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The theory of linear mode conversion near evanescent layers is generalized for non-one-dimensionally
inhomogeneous gyrotropic media. Effects are found that cannot be described within the standard one-
dimensional paradigm of wave tunneling through the evanescent region when the mode coupling region
assumes essentially two-dimensional topology.
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Linear coupling of normal waves propagating in weakly
inhomogeneous media is a fundamental process important in
plasma physics, crystal optics, electrodynamics of metama-
terials, etc. In plasma physics, studies of the linear mode
coupling were initiated by Ginzburg in his works on “tri-
pling” of radio signals reflected from the Earth’s ionosphere
�1�. In astrophysics, the linear mode coupling provides radia-
tion escape from dense plasmas, for example, in coronas of
stars �2�. In recent years, interest in linear conversion has
increased appreciably in connection with high-frequency
plasma heating and diagnostics in spherical tokamaks and
optimized stellarators in which central regions of a plasma
column are poorly accessible for electromagnetic waves
launched from vacuum �3�.

It has been understood that the classical one-dimensional
approach may be insufficient to describe the linear conver-
sion in applications. In this paper we consider the linear cou-
pling of waves propagating in a three-dimensionally inhomo-
geneous medium. The problem of the multidimensional
mode coupling has already received attention. In particular,
Cairns and Lashmore-Davies �4� and Kaufman and Freidland
�5� inspired a lot of publications based on the “local cou-
pling” approach �6�. In these papers the problem was reduced
to two linear wave equations coupled via a scalar constant,

D̂1E1=−�E2 and D̂2E2=−�*E1, with D̂1,2 being differential
wave operators. Within this model two propagating modes
are separated by an evanescent layer of a finite width propor-
tional to ���; thus the mode conversion appears as tunneling
of radiation throughout the evanescent region. Therefore, the
coupling efficiency depends exponentially on the width of
the evanescent layer exactly in the same way as in the stan-
dard one-dimensional problem of tunneling through a poten-
tial barrier in quantum mechanics. Including higher dimen-
sions into consideration results only in some scaling of the
coupling parameter �, which may be calculated by means of
geometrical optics since it characterizes the distance between
the WKB cutoff surfaces. However, the entire process is very
similar to the one-dimensional conversion.

However, the situation discussed above is not general.
Based on Maxwell’s equations, one can show that in a region
of effective conversion the geometro-optical coupling con-
stant vanishes, �→0, thus it must be replaced by a differen-
tial operator. This results in an essentially non-one-
dimensional character of wave interaction that cannot be
described by techniques developed in �4–6�. This case was
considered by Weitzner, who discovered that conversion of
the electron cyclotron waves in a nonplanar tokamak plasma

occurs in an essentially wider range of incident beam param-
eters as compared to one-dimensional predictions �7�. How-
ever, solutions obtained by Weitzner could hardly be applied
to describe a realistic case since they are not matched to any
incident beam and contain singularities. A theory free from
singularities was developed by Gospodchikov and co-
workers �8–10� and by Popov and Piliya �11� in the particu-
lar case of cyclotron wave coupling in a two-dimensionally
magnetized plasma.

Below we present an extension of this theory to a three-
dimensionally inhomogeneous medium with a dispersion
matrix of rather general form. We consider a gyrotropic me-
dium without spatial dispersion and dissipation. The medium
is assumed to be weakly inhomogeneous on the wavelength
scale, but the axis of gyrotropy has a constant direction in the
region of mode coupling. Also we guess that there are no
resonances with the medium, i.e., the wavelength is small but
not going to zero. Thus we exclude from consideration the
cases of sheared gyrotropy in a weakly anisotropic medium
�2,12� and coupling to “hot” kinetic modes in the vicinity of
the resonances �1�. With these two restrictions, our case
seems to be the only nontrivial configuration in free space in
which mode coupling occurs �13�.

In the WKB approximation Maxwell’s equations are re-
duced to the algebraic equations DijEj =0, with Dij =k2�ij
−kikj −k0

2�ij being the standard dispersion matrix, Ej
�exp�ik ·r− i�t�, kj being the components of the electric
field and wave vector of a local plane wave in some Carte-
sian coordinates x1, x2, x3, and k0=� /c. The electric field
may be decomposed over three arbitrary polarizations by
unitary transformation U:

E = E1e1 + E2e2 + E3e3 � UE, E = U†E;

here Uij is the Cartesian xj coordinate of the polarization
vector ei and † denotes the Hermitian conjugate. Since the
dielectric tensor �ij is Hermitian, it may be diagonalized by a
particular choice of the polarization vectors. Then, Max-
well’s equations for the components Ei are

DijE j = 0, Dij = �k2 − k0
2�i��ij − UimkmknU

jn
* , �1�

with Dij =UimDmnU
jn
* and �i=Uim�nmU

in
* �R; no summation

over i is assumed. Let us place the coordinate x3 along the
axis of gyrotropy; then �13, �23, �31, and �32 are zero, and the
matrix of polarization vectors, in which the dielectric tensor
is diagonal, takes the following form:
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U = � cos � sin � 0

− i sin � i cos � 0

0 0 1
�� cos � sin � 0

− sin � cos � 0

0 0 1
� �2�

with � and � defined by the dielectric tensor �ij. With trans-
formation to components Ei, we describe the electric field as
a superposition of two elliptic polarizations e1 and e2 or-
thogonal to each other and to the axis of gyrotropy, and
linear polarization e3 along the axis of gyrotropy; � defines
the “ellipticity” of transverse polarizations, e.g., �=0,� for
linear polarizations, �= �� /4 for circular polarizations �Stix
frame�; � defines the inclination of the polarization ellipses
in the x1 ,x2 plane. Without loss of generality we assume
below that �=0.

From previous analysis it is known that effective mode
coupling in an inhomogeneous medium is possible in the
vicinity of the reflection point where k1 ,k2	k3 �1,14�. In-
deed, for strictly longitudinal propagation, k1=k2=0, the dis-
persion equation det�Dij�=0 takes the form

�1��2��3 = 0, �1,2� = �1,2 − k3
2/k0

2,

from which it follows that in the vicinity of the reflection
point at least one of the three multipliers �1�, �2�, and �3 is
small. Mode coupling occurs when the reflection points for
two modes converge, i.e., two of three multipliers are small.
For definiteness, below we consider

��1�� 	 1, ��3� 	 1, k1 	 k3, k2 	 k3. �3�
These conditions define the coupling of two modes with po-
larizations E1 /E3	 �k3�k1 cos �+ ik2 sin �� / �k0

2�1�� and E2
	E1 ,E3. The case of ��2�� , ��3�	1 may be studied in the same
manner; the case of ��1�� , ��2��	1 corresponds to E1 ,E2 polar-
ization degeneracy in a weakly anisotropic medium, which is
excluded from consideration.

Taking into account the conditions of coupling �3�, one
can obtain the following dispersion relation:

k1
2 cos2 � + k2

2 sin2 � = k0
4�1��3/k3

2. �4�
Formally, this dispersion equation describes two modes sepa-
rated by an evanescent region defined by the condition
�1��3
0. The mode conversion appears as tunneling of ra-
diation throughout the evanescent region. In the one-
dimensional case this region lies between two plane-parallel
cutoff surfaces �1�=0 and �3=0, and the coupling efficiency
depends exponentially on the distance between the cutoff
surfaces; see, e.g., �1,4,14�. For example, perfect mode con-
version �with no reflection� occurs in the degenerate case
when both cutoff surfaces coincide at a certain propagation
angle, and the evanescent region is then absent �14�.

However, the problem becomes topologically different in
the two- or three-dimensional case where the cutoff surfaces
intersect as shown in Fig. 1 �15�. There is no evanescent
region for a ray passing through the intersection line between
the cutoff surfaces, which formally corresponds to the case
of perfect conversion. In contrast to the one-dimensional
model, this case is not degenerate because moderate varia-
tion of the propagation angle results only in a shift of the
intersection line in space. Of course, in the vicinity of the

coupling region the WKB approach becomes invalid, but
analysis of the inhomogeneous wave equations presented be-
low yields essentially the same result.

Equations for the coupled waves may be derived by sub-
stituting k1,2→−i� /�x1,2, k3→k3− i� /�x3 in Eq. �1�, and can-
celing all second derivatives, assuming that the medium is
smoothly inhomogeneous, k0L�1, for all scales L of spatial
variation of �ij. Due to the constant axis of gyrotropy, with
the same accuracy one may ignore terms resulting from spa-
tial variation of the polarization matrix �2�. Finally, we ob-
tain the following equations:

ik3�cos � �/�x1 + i sin � �/�x2�E3 = �k0
2�1� + 2ik3�/�x3�E1,

ik3�cos � �/�x1 − i sin � �/�x2�E1 = k0
2�3E3. �5�

With the same accuracy E2=0, what justifies the assumption
that the mode with non-negligible E2 is decoupled.

Spatial inhomogeneity is revealed in Eqs. �5� as the varia-
tion of only two parameters, �1� and �3, which allows us to
reduce the generally three-dimensional case to a two-
dimensional problem. Having in mind that within the cou-
pling region �characterized by size L�
L /�k0L	L� param-
eters of the medium vary weakly, we retain only linear
variations, �1�=��1 ·r and �3=��3 ·r, i.e., we consider inter-
section of flat cutoff planes. In this approximation, the prob-
lem may be treated as locally two-dimensional with an axis
of homogeneity directed transverse to both ��1 and ��3. We
assume for simplicity that this axis coincides with the axis of
gyrotropy x3, but later we will show that the general case
may be studied analogously.

When sin 2�=0, Eqs. �5� describe mode coupling in the
absence of gyrotropy. This trivial case is reduced to a one-
dimensional problem that will not be considered below. In all
other cases, Eqs. �5� may be reduced to the following canoni-
cal form:

− �i�/�x − �/�y�A3 = �x cos � + y sin ��A1,

− �i�/�x + �/�y�A1 = �x cos � − y sin ��A3. �6�
We introduce new dimensionless coordinates symmetrized
with respect to the cutoff surfaces �see Fig. 1�,

�x

y
 = � cos /cos � sin /sin �

− sin /cos � cos /sin �
�x1/L�

x2/L�
 ,

and normalized components of the electric field

A1 = − exp�i���̃�1�−1/2E1, A3 = ��̃�3�−1/2E3.
The x and y axes are directed along the bisectors between

�̃�1 and �̃�3; the vectors �̃�1,3= x̂1 ���1,3 /�x1� cos �
+ x̂2 ���1,3 /�x2� sin � define the gradients in the new coordi-
nates; the angles � and  are, respectively, the half angle

0�� �

x

y

x
~

2�

x�

0���

������
~

FIG. 1. Cutoff surfaces in non-one-dimensional geometry and
coordinate system used in the reference wave equations �6�. The
evanescent region for the coupled waves is hatched.
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between the cutoff surfaces in the x ,y space and the angle

between the x and x1 axes; and L�=k3
1/2k0

−1���̃�1���̃�3��−1/4 is
the characteristic length of the coupling region.

The reference wave equations �6� may be solved analyti-
cally. First, considering the WKB limit �x��1, one can de-
termine the polarization of waves propagating along the x
axis as A1 /A3= �1. Therefore, an arbitrary wave field may
be represented as A1=A++A−, A3=A−−A+, where A� corre-
sponds to waves that propagate in the WKB region in two
opposite directions and have asymptotics A�

→exp��ix2 /2� cos � when �x�→�. With new field defini-
tions, Eqs. �6� are transformed to

− �i�/�x + x cos ��A− = ��/�y + y sin ��A+,

− �i�/�x − x cos ��A+ = ��/�y − y sin ��A−. �7�

Applying the operators i� /�x�x cos �, one may decouple
the equations for A+ and A− in a form that allows solution by
separation of variables. Assuming A�=Ax

��x�Ay
��y�, one de-

rives the set of ordinary differential equations

�− �2/�x2 + x2 cos2 � � i cos ��Ax
� = �Ax

�, �8a�

��2/�y2 − y2 sin2 � � sin ��Ay
� = �Ay

�. �8b�

Solutions of both equations are given by the parabolic cylin-
der functions D��z�. Let us consider the wave structures lo-
calized inside the evanescent region: Ay

�→0 when y→ ��.
Then, Eq. �8b� reduces to the problem of a quantum har-
monic oscillator with a discrete spectrum �=−sin���
�2n+1�sgn �� with n=0,1 , . . .. Equation �8a� is essentially
the same as in a slab problem homogeneous in the y direc-
tion, except that a discrete spectrum appears instead of the
continuous spectrum �=−ky

2L�
2 typical of the one-

dimensional case �14�.
The particular choice of a solution is defined by its

asymptotic behavior in the WKB region. The direction of
wave propagation is determined by the angle between the
group velocity and wave vector; more exactly, by the sign of
��k0

2�1��3� /�� �this follows from the dispersion relation �4��.
Therefore, A� may define waves propagating in either the
positive or the negative direction along the x axis. For defi-
niteness, we consider that A+ and A− stand, respectively, for
waves propagating toward x→ +� and x→−�. Then, for the
radiation launched from −�, the field A+ describes the inci-
dent and transmitted waves; the field A− describes the re-
flected wave when x→−� and vanishes when x→ +�. The
corresponding solution of Eqs. �7� is found in our previous
work �8,9�:

A+ = �
n=0

�

AnD̃i�n
�x�hn�y� ,

A− = �
n=0

� �An+1
�i�n+1D̃i�n+1−1�x�hn�y� , � � 0,

− An
�i�nD̃i�n−1�x�hn+1�y� , � 
 0.

� �9�

Here, An are arbitrary constants,

�n = �n + 1/2 − sgn �/2�tan��� , �10�

D̃i��x�=Di��exp�i� /4��2 cos �x� describes the prop-
agation of a wave beam, and hn�y�=�−1/4�n!�−1/2

�sin1/4���Dn��2 sin���y� describes its transverse structure.
The functions hn�y�, which may be alternatively expressed
via Hermite polynomials, form an orthogonal basis; there-
fore, An may be derived as projections of the incident wave,

An = D̃i�n

−1 �x��
−�

+�

A+�x,y�hn�y�dy .

Substituting this definition in Eqs. �9�, one can recover the
field distribution in the transmitted and reflected waves for a
given incident beam.

The coupling efficiency may be defined as the ratio of
total power fluxes in the incident wave beam and that passed
through the interaction region, T= I+ / I−, where I�

=��A+�x→ ����2dy. Using the WKB asymptotics of solu-
tion �9� and Parseval’s theorem for orthogonal series, one
obtains

T =
1

P
�
n=0

�

�An�2 exp�− 2��n�, P = �
n=0

�

�An�2. �11�

As shown in �9�, one may perform a summation over
n analytically for any field distribution of the incident
wave. For instance, for an incident Gaussian beam
A+�exp�−y2 /2a2�, the coupling coefficient is T
= �1+���1+�a2 /sin ��−1/2�1+� sin � /a2�−1/2 where �
=tanh�� tan ��.

Let us focus on physical effects that are absent in one-
dimensional and “local coupling” theories �6�. The first effect
is related to modification of the reciprocity law in gyrotropic
media that result in the absence of reversibility with respect
to change of the propagation direction. Indeed, the reverse of
the propagation direction along the x axis is equivalent to
interchange of the two cutoff surfaces shown in Fig. 1; the
latter is described by a change of sign of the angle �. Dif-
ferent signs of � result in different spectra �10�, and therefore
in different coupling efficiencies �11�. One obtains that

T��� = T�− ��exp�2� tan �� .

Thus, the coupling is more effective for propagation along
the x axis from −� to +� when ��0, and in the opposite
direction when �
0; in the one-dimensional case, �=0, the
reciprocity law is recovered in its usual form.

Another feature of two-dimensional geometry is the exis-
tence of optimal wave beams which exhibit perfect mode
conversion without reflection. Such structures may be found
from the solution �9� in which only the n=0 term is present
in the sum and, additionally, �0=0. In this case, the optimal
wave distribution is given by

A� = C exp���ix2/2� cos � − �y2/2� sin����, A� = 0, �12�

the upper and lower signs corresponding to ��0 and �
0.
Thus, Gaussian beams of a specific width pass through the
two-dimensional coupling region with no modification. This
differs from the one-dimensional result that only a plane
wave with a certain parallel wave vector k3 may pass through
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a slab interface without reflection �14�. The absence of a
unique value of k3 corresponding to perfect conversion is an
essentially two-dimensional effect—a small variation of k3
would result only in displacement of the intersection line of
the cutoff surfaces; therefore, simultaneous variation of k3
and proper displacement of the x ,y coordinates in �12� also
result in a perfectly converting beam.

All the above results correspond to wave structures with
fixed k3. One can consider structures limited in the x3 coor-
dinate as a superposition of different k3 harmonics; however,
one should keep in mind the displacement of the local coor-
dinates for different k3. In this way it is found that the form
of two-dimensional Gaussian beams is restored after passing
the mode conversion region, although the parameters of the
transmitted Gaussian beam are modified �9�. Perfectly con-
verted beams may be realized with astigmatic two-
dimensional Gaussian beams with phase modulation �10�.

Now we return to the general case when the medium is
inhomogeneous along the axis of gyrotropy x3, but all spatial
variations are still linear. Then, new terms proportional to

�1,3= ��̃�1,3�−1��1,3 /�x3 appear in the right-hand side �RHS�
of Eqs. �6� �the LHS is unchanged�:

¯ = �x cos � + y sin � + �1z + i��/�z�A1,

¯ = �x cos � − y sin � + �3z�A3, �13�

where z=x3 /L� and �=���̃�3� / ��̃�1�. Substituting

A1,3exp�i��1 − �3�z2/�2���, x cos � + �3z → x� cos � ,

Eqs. �13� are transformed to

¯ = �x� cos � + y sin � + i��/�x� + i��/�z�A1,

¯ = �x� cos � − y sin ��A3,

�=�3� /cos �. Since these equations are homogeneous over
the z coordinate, the term � /�z may be taken into account by
redefinition of k3. Thus, we again arrive at two-dimensional
wave equations. When �3=0, which naturally happens, e.g.,
in tokamak plasmas, the obtained equations reduce to Eqs.
�6� studied above. The generalization for �3�0 will be con-
sidered in a separate presentation.

The transition from the two- to the one-dimensional case
was investigated in �8�. The slab approximation is applicable
when �	1 and �2ay

2 /L�
2 	1, where ay is the characteristic

width of the beam along the y axis. The latter condition is
equivalent to a non-negligible variation of the one-
dimensional coupling efficiency within the beam aperture.
For sufficiently wide beams this condition may not be valid;
then the two-dimensional description is required even when
�	1. Note that two-dimensional effects may be pronounced
even when the angle between the cutoff surfaces �between
��1 and ��3� is small but not zero, i.e., in a case that seems
to be one-dimensional. Indeed, the parameter 2� is defined
as the angle between �̃�1 and �̃�3 which depends on the
polarization of the waves. This angle tends to increase for
waves polarized elliptically with elongation along
��1−��3; however, the case of strictly linear polarization is
always one-dimensional.

The effects found within the two-dimensional theory of
mode coupling seem to be rather universal; thus the pre-
sented results may be considered as a solution of a standard
problem in electrodynamics.
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