tions in the near infrared and the phonon satellites of inter- Since allM bosonic modes couple to the electronic levels,
band transitions show a rich spectrum. Even away from strica straightforward diagonalization is not feasible. We proceed
resonance with an electronic transition, the measured trandby mapping the phonon operatofb,} onto a new set of
tion energies differ from the bare phonon value. This ha$osonic operator§B,}, with the goal that only a limited
been called the LO-phonon—donor bound state, similar to thaumber couples to the electrons.
exciton-phonon complex introduced earftérin first at- We start with an arbitrary linear combination of the op-
tempts for a quantitative understanding, perturbation theorgratorsb, written asA, with A\=1, ... M, which also span
has been uset?. The crystallographic symmetry of the defect the bosomc Hilbert space. FoIIowmg the well-known Gram-
dictates what kind of lattice distortiofiocal phonon mode  Schmidt orthogonalization procedure,
couples to the electronic transitions. Taking into account
only a few of these symmetry-adapted lattice modes, a full ~ _ + ~ ==7
numerical diagonalization is possible nowad&/3his is in By=A\— 21 [A\,B,1B,, B\=B\/V[By\,B\], (2
particular important when dealing with strongly polar mate- “
rial. We show that semiconductor quantum dots behave simiwe arrive at a new sé&, whose members obey the canonical
larly with respect to the lattice coupling, underlining once Bose commutation relationgB, ,B,:]=46, .. Then, the
more that the quantum dot behaves as a kind of mesoscopiransformation matrixJ with B, =3 ,U, 4b, is unitary, and
atom. Note, however, the quite different length scales inwe have
volved. Whereas the local modes in the defect problem are
constructed using large parts of the Brillouin zone, only a 2 BB _2 b'h
minor part around th& point is involved in the quantum dot AT
case. Consequently, the LO-phonon dispersion can be safely
neglected here. Since the bosonic modes have tseme energythe last

In Sec. Il the method is outlined and applied to the mostrelation shows that the free boson term in the Hamiltonian
simple but nontrivial case of two dot levels. Results for theequation(1) remains diagonal.
spectral function are given in Sec. lll. It shows a kind of  The first linear combinations are chosen as
avoided level crossing if level distance and phonon energy
nearly coincide, which resembles the phonon-polariton fea- _Z i
ture. Still, the exact spectral function consists of a series of AnGii) = 3 Mg'by, (4)
sharp lines. The self-consistent first-order Born approxima-
tion fails in this respect by exhibiting broad spectral featureswhere A (i,j) runs over theN(N+1)/2 pairs (,j) with i
However, we are able to derive a simple analytical approxi=j. The remainingA, can be taken arbitrarily but linearly
mation that almost coincides with the exact results. This emindependent. It follows from the prescribed one-to-one map-
ploys nondegenerate perturbation theory for those electrorping that the electron-phonon interaction contains only the
phonon states which are strongly coupled near resonance.ngstricted set(i,j) of the new operators. This reduces the
is called the rotating-wave approximation since it re-numerical labor enormously since the relevant Hilbert space
sesembles a similar treatment of the Jaynes-Cummingsow containsN fermionic and onlyN(N+1)/2 bosonic de-
model in quantum optics. Some consequences of the presegiees of freedom.
work on the general description of relaxation in quantum
dots are given as well, and conclusions are drawn in Sec. IV. A. Reduction to a two-level system
In the Appendix, the coupling constants are calculated adopt-
ing parameter values for an idealized GaAs quantum dot
with parabolic confinement.

()

The model can be used to describe electrons in a quantum
dot that are coupled to LO phonons. Under the assumption
that the third electronic level is energetically well above the

lowest two, we will limit the number of states tN=2.

Il. THE MODEL AND THE TRANSFORMATION Choosing A;=SM1%,, A,=SM%%b,, A=3Mbb

we accomplish that the transition matrix element couples

Let us consideN discrete electronic levels=0, ... N - : -
only to threenon trivial bosonic modes. We obtain

—1 coupled tov phonon modesy, . . . ,qy of fixed energy
fhwgy. The Hamiltonian reads
H= Eocho‘F 61CIC1+ 2 ﬁwoBIB}\‘F (ClBl+ C’J\: BI)(CICO
. A
H=2 eclci+ > hwgblbg+ > Myl(bg+b' )clc;.
i q iT.a +cheq)+(CoBy+CEBI+C4B,+ CiBl)clco

(o
+(C4B,+C;BI+CsB,+ CEBI+CeB3+CEB))clc
Here, theci(c;r) denote the fermionic creatio@nnihilation AT AT e e T ems T e T
operators, respectively, anuq,b; are the corresponding ®

bosonic operators. The coupling constants between phonogsith the six coupling constant§;, which follow from the
and electronsM ', depend explicitly on the fermionic states transformation(2). If we further assume that the electronic
involved (transitions between dot levels=or H to be Her-  wave functions in the quantum dot exhibit a well-defined
mitean, qvl' hx=mbi q must hold. For simplicity, the spin is parity, the constant€, andC, vanish, andB; couples only
neglected because |t is conserved by the electron-phonon ite the transition 8- 1. The model will therefore show promi-
teraction. nent features of the Jaynes-Cummings mbtdéiat has been
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introduced to describe a single photon mode coupled to ar ' 04

atomic transition. In the present case, however, the detunin¢ [~ _ —M R — AE'
has to be defined a&=7%w—(e;— €o). Further details re- %3 “><__ RO - 2‘5
garding the explicit calculation of the coupling consta@ts \\:\“ * 0s b e T
are given in the Appendix. We adopt a parabolic confine- T

ment potential with extensiong,= z, andxy>Yy,, having in

mind an anisotropic harmonic quantum dot. In this case, all
the lowest dot levels have equal energy separation, and th 02t
mentioned truncation to just two levels is not realistic. Nev- 02 1
ertheless it will be applied here to keep the numerics at a

reasonable level. o \
By means of an appropriate rotation of the operai®ys :

andBg, ie, T

BzC[(C5_Cg)Bz+ CGB3]/’)/, 0.13 ) 0_03

By=[—CgB,+(Ct —C3)Bsl/y, (6)

with y2=|Cs— C3|?+|Cg|%, we compel the new modg; to
couple only to the fermionic particle number operatgr
=clco+cic,. If we leave out the bosonic modes that do not
couple to the fermionic levels at all, we obtain parameters calculated for a parabolic confinement potential

with extensions ofyg=2z,=3 nm as a function ok,. All
input parameters refer to GaAs, e.fl.po=36.7 meV (see

FIG. 1. Left: The parametei@,, vy, n, andx in units of the LO
energy as a function of the dot sixg Right: The relative polaronic
shifts AEN and the relative shifts of the level spaciag™.

H= Eoc(‘gCO‘i‘ EchC1+ ha)oBIBl

+(CyB1+C*BI)(clco+ Cgcl) the Appendiy. The coupling constants are almost indepen-
dent of the dot size and of order @.d,. This value of 3.6
+ﬁwOB;Bz+(yBZ+ yBE)cJ{clo—(n* B,+ nB;)N meV compares favorably with the polaron shift of electrons
N . N in bulk GaAs, 2.3 meV.
+hwoBiBs— (k* B3+ kBN, @) The right-hand side of Fig. 1 shows the polaronic shift
with the new parameters due to the phononB, andBs;, Eqg. (12), and the renormal-
ization of the level spacing, Eqll). Since both depend on
7=C3(C3—Cs)/y,k=C5C; /7. (8)  the number of electrons present, we display the relative shifts
o when adding one electro\EN=E)—~E}~" and AeV="e}
The Hamiltonian conserves the electron numbéet, ] ~N-1

=0, and consequently the Hilbert space can be decomposed !
according to the electron numbézero, one, or twp In the
subspace of zero or two fermions, the Hamiltonian can be
diagonalized easily because the nondiagonal transitions The eigenvectorfN;n,,n,,ns) for the N-electron Hilbert
0+ 1 are impossible here. More demanding is the subspacspace withN=0,2 are simple and given by

of one fermion, which can, however, be rationalized a lot by

introducing shifted operators 0;n1,n2,n3)=|V)[n1)gIn2)8In3)s,

B. Solution of the model

B,=B,— nN+ 70101153253_'0\/- 9 |2§n11n27n3>ECICB|V>|”1>fl)|n2>2—27,+y|”3>§2w (13

Note that from Eq(9) onward, the LO energfi g is taken  with the corresponding eigenvalues

as unit of energy in the remainder of this section. We want to _

stress that the shifted bosonic operatBssand 53 still obey EN, n,n,= (€0t €1 EPN2+ny+ny+ng.  (14)
the canonical commutation rules, but do not commute with

the fermion operators. The Hamiltonian equati@nis now  Here,|V) denotes the electron vacuum, and

represented as Impy=(n) 48]+ )"0 a9
H=eoCico+er'clc,—EN+BIB, + BB+ BB, are the shifted oscillator eigenstatésr coherent statgs
ety t i whose vacuum is defined aBy(+ «)|0),=0. We will omit
+(C1By+CyBy)(C1Co+CoCa), (10 the upper index =1,2,3 of the bosonic states from now on
with the modified energies depending of the number of parsince confusions are unlikely.
ticles Considering theN=1 Hilbert space the Hamiltonian can
be easily diagonalized numerically since orlyo bosonic
}iV: €1+ 2 Reyp* )N—|v|?, (11) modes are involved. An approximate analytical solution is
possible as well, where the transition matrix element is
E/F}f:(| 7|2+ | k|2 N2 (12)  treated in degenerate perturbation theory, using the coherent

state equatioril5) as basis. In oder to show the basic fea-
The left-hand side of Fig. 1 shows thdimensionless tures of this analytic solution we neglect for the moment the
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third bosonic modeB;, which reduces the number of quan-  In this approximationH?" has been mapped onto the
tum numbers that have to be kept track of. Since this moddaynes-Cummings model plus an additional bosonic mode
commutes with the rest of the system, it can easily be incorthat merely renormalizes the coupling consta@l
porated afterwards. In the same spirit we neglect the po—o{Nnz|nz),Ci.

laronic shift (12) and the shift of the level spacin@ll),

which are restored,.hovx(ever, in the numerics. Il. THE SPECTRAL FUNCTION
In the resonant situatiofzero detuning\) and neglecting . ] )
terms of the ordey?C,, degeneratgertubation theory leads In this section we calculate the spectral function of our
to the level repulsiorfor avoided level crossing system. We contrast two different approaches and also pro-
vide the full solution via numerical diagonalization of a ma-
Erivnz: €0+ Ny+N,* \/n—1|o<nz|n2>yC1| (16)  ftrix spanned by only two bosonic modes.
for n;=1, n,=0. The overlap integrals of two displaced A. Analytic expressions

oscillators appearing in Eq16) are also known as Franck-  The gpectral function of the electron-phonon Hamiltonian
Condon factors, which were first introduced in the theory Ofequation (1) is usually calculated by means of finite-
excited molecules. More generally they are given by temperature Green'’s function€hap. 6 in Ref. 12 The self-

. min(n.m) consistent first-order Born approximation for tfretardedl

o(nlm), = Y o2 S (—1)ken self—energy is oftgn used pr.ovid.e.d the e}ssumption of w.eak
Jnim! &5 coupling holds. With some simplification it has been applied
to the present quantum dot problem with two levels bylKra
1 n m! ok and Kha?2 There are two diagrams of first order in the pho-

Xﬁ W WV 17 non propagator that can be classified as the Hartree and ex-

change self-energie&, ="+ 3%, Usually, the Hartree term
and are related to the associated Laguerre polynomials. Sinég neglected in view of a constant electron charge density,
the Franck-Condon factorg n,|n,) , are oscillating as func-  which is compensated by a positive background. However,
tions ofn, we find a complex level structure if many bosonsin the case of quantum dots being localized in space, the
are present, i.e., at elevated temperatures. Introducing a smailtuation is different: In a phonon-assisted transition between
external broadening will lead to a continuous but still highly levels, the charge structure of the electtgiven by the con-
structured spectral function. finement functions changes, and a classical electrostatic
The energy splitting of Eq(16) can be recovered in a contribution to the lattice deformation appears. Explicitly,
truncated Hamiltonian where only the nearly resonant tranthe Hartree self-energy of levels given by ¢i=1)
sitions 0— 1 with phonon absorption and-20 with phonon
emission are kept, SHo wi E MM, (22
HRW=¢,clco+ esclc, +BIB, + BB+ C Bclcy 0
The electronic occupations numbens have to be deter-

ot
+C1B1CoCs . (18) " mined via the spectral function,
In analogy to the optical equivalent in the Jaynes- % 5
Cummings model, we use the temmtating-wave approxi- nizf doAi(w)f(w). (23
mation(RW). HRW can be represented by<2 matrice$® in o
the basis Under equilibrium conditions, the electrons are distributed
ot over energy according to the Fermi functiof(w)
[n1,n2)°=ce|V)[ni)olnz) -, =(efle=m +1)71 with inverse temperatur@=1/kgT and
chemical potentiaje. The spectral function and self-energy
Ing,no)t=clV)ng—1)ony) - oy - (190  are related as usual via
Notice that the shif he el ic level 1 1
otice that the shift o3, depends on the electronic level, AiB(w)= ~ Zim (24)

a feature that gives rise to the Franck-Condon factors. The - w—€6—(w)"

corresponding eigenfunctions are
The exchange self-energy reads

|nl7n2>t:C§ n |n1,n2>OiC§ n |nl7n2>l (20)
1772 1772

e N(wo) +f(w")
X _ ) s 1 pAB ’
with the eigenvalues 2 (‘”)_% MHIMUqﬁwd“’ Aj(w”)

w+wg— o' +i0

+N(wo)+1—f(a)')

N 1
Enn,= E(eo-l— €)+tn+n,—12=R, /2, (21 ) (25)

w—wy— o' +i0

: CenlitinaR?  — A2 2
with the Rabi splittingR;,  =A%+ny|o(N2|nz),Ce|* and  pere N(w) = (e~ 1)1 is the Bose function and gives the
the weight factors:,?l‘nz:[(Rnl,nzt A)2R, o, 1M phonon occupation. For the self-consistent first-order Born
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approximation, Eqs(22)—(25) have to be solved in an itera- Since the overlap between displaced oscillators does not
tive manner until convergency for the total self-energyvanish even for different quantum numbers, the double sum-
3i(w) is reached. mation overn, andn; will account for the satellites of the

This approximate result wil be compared with the spectrakpectral function that appear at multiples of the phonon fre-
function based on the numerically exact eigenfunctions anduencyw,. The approximation is good as long as the system
eigenvalues. As a starting point we use the general definitiois close to zero detuning, i.e., as long as degenerate pertuba-

1 tion theory works. Treating additionally the eigenstates in
_ = ot t perturbation theory leads to marginal improvements only.
Aijl@)= wRefo dte Tr{P[Ci(t)'Cj O]+ (29 For the construction of the one-particle spectral function,

] ] ] o ) a combination of states referring to different fermion sub-

with p as the density matrix. Expanding into exact eigen-spaces are needed, since the spectral function gives the

states we obtain frequency-resolved probability for removér addition of
one electron. A signature of this general behavior is the oc-
A(w)= D (pt‘-I—pIN;l)KN—1;,u|Ci|N;V>|2 currence of both the Rabi splitting and the bare detuning in
N,v,n the &-function argument of Eq(28), accompanied with the
X (N NI ) 27 overlap between non-interacting and interacting states.
v Cu ' Since, on the other hand, the phonon-assisted transition of an

whereH|N;v)=€Y|N; ) denotes the eigenvalue problem in electron occurs exclusively in the subspace of one fermion,
the N-electron syubspace. In equilibriumy is diagonal, W€ have severe doubts on using a convolution of one-particle

(N3 p|N: ) =5, ,up';l. Due to the well-defined parity of the spectral functions for describing relaxation, as done in Ref.
Hamiltonian equation(10), the spectral function has only 5 We expect this deficiency to be dramatic in particular
elements diagonal in the sublevel index. Parity means herdnen only a few electronic levels are involved, as in the
that the electrom; subspace decomposes into two subset®resent case.

defined by the state$c)|V)|2n;)e.cl|V)|2n;+ 1)} and

{cdIV)|2n +1)0,cl|V)|2n,)o}, respectively. B. Numerical results

For the spectral function in the rotating-wave approxima- | the following figures we present our numerical results.

tion, an explicit rgsult can be giyen using the re§ults of EqSThe exact spectral function of the lower levi}(w) (solid
(20) and(21). Again the modeB; is neglected, which can be |ing), obtained from numerical diagonalization, is compared

eaRSva incorporated afterwards. To complete the spectréjm Qlith the simplified solution in rotating-wave approximation
E ; we have to include the noninteracting statps@ A (dotted ling and with the self-consistent first-order
=co|V)|0)oln2) -, with eigenvaluese+nywo, Which re-  gorn approximatiom? (dashed ling Both A, andAR"Y are
semble the ground state for fixeg. convoluted with a Gaussian of varianae= # w,/70.

The spectral function in RW has two contributiorg; " However, we want to emphasize that the exact spectral
=Ag " +Ag ", which refer to the transition between one fynction [and ARY(w) as well consists ofs functions only.
(zerg particles and twdone particles, repectively. This was clear from the beginning since a finite pertubation

cannot change the character of the spectrum of the unper-
ARWI= X (pl +Pgn')|0<”§|n2>n|2 turbed system. Since we started fralispersionles$osonic
npnb=0 2 "2 modes, the discrete electronic spectrum cannot be altered by
the finite electron-phonon interactidhFor the density ma-
, trix in Eq. (26) we assume the grand canonical equilibrium
X(egt(=npwo=w)+ X (pp, .- distribution porexp] —BH—pM) ] %and fix the chemical po-
M= 1ing.np=0 tential u halfway in energy between the bare electronic lev-
+P21,nr)|0r71,n2|2|o<”£|”2>n|2 els. _This is close to putting just one e_Iectron in_to the dot.
2 Figure 2 shows the spectral functions kgl =% wqy (T
X 8(eq— Al2— Rn1'n2/2+(n2—né)w0—w) =426 K) for the bare detuning zero, i.e.e;=hwq (€g IS

taken as the zero of energy in what follow$his level spac-
o ing corresponds to a dot size ®f=3.9 nm.
+ > (pﬁl’nrz’+ 0, o) The prominent feature is the splitting of the spectral func-
n1=1;np,n,=0 . tion into some kind of doublet that can be traced back to the
xlet  [2o(nalng 2 level repulsion in thgdominani B; channnel. Its value is
ny.npl 10ATR217527 9 related to the strength o€; (3.3 me\j. Looking more
, closely it becomes apparent, however, that the upper and
X 8(eg= A2+ Ry p /24 (N3~ Np)wo—w), (28 Iowerystructure do nol?l?wave an equal weight as onloep would
expect for zero detuning. This clearly indicates the shift in
. 2 A level spacingrenormalized detuningFurthermore, an over-
="(n1.nylp[ny.ng) =, and py o =(0in1,n5[p|0iN1.Nz) gy shift with respect to the bare energy=0 is obvious,
[see Eq.(13)]. An analogous expression can be given forwhich stems from the polaronic shift of the other modes. All
ARV ). The spectral functiod§"(w) satisfies the strict these features can be seen als&gft=%wy/4 (T=106 K),
sum rules for the zeroth and first moment, which give nor-which is more relevant for realistic dot spectroscdpig. 3.
malization and average energy, respectively. The right-hand panels of Figs. 2 and 3 show the first satellite

where P(l),nzE %(0,n,|p0,)°, pﬁl'nZ':
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FIG. 4. The spectral functions BT =% w, for negative detun-
FIG. 2. The spectral function&, (full), ARY (dotted, andAB N (A=—0.2%w,, left pane) and positive detuningX= 0.2 w,
(dashedl at ksT=%w, and zero detuning. The energy scale is in Might pane). Other data as in Fig. 2.
units of i wg, with eg=0. The right panels show the first satellite
structure at one phonon energy abatep) and below the main the level repulsion. For the lower temperatFaeg. 3), the
level (bottom). Born approximation works somewhat better since here the
unperturbed but shifted ground-state energy carries the domi-
structures. They are reduced in weight but have a similanant weight.
appearance as in the main structure.
In Fig. 4 the spectral functions &z T=%wy are com-
pared for two nonzero detunings=7%wq— €;+ €5, which IV. CONCLUSIONS

refer to dot sizes ofxo=3.6 nm (left) and x,=4.4 nm We have presented a model that is suitable to describe the
(right), respectively. The spectral functiohf"(w) shows electron-phonon interaction in quantum dots and can be
good agreement with the exact solution in all features. Inreated numericallgxact Thus we were able to compare the
particular, the complex structure of lines having differentexact spectral function with the self-consistent first-order
weight and position is well reproduced. This means that noBorn approximation. The first observation was that the exact
only the eigenvalues are correctly approximated by the respectral function consists af functions, whereas the Born
duction of the system intGmany) 2X 2 matrices but also the approximation gives a continuous spectral function. But even
eigenvectors. after an artificial broadening of the exact spectral function,

Turning to the self-consistent first-order Born approxima-striking differences remain, which are due to the inability of
tion, Ag(w), the agreement is not satisfying at all. At the the Born approach to exhbit all shifts and splittings in detail.
higher temperaturé-ig. 2), instead of the complex structure We would like to mention that without including the Hartree
only two broad bands are seen that have nearly smeared osglf-energy into the Born calculation, the agreement would

be even worse.

P ' N As an alternative we propose an analytic solution that

1 hi employs the coherent states for representing the electron-
phonon Hamiltonian. The rotating-wave approximation al-
lows us to reduce the problem to @mfinite) number of
decoupled X2 matrices. Close to resonan¢eero detun-
ing), this approximation works remarkably well. The appear-
ance of Franck-Condon factors points to the great similarity
of the electron-phonon interaction in molecules and quantum
dots.

Starting from the full electron—LO-phonon Hamiltonian
with Frohlich interaction, we were able reduce the problem
in a quantum dot to a few boson modes only. Due to this
considerable reduction in numerical labor, it was possible to
construct the exact eigenstates and energies. In the present
o\ work, these results have been used to calculate the one-
o L4 RN particle spectral function. However, an extension to two-
particle expectation values that are relevant for, e.g., transi-
tion rates is possible. Using the density-matrix scheme,

FIG. 3. The spectral functions & T=%wy/4 and zero detun- relaxation processes can be studied within the same reduced
ing. Other data as in Fig. 2. Hilbert space, a route that will be followed in future work.
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APPENDIX: DETERMINATION OF COUPLING
CONSTANTS

With the transformations of Eq2) we obtain the follow-
ing expressions for the six coupling constants:

Ci?=3 MEmMo3,

CZZE Mg'OMgélcl,
q
lcslz=§ MGM%G—[C,l?,
Cy=2, MIMOLC+CsC,/C,
q
c5:% Mg'M29/Cs,

|Ce|2:% M(lq'lM l!%q_ |C4l?—|Csl?

+2 R (2C3 C5C,CE —|Co|*Cs|?)/C3].
(A1)

The standard Fidich coupling for the electron—LO-phonon
interaction is adopted and applied to the dot confinement

states,

<I>iq'j=f d3r oy (r)e'aTy(r). (A2)
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w1<r>=xx—owo<r>. (A3)

wherexy>Yy,,z, are the spatial extensiofgariancey of the
ground state. The relevant level distance is

2,-2
X,

:2me'

€1 €p (A4)

The matrix elements in EqA2) read
0,0 1 2,2 2,2 2,2
(Dq’ =exp — E(qXXo+quO+qZZo ’

DO=igxe®g”,

Dyl=(1-qx§) @g°. (A5)

The final integration oveq leads toC,=0, C,=0 on ac-
count of the well-defined parity of the wave functions. The
other constants can be reduced to the followieljptic) in-
tegrals,

Az (=
_ -n _ _ —-1/2
|n_—8773,2x0f1 Attt - ay)(t- )] Y2 (A6)
with ay=1-(yo/X0)*<1 anda,=1—(zy/x0)*<1. We ob-
tain finally

Cl: (| 1/2)1/2, 03: (|0)1/2,
Cs=(lo—11/2)/C3,

Co=(lo—I1+3l,/4—C2)*2 (A7)

For the numerical calculations we choose material constants
of GaAs, i.e., LO-phonon energyw,=36.7 meV, conduc-
tion band massn,=0.067m,, and dielectric constants.,
=10.7, kg=12.4. According to Eq(A4), a(long) dot exten-
sion of Xx,=3.9 nm gives resonance between level spacing

For simplicity we consider an anisotropic parabolic potentialand LO energy. The effective dot extensionsyiand z di-
as dot confinement, witlk as the long axis. The two ener- rections are taken equaly=zo=3 nm, which renders the

getically lowest wave functions read

elliptic integrals(A6) to be simple logarithmic functions.
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