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1. INTRODUCTION

Efficient transportation of a high-current ion beam
requires that the space charge of the beam ions be sub-
stantially compensated for by electric charges of oppo-
site sign. When the beam propagates through a neutral
gas, these charges arise due to gas ionization by the
beam ions. In the initial stage of this process, the “anti-
compensating” particles (i.e., those having the charge
of the same sign as the beam ions) are expelled from the
ionization region (

 

r

 

 < 

 

r

 

0

 

,

 

 where 

 

r

 

0

 

 is the beam radius) by
the radial electric field. In a steady (generally, quasi-
steady) state, transverse fluxes of particles having
charges of both signs are established that counterbal-
ance (on the average) the generation of plasma particles
(electrons and ions) in the axial region of the beam.
Such a balance is the most general feature of the beam–
plasma system. The space-charge distribution that is
established in the beam channel depends on the gener-
ation rate of plasma particles (and, accordingly, on their
averaged radial fluxes) and determines the main
sought-for parameter—the radial potential drop 

 

∆ϕ

 

within the beam.
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 This parameter is directly related to
the mechanisms governing the radial transport of the
plasma components because it is these mechanisms that
determine the level to which the beam channel is filled
with plasma in a steady state.

The specific features of transportation of positive
and negative ion beams are related to the large differ-
ence in the masses of the electrons and ions produced
by gas ionization. In a positive ion beam, both the beam
charge and the charge of the positive ions formed by gas
ionization are neutralized by light electrons. Therefore,
in the absence of a magnetic field, the beam space
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The average electric field in the beam is 
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charge is always undercompensated. In the case of a
negative ion beam, when heavy positive ions act as neu-
tralizing charge particles, two regimes characterized by
different mechanisms for generating radial charged-
particle fluxes (and, consequently, by very different
compensation parameter 

 

∆ϕ

 

) can be established.
Depending on the gas pressure 

 

P

 

, the beam can be either
undercompensated (

 

∆ϕ

 

 < 0, 

 

P

 

 < 

 

P

 

cr

 

) or overcompen-
sated (

 

∆ϕ

 

 > 0, 

 

P

 

 > 

 

P

 

cr

 

). In the former case, the radial
electric field leads to the expansion of the propagating
beam, while in the latter case, it results in the beam
focusing, which came to be called “gas focusing” by
analogy with a similar effect in electron beams. Studies
of the plasma processes governing the value of 

 

∆ϕ

 

 in
these two regimes are of fundamental importance for
optimizing beam transportation.

At low gas pressures, the decompensation of a neg-
ative ion beam is caused by ion oscillations in the
plasma [1]. The produced electrons are efficiently
expelled from the beam by the beam electric field, and
their equilibrium density is much lower than the density
of the positive ions. In this case, the system may
became unstable against the fundamental mode of ion
oscillations with the half-wavelength on the order of the
beam diameter.
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 The onset of such oscillations prevents
the beam channel from being filled by positive ions,
because, at a given generation rate, the density of these
particles within the beam is low due to the anomalously
high average velocity with which they are removed
from the beam. As a result, the beam remains substan-
tially unneutralized [1, 2], 

 

∆ϕ

 

 < 0. Another decompen-
sation factor is beam-current oscillations caused by
plasma instabilities in the ion source itself [1, 2]. If the
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When the Debye length is larger than the beam radius, such oscil-
lations cannot be screened by the plasma electrons.
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onset of ion oscillations were excluded, the value of 

 

∆ϕ

 

would be appreciably higher, remaining nevertheless
negative. In this case, the radial drift of positive ions
would be determined only by Coulomb collisions with
the beam ions.

At pressures higher than the critical pressure 

 

P

 

cr

 

, the
electron density is considerably higher and the beam’s
steady state is characterized by the following features.

(i) The influence of electron and ion oscillations on
the formation of the space charge distribution is insig-
nificant [1] because, in particular, the wavelengths of
the excited ion oscillations are short due to an increase
in the screening effect of the plasma electrons.

(ii) Due to intense generation of positive ions (the
heavy, low-mobility plasma component), their quasi-
steady distribution corresponds to a positive beam
potential, 

 

∆ϕ

 

 > 0; i.e., the beam space charge is over-
compensated and the radial flux of the positive ions is
mainly caused by the electric field.

In the beam channel, there are also slow electrons
that cannot overcome the potential barrier of height

 

e

 

ϕ

 

(

 

r

 

 = 0)

 

, as is the case with a positive ion beam.
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 The
established radial flux of slow electrons is determined
by their heating in Coulomb collisions with the beam
ions [1, 2]. At high gas pressures, the beam’s steady
state can be analyzed by using a simplified physical
model in which plasma instabilities are discarded.

The potential drop 

 

∆ϕ

 

 can be calculated from the
energy balance equation that takes into account the
energy contribution from the beam ions and the losses
caused the drift of plasma particles toward the wall. Of
course, this equation will be approximate because some
parameters are unknown and may be determined only
by solving the problem self-consistently. For example,
in order to correctly write the energy balance equation,
it is necessary to predetermine not only the plasma
component responsible for the main energy losses from
the beam channel but also the group of particles within
this component that mostly contribute to these losses.
Previous investigations performed by different authors
have shown that models based on qualitative consider-
ations can yield contradictory results.

In [1, 2], the average focusing field (the value of 

 

∆ϕ

 

)
in the regime with 

 

P

 

 > 

 

P

 

cr

 

 was determined from the
energy balance equation that took into account the heat-
ing of the compensating electrons in Coulomb colli-
sions with the beam ions. The electrons that acquire the
energy sufficient to overcome the potential barrier leave
the beam channel (their velocity at the beam periphery
is close to zero). Note that, in this case, their kinetic
energy transforms into the potential energy of the elec-
tric field. The energy is carried away by positive ions.

 

3

 

This fraction of the plasma electron component will be referred to
as compensating. Note that, in this case, we speak of the compen-
sation of the positive ion charge rather than the neutralization of
the negative ion beam. The faster electrons escape to the chamber
wall of radius 

 

R

 

 and along the beam propagation direction. The
wall potential is assumed to be 

 

ϕ

 

(

 

r

 

 = 

 

R

 

)

 

 = 0.

 

The estimated values of 

 

∆ϕ

 

 agree well with experimen-
tal data.

In [3, 4] (as well as in [1, 2]), the degree to which the
ion beam was compensated was determined from the
energy balance equation for electrons with allowance
for Coulomb collisions between electrons and the beam
ions. However, the energy balance was written for all
the beam–plasma system rather than for the compensat-
ing electrons. Accordingly, energy losses due to the
escape of positive plasma ions were not taken into
account and the contribution from electrons to energy
losses was highly overestimated.

Taking into account that the problem under study
concerns the basic issues of the ion-beam physics, we
performed mathematical simulations of the beam
dynamics up to the steady stage by using a more general
model based on the particle-in-cells (PIC) method for an
axisymmetric system. The results obtained show that
the approach developed in [1, 2] adequately describes
actual processes. At high pressures, the dependences of
the electric field on the beam and gas parameters agree
with experimental data and estimates obtained in [1, 2].
It is shown that, when Coulomb collisions are discarded,
the electric field within the beam tends asymptotically to
zero with time; this result confirms the idea of the defin-
ing role of these collisions in the formation of the steady
focusing field within the beam.

2. QUALITATIVE CONSIDERATIONS

As was mentioned above, the main reason why
space-charge neutralization in negative ion beams dif-
fers qualitatively from that in positive ion beams is the
large mass of compensating particles (positive ions). It
is due to this circumstance that the space charge of a
negative ion beam can be overcompensated at high gas
pressures. The critical gas pressure at which 

 

∆ϕ

 

 = 0 can
be estimated from the set of balance equations for
plasma electrons and ions and the quasineutrality con-
dition:

 

(1)

 

Here, 

 

n

 

–

 

, 

 

n

 

i

 

, 

 

n

 

e

 

,

 

 and 

 

n

 

a

 

 are the densities of the beam
ions, plasma ions, electrons, and neutral gas particles
(molecules or atoms), respectively; 

 

σ

 

i

 

 and 

 

σ

 

e

 

 are the
cross sections for the production of positive ions and
electrons (with allowance for gas ionization and charge
exchange of the beam ions; in this case, 

 

σ

 

e

 

 > 

 

σ

 

i

 

); 

 

v

 

i

 

 and

 

v

 

e

 

 are the average transverse velocities of plasma ions
and electrons produced in collisions of the beam ions
with neutral gas particles; 

 

v

 

–

 

 is the average transverse
velocity of the beam ions; and 

 

r

 

0

 

 is the beam radius.
Since 

 

v

 

e

 

 

 

�

 

 

 

v

 

i

 

 and the charge-exchange rate at the criti-
cal pressure is relatively low, the value of 

 

n

 

a

 

, 

 

cr

 

 can be

n–v –na cr, σiπr0
2 niv i2πr0,=

n–v –na cr, σeπr0
2 nev e2πr0,=

n– ne+ ni.=
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estimated by assuming that ne � ni or n– ≈ ni in the first
equation of set (1). Then, for the critical density of neu-
tral particles, we have

. (2)

When the pressure is lower than the critical one (∆ϕ <
0), all the produced electrons freely escape from the

beam and their density is ne ~ n–  � n–. In this case,

the difference between ni and n– is insignificant, i.e., the
system may be considered two-component. At pres-
sures higher than the critical one, the electric field con-
fines slow electrons within the beam; therefore, the sys-
tem becomes a three-component one, as is the case with
a positive ion beam. Note that the electron density
increases with gas pressure more rapidly than the den-
sity of positive ions. Let us estimate the value of ∆ϕ for
regimes in which P > Pcr.

In [5], the radial potential drop within the beam in
this regime was determined from the balance equation
for electrons,

(3)

where Te is the electron temperature. It follows from
Eq. (3) that e∆ϕ is approximately equal to a few units
of kTe. This estimate is certainly correct because it is
based on the only assumption that the compensating
electrons are distributed within the beam according to
the Boltzmann law, which is usually satisfied with a
good accuracy because the characteristic electron–elec-
tron collision time is considerably shorter than the life-
time of the compensating electrons. It is evident, how-
ever, that expression (3) is not a solution to the problem
because the parameter kTe (as well as ∆ϕ) is unknown.
In [6], the energy balance equation was used to find the
dependence of ∆ϕ (and, consequently, kTe) on the beam
and gas parameters. The compensating electrons are
slow electrons whose kinetic energy εk0 at the instant of
their formation is too low for they can escape from the
potential well of the beam. It is these electrons that are
confined by the beam and determine the corresponding
space charge. The contribution from fast electrons with
initial energies εk0 > eϕ(r) (where r is the coordinate of
an electron at the instant of its formation) is insignifi-
cant because they very rapidly leave the beam.

Continuous ionization of the gas in the beam chan-
nel implies that there are physical mechanisms that pro-
vide equilibrium between the generation of compensat-
ing electrons and their escape from the beam though
their energy is lower than the threshold value: εk0 <
eϕ(r). Such mechanisms are related to the heating of
slow electrons by the beam ions. The energy can be
transferred due to both Coulomb collisions and collec-

na cr,
2v i

v –r0σi 1
v i

v e

------
σe

σi

-----–⎝ ⎠
⎛ ⎞

-------------------------------------------
2v i

v –r0σi

----------------≈=

v i

v e
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2 nev ee

e∆ϕ
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----------–

2πr0,×=

tive processes. In order to estimate the minimum elec-
tric field in the beam, it is sufficient to consider only
Coulomb collisions. In this case, the compensating
electrons gradually acquire energy in electron–ion
interactions occurring within a Debye sphere, in con-
trast to, e.g., neutral molecules, whose energy can
change abruptly under the action of short-range forces
arising in their collisions with other molecules. As soon
as the kinetic energy of electrons reaches the level equal
to the height of the potential barrier, they leave the
beam channel, their final velocity being infinitesimally
low.4 Based on these consideration, we can write the
following equation for the energy balance of the com-
pensating electrons [1, 6]:

(4)

where α = 4πln , f(ε) is the energy dis-

tribution function of the electrons produced in colli-
sions of the beam ions with neutral particles.

The left-hand side of Eq. (4) is the power that should
be transferred to trapped electrons per unit length of the
beam channel to provide their escape from the beam,
while the right-hand side is the power transferred to
these electrons due to Coulomb collisions with the
beam ions. Assuming for simplicity that

(4‡)

(where ϕi is the energy of gas ionization), we obtain the
following expression for ∆ϕ:

(5)

Here, the voltage U0 determines the energy of the beam
ions, eU0, and M is the mass of an ion.

It can be seen from expression (5) that the radial
potential drop within the beam is determined by the
beam and gas parameters; therefore, this expression is
a solution to the problem. Taking into account Eq. (3),
it is easy to calculate the temperature of the compensat-
ing electrons in terms of the beam parameters. Note
that, in the absence of Coulomb collisions (formally, at
α = 0 in Eq. (4)), the radial potential drop would be
zero. This result can be easily interpreted: without an
external energy source that heats the compensating
electrons, the beam channel would be finally filled with
electrons with initial energies εk0 ≈ 0 to a level corre-
sponding to the total compensation of the space charge
in the system.

4 It should be noted that, when the trapped electrons overcome the
potential barrier, they do not carry away energy from the beam
channel. Their kinetic energy transforms into the energy of the
electric field and is then transferred to the positive plasma ions
that are expelled from the beam.
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It should also be noted that, in [6], the value of ∆ϕ in
a positive ion beam was found in a similar way. More-
over, above estimates agree well with experimental data
in both cases. As for the results of [3, 4], whose draw-
backs were pointed out in the Introduction, the energy
balance equation written in those papers would lead to
expression (4) if this equation were corrected to take
into account both the dominant role of slow electrons in
the formation of the space charge and the removal of
energy from the beam by positive plasma ions.

3. COMPUTATIONAL SCHEME

The computational model was based on the PIC
method. It was assumed that a homogeneous ion beam
with the radius r0 = 2.5 cm, energy eU0 = 15 keV, and
current I– = 5 mA propagated along the axis of a cylin-
drical chamber (with a diameter of R = 7.5 cm and
length of L = 50 cm) filled with argon. The argon
pressure was varied within the range 10–5–1.3 ×
10−3 Torr. The system was assumed to be axisymmetric
and axially homogeneous. The boundary conditions for

the electric potential were ϕ(r = R) =  = 0. In

solving the equations of motion for charged particles
(with a time step ∆t), the magnetic field of the beam
was ignored. After every time step ∆t, additional
charged particles were added to each computational
cell ∆Vk in accordance with the generation rates of ions,
Gi = n–v–naσi∆Vk, and electrons, Ge = n–v–naσe∆Vk,
where σi = 3.5 × 10–16 cm2 and σe = 2.5 × 10–15 cm2 (tak-
ing into account the neutralization of plasma ions in the
reaction H– + Ar  H + Ar + e) [7]. The initial coor-
dinates of the produced particles within a cell were cho-
sen randomly (with an even probability distribution).
The energy distribution function of the positive ions
produced by gas ionization was chosen to have the
shape of a step with the cutoff energy 0.6 eV. Simula-
tions performed with other shapes of this function
yielded almost the same results. The electron energy

∂ϕ
∂r
------

r 0=

distribution function was taken in form (4a), multiplied
by a normalizing factor.

Coulomb interactions of the beam ions with positive
plasma ions were taken into account by introducing a
correction to the momentum of each particle at every
time step. These corrections were calculated in accor-
dance with energy losses of a beam propagating
through an electron (ion) gas.

In order to find the potential ϕ(r) from Poisson’s
equation, the distributions of the charge densities of the
system components were determined by the cloud-in-
cell method. After the electric field Er(r) was calcu-
lated, the computational procedure (including the solu-
tion of the equations of motion, generation of new par-
ticles, correction of the particle momenta, and solution
of Poisson’s equation) was repeated again at a new time
step until the electric potential reached a steady distri-
bution [8, 9].

4. RESULTS OF NUMERICAL SIMULATIONS

Figure 1 shows the calculated dependences of the
electric potential at the beam axis (curve 1) and the
potential drop between the axis of the beam and its
boundary, ∆ϕ = ϕ(r = 0) – ϕ(r = r0) (curve 2), on the gas
pressure. At a pressure of P = 1.65 × 10–5 Torr, both of
these quantities vanish (Fig. 1a). Thus, the critical pres-
sure obtained in these simulations is close to the esti-
mate Pcr ≈ 1.82 × 10–5 Torr, calculated from formula (2).
Note that, at low pressures, when the beam potential is
negative, the computational model, which assumes that
the system is homogeneous along the z axis and disre-
gards effects related to the modulation of the beam cur-
rent due to plasma oscillations in the ion beam [1, 2],
yields too low values of |ϕ(r = 0)|.

Let us consider the regime of high pressures in more
detail. Figure 2 shows the radial distribution of the
potential in a steady state at a pressure of P = 1.5 ×
10−3 Torr. The beam is seen to be substantially over-
compensated by positive ions. This indicates that elec-
tron heating is so efficient that the electrons intensely

101
P, 10–5 Torr
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4
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0

(‡)

1284
P, 10–4 Torr

12

8

4

0
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ϕ, ∆ϕ, V

ϕ, ∆ϕ, V

1 1

22

Fig. 1. Electric potential at the beam axis, ϕ(r = 0) (curve 1), and radial potential drop within the beam, ∆ϕ (curve 2), as functions
of the gas pressure: (a) P < 2 × 10–4 Torr and (b) P > 2 × 10–4 Torr.
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escape from the chamber volume. When Coulomb col-
lisions between electrons and the beam ions are
ignored, the potential at the beam axis, ϕ(r = 0, t), tends
asymptotically to zero as time elapses.

Let us consider the electron energy distribution
function (see Fig. 3). The electrons with energies higher
than the potential barrier ∆ε ≈ 10.7 eV (Fig. 2) very rap-
idly escape to the chamber wall. Therefore, f(ε) ≈ 0 at
ε > ∆ε. We emphasize that the above features of the sys-
tem of particles trapped by the electric field and form-
ing the space charge are very important for correctly
deriving the energy balance equations. When P > Pcr,
the energy is carried away only by the electrons with
the maximum (on the trajectory) kinetic energy εmax
exceeding the threshold value ∆ε. However, the number

of such electrons is very small: as soon as εmax exceeds
∆ε, the electron rapidly leaves the beam channel and
carries away the energy εmax – ∆ε; in this case, (εmax –
∆ε)/εmax � 1. Most of the energy transforms into the
energy of the electric field of the beam. Assuming that
the electron distribution at high energies is Maxwellian
(without a cutoff at ε > ∆ε), the authors of [3, 4] sub-
stantially overestimated the energy carried away from
the system by the electrons. Actually, the beam energy
is mainly carried away by positive ions, which acquire
energy from the electric field.

The data presented in Fig. 4, which shows the electric
potential at the beam axis (curve 1) and the potential dif-
ference ∆ϕ (curve 2) as functions of the beam current
density, confirm the correctness of estimate (5): both val-

ues are seen to be nearly proportional to  ~ .

Finally, let us compare the results of numerical sim-
ulations with the dependences observed experimentally
in [1, 2]. The experiments were performed with a
steady 20-keV H– beam at currents of up to 6 mA. Fig-
ure 5 shows the dependences ϕ(r = 0, P) for different
gases. It can be seen that, in accordance with expres-
sion (2), the critical gas pressure Pcr ~ vi decreases with
increasing molecular mass (which is related to a
decrease in the average radial velocity of molecules).
The values of the beam potential in the range of high
pressures are close to those obtained in numerical sim-
ulations. In order to more thoroughly compare experi-
mental and calculated data (including estimates by for-
mula (4)) in the range of high pressures, Fig. 6 presents
the radial potential drop as a function of the beam cur-
rent density. A comparison of Figs. 4 and 6 shows that
the simulation results agree well with both the experi-
mental data and the estimates based on the energy bal-
ance equation for the compensating electrons. As for
the regime of low pressures, it can be seen from Fig. 5

j– n–
1/27.55.02.50

r, cm

12

9

6

3

ϕ, V

Fig. 2. Radial profile of the potential in the system at a gas
pressure of 1.3 × 10–3 Torr.
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0.3

f(ε)

0

Fig. 3. Electron energy distribution function at a gas pres-
sure of 1.3 × 10–3 Torr.

3020100
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20
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2

ϕ, ∆ϕ, V

Fig. 4. Electric potential at the beam axis, ϕ(r = 0) (curve 1),
and radial potential drop ∆ϕ (curve 2) as functions of the
beam current density at a gas pressure of 5.0 × 10–4 Torr.
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that the absolute values of the negative beam potential
considerably exceed those calculated with allowance
for Coulomb collisions (Fig. 1a). As was mentioned
above, such a discrepancy is related to the influence of
dynamic effects, which were not taken into account in
our numerical simulations but are present in the exper-
iment because of the beam current modulations caused
by plasma oscillations in the ion source [1, 2]. Indeed,
the frequency of current oscillations (200–500 kHz)
considerably exceeds the reciprocal of the ionization
time. Therefore, over a half-period of oscillations,
when the current is higher than its mean value, the num-
ber of produced positive ions is insufficient for the com-
pensation of the beam space charge. Accordingly, the
alternating component of the space charge is compen-
sated incompletely; i.e., there are oscillations of the

beam potential with the amplitude  =  = ,

where  is the alternating component of the beam cur-
rent and α is the modulation depth. Since the modula-
tion depth of the beam current reaches 0.2, the ampli-
tude of the alternating component of the electric poten-
tials can amount to a few volts, which agrees with the
data from a thermoprobe (Figs. 5, 6).

5. CONCLUSIONS

A comparison of the numerical results with the
experimental data, as well as with the estimates
obtained from the energy balance for the compensating
electrons, allows us to draw the following conclusions.

(i) The electric field within a negative ion beam
propagating through a gas at an overcritical pressure
(i.e., in the regime of gas focusing) is determined by
Coulomb collisions between the beam ions and plasma
electrons.

(ii) The electric field within a negative ion beam at an
undercritical gas pressure (i.e., when the system is in fact
two-component) is determined by the dynamic effects.

(iii) Estimates obtained in [1, 2] from the energy
balance equation for the compensating electrons fairly
correctly describe the electric field within a negative
ion beam in the regime of gas focusing.

REFERENCES
1. M. D. Gabovich, L. S. Simonenko, and I. A. Soloshenko,

Zh. Tekh. Fiz. 48, 1389 (1978).
2. I. A. Soloshenko, in Proceedings of the Joint Meeting of

7th International Symposium on the Production and
Neutralization of Negative Ions and Beams and the 6th
European Workshop on the Production and Application
of Light Negative Ions, Upton, 1995, AIP Conf. Proc.
380, 345 (1996).

3. A. V. Zharinov, G. A. Tosunyan, and A. S. Chikhachev,
Fiz. Plazmy 11, 314 (1985) [Sov. J. Plasma Phys. 11, 182
(1985)].

4. The Physics and Technology of Ion Sources, Ed. by
I. G. Brown (Wiley, Berkeley, 1989), Part 4.

5. M. D. Gabovich, Usp. Fiz. Nauk 121, 259 (1977) [Sov.
Phys. Usp. 20, 134 (1977)].

6. M. D. Gabovich, A. P. Naœda, I. M. Protsenko, et al., Zh.
Tekh. Fiz. 44, 861 (1974) [Sov. Phys. Tech. Phys. 19,
546 (1974)].

7. Ya. M. Fogel’, A. G. Koval’, and Yu. Z. Levchenko, Zh.
Éksp. Teor. Fiz. 38, 1053 (1960) [Sov. Phys. JETP 11,
760 (1960)].

8. V. P. Goretskiœ, I. A. Soloshenko, and A. I. Shchedrin,
Fiz. Plazmy 27, 356 (2001) [Plasma Phys. Rep. 27, 335
(2001)].

9. A. M. Zavalov, V. N. Gorshkov, V. P. Goretskiœ, and
I. A. Soloshenko, Fiz. Plazmy 29, 516 (2003) [Plasma
Phys. Rep. 29, 480 (2003)].

Translated by V.I. Bugarya

ϕ̃ Ĩ–
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