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Electron-phonon interaction in quantum dots: A solvable model
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The relaxation of electrons in quantum dots via phonon emission is hindered by the discrete nature of the dot
levels ~‘‘phonon bottleneck’’!. In order to clarify the issue theoretically we consider a system ofN discrete
fermionic states~dot levels! coupled to an unlimited number of bosonic modes with the same energy~disper-
sionless phonons!. In analogy to the Gram-Schmidt orthogonalization procedure, we perform a unitary trans-
formation into new bosonic modes. Since onlyN(N11)/2 of them couple to the fermions, a numerically exact
treatment is possible. The formalism is applied to a GaAs quantum dot with only two electronic levels. If close
to resonance with the phonon energy, the electronic transition shows a splitting due to quantum mechanical
level repulsion. This is driven mainly by one bosonic mode, whereas the other two provide further polaronic
renormalizations. The numerically exact results for the electron spectral function compare favorably with an
analytic solution based on degenerate perturbation theory in the basis of shifted oscillator states. In contrast, the
widely used self-consistent first-order Born approximation proves insufficient in describing the rich spectral
features.
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I. INTRODUCTION

Since the development of quantum well lasers there h
been continuous attempts to manufacture laser struct
with even more reduced dimensions. The idea behind wa
increase the efficiency by enhancing the density of sta
However, zero-dimensional quantum structures~quantum
dots! are characterized by a discrete spectrum, and the
combination probability does not depend on the radiat
rate alone. Rather, the relaxation pathway into the gro
state becomes decisive. Looking at the nearly monoenerg
longitudinal-optical~LO! phonons, an efficient relaxation be
tween two dot levels seems to be possible only if level d
tance and LO energy match~resonance condition!. This type
of argument has been calledphonon bottleneck.1,2

From the experimental side there is an ongoing inte
debate on whether or not the phonon bottleneck is seen in
data.3 However, the recently found ground-state lasing
quantum dots under cw conditions seems to prove that
phonon bottleneck is not an obstacle when trying to incre
the laser efficiency by dimensional reduction.4

Nevertheless the theoretical concepts are still contro
sial. Obviously, the bottleneck argument relies on the
sumption of strict energy conservation in the electro
phonon scattering, as dictated by Fermi’s golden rule. A n
step towards a realistic description seems to incorporate
intrinsic lifetime broadening of dot levels. Kra´l and Khás5

went along this way by calculating the complex electron s
energy due to the LO-phonon interaction. They claimed t
the convolution of initial and final state spectral functio
gives rise to a broadening that is able to circumvent the p
non bottleneck. Arakawa and co-workers6,7 have treated the
electronic transition and the LO modes in closed form
wave function evolution. They pointed out that the final d
cay of the LO phonon into acoustic phonons is decisive
PRB 620163-1829/2000/62~11!/7336~8!/$15.00
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the relaxation process. A different argument includes Aug
like electronic excitation for overcoming the sharp ener
selection inherent to the LO-phonon relaxation.8–10

A more general question concerns the appropriate theo
ical tools for describing relaxation in zero-dimensional sy
tems. Nonequilibrium Green’s functions are often too
dious to be used in realistic models. Therefore one is temp
to look for the one-particle Green’s functions and th
broadening as a signature for relaxation.5,11 However, stan-
dard self-energy approaches as the self-consistent first-o
Born approximation5 have to be questioned since they re
implicitly on the existence of an electronic continuum that
missing in zero-dimensional systems.

In this paper we want to look closely at this question a
to qualify the standard approximation schemes~as the self-
consistent Born approximation! in application to quantum
dots. To compare with, we present results from an ex
diagonalization of the electron-phonon Hamiltonian. Th
can be achieved even for an unlimited number of phon
modes provided they haveno dispersion, and uses a unitary
transformation among the phonons. IfN electronic dot states
~fermions! are considered, onlyN(N11)/2 of the new
modes~bosons! couple to the electrons, and for modera
numbers ofN the transformed Hamiltonian can be eas
diagonalized numerically. An upper limit of the boson occ
pation numbers can be fixed in accordance with temperat
For N51, this exact solution is known for a long time a
independent boson model.12 Here we present the extension
a finite number of levels with the important interlevel co
pling ~phonon transition!. A singleboson mode in resonanc
with an equidistant series of electronic levels has be
treated exactly in Ref. 13 predicting the phonon stairc
effect.

A related problem is the electron-phonon coupling
semiconductor point defects. Both the internal defect tran
7336 ©2000 The American Physical Society
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tions in the near infrared and the phonon satellites of in
band transitions show a rich spectrum. Even away from s
resonance with an electronic transition, the measured tra
tion energies differ from the bare phonon value. This h
been called the LO-phonon–donor bound state, similar to
exciton-phonon complex introduced earlier.14 In first at-
tempts for a quantitative understanding, perturbation the
has been used.15 The crystallographic symmetry of the defe
dictates what kind of lattice distortion~local phonon mode!
couples to the electronic transitions. Taking into acco
only a few of these symmetry-adapted lattice modes, a
numerical diagonalization is possible nowadays.16 This is in
particular important when dealing with strongly polar ma
rial. We show that semiconductor quantum dots behave s
larly with respect to the lattice coupling, underlining on
more that the quantum dot behaves as a kind of mesosc
atom. Note, however, the quite different length scales
volved. Whereas the local modes in the defect problem
constructed using large parts of the Brillouin zone, only
minor part around theG point is involved in the quantum do
case. Consequently, the LO-phonon dispersion can be s
neglected here.

In Sec. II the method is outlined and applied to the m
simple but nontrivial case of two dot levels. Results for t
spectral function are given in Sec. III. It shows a kind
avoided level crossing if level distance and phonon ene
nearly coincide, which resembles the phonon-polariton f
ture. Still, the exact spectral function consists of a series
sharp lines. The self-consistent first-order Born approxim
tion fails in this respect by exhibiting broad spectral featur
However, we are able to derive a simple analytical appro
mation that almost coincides with the exact results. This e
ploys nondegenerate perturbation theory for those elect
phonon states which are strongly coupled near resonanc
is called the rotating-wave approximation since it r
sesembles a similar treatment of the Jaynes-Cumm
model in quantum optics. Some consequences of the pre
work on the general description of relaxation in quantu
dots are given as well, and conclusions are drawn in Sec.
In the Appendix, the coupling constants are calculated ad
ing parameter values for an idealized GaAs quantum
with parabolic confinement.

II. THE MODEL AND THE TRANSFORMATION

Let us considerN discrete electronic levelsi 50, . . . ,N
21 coupled toM phonon modesq1 , . . . ,qM of fixed energy
\v0. The Hamiltonian reads

H5(
i

e ici
†ci1(

q
\v0bq

†bq1 (
i , j ,q

Mq
i , j~bq1b2q

† !ci
†cj .

~1!

Here, theci(ci
†) denote the fermionic creation~annihilation!

operators, respectively, andbq ,bq
† are the corresponding

bosonic operators. The coupling constants between pho
and electrons,Mq

i , j , depend explicitly on the fermionic state
involved ~transitions between dot levels!. For H to be Her-
mitean, (Mq

i , j )* 5M 2q
j ,i must hold. For simplicity, the spin is

neglected because it is conserved by the electron-phono
teraction.
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Since allM bosonic modes couple to the electronic leve
a straightforward diagonalization is not feasible. We proce
by mapping the phonon operators$bq% onto a new set of
bosonic operators$Bl%, with the goal that only a limited
number couples to the electrons.

We start with an arbitrary linear combination of the o
eratorsbq written asAl with l51, . . . ,M , which also span
the bosonic Hilbert space. Following the well-known Gram
Schmidt orthogonalization procedure,

B̃l5Al2 (
a51

l21

@Al ,Ba
† #Ba , Bl5B̃l /A@B̃l ,B̃l

†#, ~2!

we arrive at a new setBl whose members obey the canonic
Bose commutation relations,@Bl ,Bl8#5dl,l8 . Then, the
transformation matrixU with Bl5(qUl,qbq is unitary, and
we have

(
l

Bl
†Bl5(

q
bq

†bq . ~3!

Since the bosonic modes have thesame energy, the last
relation shows that the free boson term in the Hamilton
equation~1! remains diagonal.

The first linear combinations are chosen as

Al( i , j )5(
q

Mq
i , jbq , ~4!

where l( i , j ) runs over theN(N11)/2 pairs (i , j ) with i
> j . The remainingAl can be taken arbitrarily but linearly
independent. It follows from the prescribed one-to-one m
ping that the electron-phonon interaction contains only
restricted setl( i , j ) of the new operators. This reduces th
numerical labor enormously since the relevant Hilbert sp
now containsN fermionic and onlyN(N11)/2 bosonic de-
grees of freedom.

A. Reduction to a two-level system

The model can be used to describe electrons in a quan
dot that are coupled to LO phonons. Under the assump
that the third electronic level is energetically well above t
lowest two, we will limit the number of states toN52.
Choosing A15(qMq

1,0bq , A25(qMq
0,0bq , A35(qMq

1,1bq
we accomplish that the transition matrix element coup
only to threenon trivial bosonic modes. We obtain

H5e0c0
†c01e1c1

†c11(
l

\v0Bl
†Bl1~C1B11C1* B1

†!~c1
†c0

1c0
†c1!1~C2B11C2* B1

†1C3B21C3* B2
†!c0

†c0

1~C4B11C4* B1
†1C5B21C5* B2

†1C6B31C6* B3
†!c1

†c1

~5!

with the six coupling constantsCi , which follow from the
transformation~2!. If we further assume that the electron
wave functions in the quantum dot exhibit a well-defin
parity, the constantsC2 andC4 vanish, andB1 couples only
to the transition 0→1. The model will therefore show promi
nent features of the Jaynes-Cummings model17 that has been
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7338 PRB 62T. STAUBER, R. ZIMMERMANN, AND H. CASTELLA
introduced to describe a single photon mode coupled to
atomic transition. In the present case, however, the detu
has to be defined asD5\v2(e12e0). Further details re-
garding the explicit calculation of the coupling constantsCi
are given in the Appendix. We adopt a parabolic confin
ment potential with extensionsy05z0 andx0.y0, having in
mind an anisotropic harmonic quantum dot. In this case,
the lowest dot levels have equal energy separation, and
mentioned truncation to just two levels is not realistic. Ne
ertheless it will be applied here to keep the numerics a
reasonable level.

By means of an appropriate rotation of the operatorsB2
andB3, i.e.,

B2⇐@~C52C3!B21C6B3#/g,

B3⇐@2C6* B21~C5* 2C3* !B3#/g, ~6!

with g25uC52C3u21uC6u2, we compel the new modeB3 to
couple only to the fermionic particle number operatorN
[c0

†c01c1
†c1. If we leave out the bosonic modes that do n

couple to the fermionic levels at all, we obtain

H5e0c0
†c01e1c1

†c11\v0B1
†B1

1~C1B11C1* B1
†!~c1

†c01c0
†c1!

1\v0B2
†B21~gB21gB2

†!c1
†c102~h* B21hB2

†!N
1\v0B3

†B32~k* B31kB3
†!N, ~7!

with the new parameters

h5C3* ~C32C5!/g,k5C3* C6* /g. ~8!

The Hamiltonian conserves the electron number,@H,N#
50, and consequently the Hilbert space can be decomp
according to the electron number~zero, one, or two!. In the
subspace of zero or two fermions, the Hamiltonian can
diagonalized easily because the nondiagonal transit
0↔1 are impossible here. More demanding is the subsp
of one fermion, which can, however, be rationalized a lot
introducing shifted operators

B25B22hN1gc1
†c1 ,B35B32kN. ~9!

Note that from Eq.~9! onward, the LO energy\v0 is taken
as unit of energy in the remainder of this section. We wan
stress that the shifted bosonic operatorsB2 andB3 still obey
the canonical commutation rules, but do not commute w
the fermion operators. The Hamiltonian equation~7! is now
represented as

H5e0c0
†c01 ẽ1

Nc1
†c12Ep

N1B1
†B11B 2

†B21B 3
†B3

1~C1B11C1* B1
†!~c1

†c01c0
†c1!, ~10!

with the modified energies depending of the number of p
ticles

ẽ1
N5e112 Re~gh* !N2ugu2, ~11!

Ep
N5~ uhu21uku2!N 2. ~12!

The left-hand side of Fig. 1 shows the~dimensionless!
n
ng

-

ll
he
-
a

t

ed

e
ns
ce
y

o

h

r-

parameters calculated for a parabolic confinement poten
with extensions ofy05z053 nm as a function ofx0. All
input parameters refer to GaAs, e.g.,\v0536.7 meV ~see
the Appendix!. The coupling constants are almost indepe
dent of the dot size and of order 0.1\v0. This value of 3.6
meV compares favorably with the polaron shift of electro
in bulk GaAs, 2.3 meV.

The right-hand side of Fig. 1 shows the polaronic sh
due to the phononsB2 andB3, Eq. ~12!, and the renormal-
ization of the level spacing, Eq.~11!. Since both depend on
the number of electrons present, we display the relative sh
when adding one electron,DEN5Ep

N2Ep
N21 and DeN5 ẽ1

N

2 ẽ1
N21.

B. Solution of the model

The eigenvectorsuN;n1 ,n2 ,n3& for theN-electron Hilbert
space withN50,2 are simple and given by

u0;n1 ,n2 ,n3&[uV&un1&0
1un2&0

2un3&0
3 ,

u2;n1 ,n2 ,n3&[c1
†c0

†uV&un1&0
1un2&22h1g

2 un3&22k
3 , ~13!

with the corresponding eigenvalues

En1 ,n2 ,n3

N 5~e01 ẽ1
22Ep

2!N/21n11n21n3 . ~14!

Here,uV& denotes the electron vacuum, and

un&a
l[~n! !21/2~Bl

†1a!nu0&a
l ~15!

are the shifted oscillator eigenstates~or coherent states!
whose vacuum is defined as (Bl1a)u0&a

l50. We will omit
the upper indexl51,2,3 of the bosonic states from now o
since confusions are unlikely.

Considering theN51 Hilbert space the Hamiltonian ca
be easily diagonalized numerically since onlytwo bosonic
modes are involved. An approximate analytical solution
possible as well, where the transition matrix element
treated in degenerate perturbation theory, using the cohe
state equation~15! as basis. In oder to show the basic fe
tures of this analytic solution we neglect for the moment

FIG. 1. Left: The parametersC1 , g, h, andk in units of the LO
energy as a function of the dot sizex0. Right: The relative polaronic
shifts DEN and the relative shifts of the level spacingDeN.
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third bosonic modeB3, which reduces the number of qua
tum numbers that have to be kept track of. Since this m
commutes with the rest of the system, it can easily be inc
porated afterwards. In the same spirit we neglect the
laronic shift ~12! and the shift of the level spacing~11!,
which are restored, however, in the numerics.

In the resonant situation~zero detuningD) and neglecting
terms of the orderg2C1, degeneratepertubation theory lead
to the level repulsion~or avoided level crossing!

En1 ,n2

6 5e01n11n26An1u0^n2un2&gC1u ~16!

for n1>1, n2>0. The overlap integrals of two displace
oscillators appearing in Eq.~16! are also known as Franck
Condon factors, which were first introduced in the theory
excited molecules. More generally they are given by

0^num&g5
gn1m

An!m!
e2g2/2 (

k50

min(n,m)

~21!k1n

3
1

k!

n!

~n2k!!

m!

~m2k!!
g22k ~17!

and are related to the associated Laguerre polynomials. S
the Franck-Condon factors0^n2un2&g are oscillating as func-
tions ofn2 we find a complex level structure if many boso
are present, i.e., at elevated temperatures. Introducing a s
external broadening will lead to a continuous but still high
structured spectral function.

The energy splitting of Eq.~16! can be recovered in a
truncated Hamiltonian where only the nearly resonant tr
sitions 0→1 with phonon absorption and 1→0 with phonon
emission are kept,

HRW5e0c0
†c01e1c1

†c11B1
†B11B 2

†B21C1B1c1
†c0

1C1* B1
†c0

†c1 . ~18!

In analogy to the optical equivalent in the Jayne
Cummings model, we use the termrotating-wave approxi-
mation~RW!. HRW can be represented by 232 matrices18 in
the basis

un1 ,n2&
0[c0

†uV&un1&0un2&2h ,

un1 ,n2&
1[c1

†uV&un121&0un2&2h1g . ~19!

Notice that the shift ofB2 depends on the electronic leve
a feature that gives rise to the Franck-Condon factors.
corresponding eigenfunctions are

un1 ,n2&
65cn1 ,n2

6 un1 ,n2&
06cn1 ,n2

7 un1 ,n2&
1 ~20!

with the eigenvalues

En1 ,n2

6 5
1

2
~e01e1!1n11n221/26Rn1 ,n2

/2, ~21!

with the Rabi splittingRn1 ,n2

2 5D21n1 u 0^n2un2&gC1u2 and

the weight factorscn1 ,n2

6 5@(Rn1 ,n2
6D)/2Rn1 ,n2

#1/2.
e
r-
o-

f
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In this approximation,HRW has been mapped onto th
Jaynes-Cummings model plus an additional bosonic m
that merely renormalizes the coupling constantC1
→0^n2un2&gC1.

III. THE SPECTRAL FUNCTION

In this section we calculate the spectral function of o
system. We contrast two different approaches and also
vide the full solution via numerical diagonalization of a m
trix spanned by only two bosonic modes.

A. Analytic expressions

The spectral function of the electron-phonon Hamiltoni
equation ~1! is usually calculated by means of finite
temperature Green’s functions~Chap. 6 in Ref. 12!. The self-
consistent first-order Born approximation for the~retarded!
self-energy is often used provided the assumption of w
coupling holds. With some simplification it has been appli
to the present quantum dot problem with two levels by K´l
and Khás.5 There are two diagrams of first order in the ph
non propagator that can be classified as the Hartree and
change self-energies,S5SH1SX. Usually, the Hartree term
is neglected in view of a constant electron charge dens
which is compensated by a positive background. Howev
in the case of quantum dots being localized in space,
situation is different: In a phonon-assisted transition betw
levels, the charge structure of the electron~given by the con-
finement functions! changes, and a classical electrosta
contribution to the lattice deformation appears. Explicit
the Hartree self-energy of leveli is given by (\51)

S i
H52

2

v0
(
j ,q

njMq
i ,iM 2q

j , j . ~22!

The electronic occupations numbersni have to be deter-
mined via the spectral function,

ni5E
2`

`

dvAi
B~v! f ~v!. ~23!

Under equilibrium conditions, the electrons are distribut
over energy according to the Fermi functionf (v)
5(eb(v2m)11)21 with inverse temperatureb51/kBT and
chemical potentialm. The spectral function and self-energ
are related as usual via

Ai
B~v!52

1

p
Im

1

v2e i2S i~v!
. ~24!

The exchange self-energy reads

S i
X~v!5(

j ,q
Mq

i , jM 2q
j ,i E

2`

`

dv8Aj
B~v8!F N~v0!1 f ~v8!

v1v02v81 i0

1
N~v0!112 f ~v8!

v2v02v81 i0
G . ~25!

Here,N(v)5(ebv21)21 is the Bose function and gives th
phonon occupation. For the self-consistent first-order B
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approximation, Eqs .~22!–~25! have to be solved in an itera
tive manner until convergency for the total self-ener
S i(v) is reached.

This approximate result wil be compared with the spec
function based on the numerically exact eigenfunctions
eigenvalues. As a starting point we use the general defini

Ai , j~v!5
1

p
ReE

0

`

dteivtTr$r@ci~ t !,cj
†~0!#1% ~26!

with r as the density matrix. Expanding into exact eige
states we obtain

Ai~v!5 (
N,n,m

~rn
N1rm

N21!z^N21;muci uN;n& z2

3d~en
N2em

N212v!, ~27!

whereHuN;n&5en
NuN;n& denotes the eigenvalue problem

the N-electron subspace. In equilibrium,r is diagonal,
^N;nuruN;m&5dn,mrn

N . Due to the well-defined parity of the
Hamiltonian equation~10!, the spectral function has onl
elements diagonal in the sublevel index. Parity means h
that the electron-B1 subspace decomposes into two subs
defined by the states$c0

†uV&u2n1&0 ,c1
†uV&u2n111&0% and

$c0
†uV&u2n111&0 ,c1

†uV&u2n1&0%, respectively.
For the spectral function in the rotating-wave approxim

tion, an explicit result can be given using the results of E
~20! and~21!. Again the modeB3 is neglected, which can b
easily incorporated afterwards. To complete the spectrum
HRW we have to include the noninteracting statesu0,n2&

0

[c0
†uV&u0&0un2&2h with eigenvaluese01n2v0, which re-

semble the ground state for fixedn2.
The spectral function in RW has two contributions,A0

RW

5A0
RW,101A0

RW,21, which refer to the transition between on
~zero! particles and two~one! particles, repectively.

A0
RW,105 (

n2 ,n2850

~r0,n2

1 1r0,n
28

0
!z0^n28un2&hz2

3d„e01~n22n28!v02v…1 (
n151;n2 ,n2850

~rn1 ,n2 ,2
1

1rn1 ,n
28

0
!ucn1 ,n2

2 u2z0^n28un2&hz2

3d„e02D/22Rn1 ,n2
/21~n22n28!v02v…

1 (
n151;n2 ,n2850

~rn1 ,n2 ,1
1 1rn1 ,n

28
0

!

3ucn1 ,n2

1 u2z0^n28un2&hz2

3d„e02D/21Rn1 ,n2
/21~n22n28!v02v…, ~28!

where r0,n2

1 [ 0^0,n2uru0,n2&
0, rn1 ,n2 ,6

1

[ 6^n1 ,n2urun1 ,n2&
6, and rn1 ,n2

0 [^0;n1 ,n2uru0;n1 ,n2&
@see Eq.~13!#. An analogous expression can be given
A0

RW,21(v). The spectral functionA0
RW(v) satisfies the strict

sum rules for the zeroth and first moment, which give n
malization and average energy, respectively.
l
d
n

-

re
ts

-
.

of

r

-

Since the overlap between displaced oscillators does
vanish even for different quantum numbers, the double su
mation overn2 and n28 will account for the satellites of the
spectral function that appear at multiples of the phonon
quencyv0. The approximation is good as long as the syst
is close to zero detuning, i.e., as long as degenerate pert
tion theory works. Treating additionally the eigenstates
perturbation theory leads to marginal improvements only

For the construction of the one-particle spectral functio
a combination of states referring to different fermion su
spaces are needed, since the spectral function gives
frequency-resolved probability for removal~or addition! of
one electron. A signature of this general behavior is the
currence of both the Rabi splitting and the bare detuning
the d-function argument of Eq.~28!, accompanied with the
overlap between non-interacting and interacting sta
Since, on the other hand, the phonon-assisted transition o
electron occurs exclusively in the subspace of one ferm
we have severe doubts on using a convolution of one-par
spectral functions for describing relaxation, as done in R
5. We expect this deficiency to be dramatic in particu
when only a few electronic levels are involved, as in t
present case.

B. Numerical results

In the following figures we present our numerical resul
The exact spectral function of the lower levelA0(v) ~solid
line!, obtained from numerical diagonalization, is compar
with the simplified solution in rotating-wave approximatio
A0

RW ~dotted line! and with the self-consistent first-orde
Born approximationA0

B ~dashed line!. Both A0 andA0
RW are

convoluted with a Gaussian of variances5\v0/70.
However, we want to emphasize that the exact spec

function @andAi
RW(v) as well# consists ofd functions only.

This was clear from the beginning since a finite pertubat
cannot change the character of the spectrum of the un
turbed system. Since we started fromdispersionlessbosonic
modes, the discrete electronic spectrum cannot be altere
the finite electron-phonon interaction.19 For the density ma-
trix in Eq. ~26! we assume the grand canonical equilibriu
distribution r}exp@2b(H2mN)# and fix the chemical po-
tential m halfway in energy between the bare electronic le
els. This is close to putting just one electron into the dot

Figure 2 shows the spectral functions atkBT5\v0 (T
5426 K) for the bare detuning zero, i.e.,e15\v0 (e0 is
taken as the zero of energy in what follows!. This level spac-
ing corresponds to a dot size ofx053.9 nm.

The prominent feature is the splitting of the spectral fun
tion into some kind of doublet that can be traced back to
level repulsion in the~dominant! B1 channnel. Its value is
related to the strength ofC1 ~3.3 meV!. Looking more
closely it becomes apparent, however, that the upper
lower structure do not have an equal weight as one wo
expect for zero detuning. This clearly indicates the shift
level spacing~renormalized detuning!. Furthermore, an over
all shift with respect to the bare energye050 is obvious,
which stems from the polaronic shift of the other modes.
these features can be seen also atkBT5\v0/4 (T5106 K),
which is more relevant for realistic dot spectroscopy~Fig. 3!.
The right-hand panels of Figs. 2 and 3 show the first sate
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structures. They are reduced in weight but have a sim
appearance as in the main structure.

In Fig. 4 the spectral functions atkBT5\v0 are com-
pared for two nonzero detuningsD5\v02e11e0, which
refer to dot sizes ofx053.6 nm ~left! and x054.4 nm
~right!, respectively. The spectral functionA0

RW(v) shows
good agreement with the exact solution in all features.
particular, the complex structure of lines having differe
weight and position is well reproduced. This means that
only the eigenvalues are correctly approximated by the
duction of the system into~many! 232 matrices but also the
eigenvectors.

Turning to the self-consistent first-order Born approxim
tion, A0

B(v), the agreement is not satisfying at all. At th
higher temperature~Fig. 2!, instead of the complex structur
only two broad bands are seen that have nearly smeared

FIG. 2. The spectral functionsA0 ~full !, A0
RW ~dotted!, andA0

B

~dashed! at kBT5\v0 and zero detuning. The energy scale is
units of \v0, with e050. The right panels show the first satelli
structure at one phonon energy above~top! and below the main
level ~bottom!.

FIG. 3. The spectral functions atkBT5\v0/4 and zero detun-
ing. Other data as in Fig. 2.
r

n
t
t
-

-

out

the level repulsion. For the lower temperature~Fig. 3!, the
Born approximation works somewhat better since here
unperturbed but shifted ground-state energy carries the do
nant weight.

IV. CONCLUSIONS

We have presented a model that is suitable to describe
electron-phonon interaction in quantum dots and can
treated numericallyexact. Thus we were able to compare th
exact spectral function with the self-consistent first-ord
Born approximation. The first observation was that the ex
spectral function consists ofd functions, whereas the Born
approximation gives a continuous spectral function. But ev
after an artificial broadening of the exact spectral functio
striking differences remain, which are due to the inability
the Born approach to exhbit all shifts and splittings in deta
We would like to mention that without including the Hartre
self-energy into the Born calculation, the agreement wo
be even worse.

As an alternative we propose an analytic solution t
employs the coherent states for representing the elect
phonon Hamiltonian. The rotating-wave approximation
lows us to reduce the problem to an~infinite! number of
decoupled 232 matrices. Close to resonance~zero detun-
ing!, this approximation works remarkably well. The appe
ance of Franck-Condon factors points to the great simila
of the electron-phonon interaction in molecules and quan
dots.

Starting from the full electron–LO-phonon Hamiltonia
with Fröhlich interaction, we were able reduce the proble
in a quantum dot to a few boson modes only. Due to t
considerable reduction in numerical labor, it was possible
construct the exact eigenstates and energies. In the pre
work, these results have been used to calculate the
particle spectral function. However, an extension to tw
particle expectation values that are relevant for, e.g., tra
tion rates is possible. Using the density-matrix schem
relaxation processes can be studied within the same red
Hilbert space, a route that will be followed in future work

FIG. 4. The spectral functions atkBT5\v0 for negative detun-
ing (D520.2\v0, left panel! and positive detuning (D50.2\v0,
right panel!. Other data as in Fig. 2.
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APPENDIX: DETERMINATION OF COUPLING
CONSTANTS

With the transformations of Eq.~2! we obtain the follow-
ing expressions for the six coupling constants:

uC1u25(
q

Mq
1,0M 2q

0,1 ,

C25(
q

Mq
0,0M 2q

0,1/C1 ,

uC3u25(
q

Mq
0,0M 2q

0,02uC2u2,

C45(
q

Mq
1,1M 2q

0,1/C11C5C2 /C3 ,

C55(
q

Mq
1,1M 2q

0,0/C3 ,

uC6u25(
q

Mq
1,1M 2q

1,12uC4u22uC5u2

12 Re@~2C2* C3C4C5* 2uC2u2uC5u2!/C3
2#.

~A1!

The standard Fro¨hlich coupling for the electron–LO-phono
interaction is adopted and applied to the dot confinem
states,

Mq
i , j5

A

V1/2q
Fq

i , j ,A25\v0

e2

2e0
S 1

k`
2

1

k0
D ,

Fq
i , j5E d3rc i* ~r !eiq•rc j~r !. ~A2!

For simplicity we consider an anisotropic parabolic poten
as dot confinement, withx as the long axis. The two ene
getically lowest wave functions read
l-
n

of

nt

l

c0~r !5~A2px0y0z0!21/2expF2
1

4 S x2

x0
2

1
y2

y0
2

1
z2

z0
2D G ,

c1~r !5
x

x0
c0~r !, ~A3!

wherex0.y0 ,z0 are the spatial extensions~variances! of the
ground state. The relevant level distance is

e12e05
\2x0

22

2me
. ~A4!

The matrix elements in Eq.~A2! read

Fq
0,05expS 2

1

2
~qx

2x0
21qy

2y0
21qz

2z0
2! D ,

Fq
1,05 iqxx0Fq

0,0,

Fq
1,15~12qx

2x0
2!Fq

0,0. ~A5!

The final integration overq leads toC250, C450 on ac-
count of the well-defined parity of the wave functions. T
other constants can be reduced to the following~elliptic! in-
tegrals,

I n5
A2

8p3/2x0
E

1

`

dtt2n@ t~ t2ay!~ t2az!#
21/2, ~A6!

with ay512(y0 /x0)2,1 andaz512(z0 /x0)2,1. We ob-
tain finally

C15~ I 1/2!1/2, C35~ I 0!1/2,

C55~ I 02I 1/2!/C3 ,

C65~ I 02I 113I 2/42C5
2!1/2. ~A7!

For the numerical calculations we choose material const
of GaAs, i.e., LO-phonon energy\v0536.7 meV, conduc-
tion band massme50.067m0, and dielectric constantsk`

510.7,k0512.4. According to Eq.~A4!, a ~long! dot exten-
sion of x053.9 nm gives resonance between level spac
and LO energy. The effective dot extensions iny and z di-
rections are taken equal,y05z053 nm, which renders the
elliptic integrals~A6! to be simple logarithmic functions.
ys.
*Email: stauber@physik.hu-berlin.de
1B. Bockelmann and G. Bastard, Phys. Rev. B42, 8947~1990!.
2H. Benisty, Phys. Rev. B51, 13 281~1995!.
3B.N. Murdin, W. Heiss, C.J.G.M. Langerak, S.-C. Lee, I. Ga

braith, G. Strasser, E. Gornik, M. Helm, and C.R. Pidgeo
Phys. Rev. B55, 5171~1997!.

4F. Heinrichdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bim-
berg, A.O. Kosogov, and P. Werner, Appl. Phys. Lett.71, 22
~1997!.

5K. Král and Z. Khás, Phys. Rev. B57, R2061 ~1998!; Phys.
Status Solidi B208, R5 ~1998!.

6X.Q. Li, H. Nakayanna and Y. Arakawa, Phys. Rev. B59, 5069
~1999!.
,

7X.Q. Li and Y. Arakawa, Phys. Rev. B60, 1915~1999!.
8U. Bockelmann and T. Egeler, Phys. Rev. B46, 15 574~1992!.
9R. Ferreira and G. Bastard, Appl. Phys. Lett.74, 2818~1999!.

10P. Guyot-Sionnest, M. Shim, C. Matranga, and M. Hines, Ph
Rev. B60, R2181~1999!.

11T. Inoshita and H. Sakaki, Physica B227, 373~1996!; Phys. Rev.
B 56, R4355~1997!.

12G.D. Mahan,Many-Particle Physics, 2nd ed.~Plenum Press, New
York, 1990!.

13J.A. Kenrow, K. El Sayed, and C.J. Stanton, Phys. Rev. Lett.78,
4873 ~1997!.

14Y. Toyozawa and J. Hermanson, Phys. Rev. Lett.21, 1637
~1968!.



-

PRB 62 7343ELECTRON-PHONON INTERACTION IN QUANTUM . . .
15P.J. Dean, D.D. Manchon, and J.J. Hopfield, Phys. Rev. Lett.25,
1027 ~1970!.

16V. Savona, F. Bassani, and S. Rodriguez, Phys. Rev. B49, 2408
~1994!.
17E.T. Jaynes and F.W. Cummings, Proc. IEEE51, 89 ~1963!.
18R. Zimmermann and J. Wauer, J. Lumin.58, 271 ~1994!.
19M. Reed and B. Simon,Methods of Modern Mathematical Phys

ics I ~Academic Press, New York, 1975!.


