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Effect of the electron-phonon coupling on the ground state of aD2 center
in a spherical quantum dot
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The influence of the electron-phonon coupling on the properties of a negatively charged donor center (D2)
confined in a semiconductor spherical quantum dot embedded in a glass matrix has been studied by variational
means within the strong-coupling~Pekar! approach. A considerable enhancement of the binding is found for
the D2 ground state, which results from the strong confinement of electrons and electron-phonon coupling.
Numerical results are given for quantum dots made of CdSe nanocrystals of variable radii.
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Semiconductor quantum dots~QD! of spherical shapes
formed by nanocrystals embedded in an isolating or se
conducting matrix have been widely studied1 in the last
years. The effect of the quantum confinement on the ene
spectra has been studied2–4 in the cases of neutral donor
(D0) and negatively charged (D2) donors.5–10 In particular,
the present authors have shown that several excited s
can be bound8–10 in the case of aD2 center in a QD with a
finite depth spherical confinement potential. The influence
the electron-LO phonon coupling on the properties ofD2

centers in bulk crystals was studied by Adamowski.11

In the present paper, we consider the joint effects of
quantum confinement and the electron-phonon coupling o
D2 centers in a semiconductor QD embedded in a g
matrix. We use the effective-mass approximation for the
cess electrons confined in the QD and the Fro¨hlich interac-
tion Hamiltonian for the electron-LO phonon coupling. W
assume that the donor impurity is located at the center of
spherical QD of radiusR.

The Hamiltonian of theD2 center in the spherical QD
including the coupling with LO phonons reads

H5Hel1Hph1Hint . ~1!

The electronic Hamiltonian is given by

Hel52
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r 2
D1V~r 1!1V~r 2!, ~2!

where me* is the electron effective band mass,«` is the
high-frequency dielectric constant.r 1 andr 2 are the electron
coordinates relative to the center of the sphere whiler 12 is
the distance between the two particles.V(r ) is the confine-
ment potential describing a spherical quantum well of rad
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R and infinite depth. The Hamiltonian of noninteractin
spherically symmetric LO phonons is given by

Hph5(
lmq

\vLOS almq
† almq1

1

2D , ~3!

where almq
† (almq) are the creation~annihilation! operators

of the LO phonons with quantum numbersl ,m,q and energy
\vLO . The Hamiltonian of the electron -LO phonons inte
action is given by:

Hint52(
lmq

(
i 51

2

@Vl~ql ! j l~qlr i !Ylm~u i ,f i !almq
† 1H.c.#

1(
lmq

@Vl~ql ! j l~0!Ylm~u,f!almq
† 1H.c.#. ~4!

The first and second terms describe, respectively, the in
action of the two electrons and of the positively charg
donor center (D1) with the LO phonons. j l(qr) and
Ylm(u,f) are respectively the spherical Bessel functions a
the spherical harmonics. The interaction amplitudeVl(ql)
may be written in the form3

Vl~ql !5eF 4pvLO

ql
2R3 j l 11

2 ~qlR!
G 1/2S 1

«`
2

1

«0
D 1/2

, ~5!

where«0 is the static dielectric constant. In Eqs.~3! and~4!,
the summations run overl 50,1, . . . ,̀ , m52 l ,5 l
11, . . . ,l , and q5ql , i.e., the roots of spherical Bess
functions.

In the first step of the calculations, we perform the Pla
man transformation12 of the Hamiltonian~1! in order to sepa-
rate out the static lattice deformation induced by the posit
donor centerD1, and to introduce a proper screening of t
electron-donor Coulomb interaction.3,13 The Platzman trans
formation operator reads
15 558 ©1999 The American Physical Society
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UP5expF2
Vl~ql !

\vLO
almq

† 2H.c.G . ~6!

When applied to the Hamiltonian~1!, it replaces the interac
tion of the positive donor center with LO phonons, the s
ond term in Eq.~4!, by the screening potential

Vscr~r 1 ,r 2!5(
i 51

2
e2

r i
S 12

r i

RD S 1

«`
2

1

«0
D , ~7!

and additionally, introduces the self energy of the interact
of the donor center with the lattice polarization induced
the presence of the center. The self-energy term is inde
dent of the quantum state of the system, and has no phy
meaning. Therefore, we neglect it throughout the present
per. In the bulk-crystal limit, i.e., ifR→`, the screening
potential Vscr(r 1 ,r 2), added to the third term in Eq.~2!,
leads12 to a screening of the electron-donor center interact
by the static dielectric constant«0.

In the second step of calculations, we apply the Pe
strong-coupling method14 in order to get rid of the phonon
from the problem. This approximation supposes that the m
tion of the electrons is much faster then that of the hea
ions. This may arise in the two following cases:~i! in the
case of a microsphere with a small radiusR, where the quan-
tum confinement produces an orbital shrinking, which
creases the electron speed;~ii ! in the case of strong electron
phonon coupling, where an electron self-localization occu
i.e., fast electron oscillations. According to this approach,
wave function of the electron-phonon system is given by
productansatz

C~rW1 ,rW2 ,$almq
† ,almq%!5w~rW1 ,rW2!x~$almq

† ,almq%!, ~8!

wherew is the electron part of the wave function. The ph
non wave functionx is proposed in the form

x5exp~S!u0&, ~9!

where u0& is the phonon-vacuum state andS is an operator
given by

S52(
lmq

FVl~ql !

\vLO
~r lmq

(1) 1r lmq
(2) !almq2H.c.G . ~10!

In Eq. ~10!, r lmq is the one-electron density

r lmq5^wu j l~qr !Ylm~u,w!uw&. ~11!

Owing to the indistinguishability of the electrons,r lmq
(1)

5r lmq
(2) 5r lmq . The expectation value of the Hamiltonia

calculated with the use of the phonon function~9!, yields the
effective Hamiltonian

He f f5^0uexp~2S!H exp~S!u0&5Hel1Vscr1Vep ,
~12!

where the effective electron phonon interaction term rea

Vep@w#524(
lmq

Vl
2~q!

\vLO
ur lmqu2. ~13!
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Since the ground state is spherically symmetric, only
terms withl 5m50 are nonzero. Moreover, the convergen
of the summation overq is very fast due to the strong loca
ization of the ground state.

In order to determine the reference energy for the char
donorD2 center, we have calculated the ground-state en
gies of the appropriate one-electron systems confined in
QD and interacting with LO phonons: the single-confin
electron ~polaron!, and the neutral donor (D0), which are
described by the correspondingly simplified versions
Hamiltonian ~1!. The calculations for the confined polaro
and the neutral donorD0 have been performed with the us
of the following trial wave function:

w~r !5 j 0~pr /R!exp~2ar !(
i 50

N

cir
i , ~14!

wherea and ci are variational parameters andj 0(pr /R) is
the zero-order Bessel function, i.e., the exact ground-s
solution of the problem of an electron confined in a spheri
infinitely deep quantum well of radiusR. For the ground
state, the convergence has been reached forN52.

For theD2 center, we used a trial wave function, anal
gous to that we used previously15 in the determination of the
ground-state energy of an exciton-ionized-donor comp
(D1,X) in a spherical QD. It reads

w~r 1 ,r 2 ,r 12!5 j 0~pr 1 /R! j 0~pr 2 /R!

3exp@2a~r 11r 2!#@11c1~r 11r 2!

1c2r 121c3~r 1
21r 2

2!1c4r 1r 2#, ~15!

wherea andci are variational parameters. Due to the pre
ence of the term dependent onr 12, the wave function~15!
takes explicitly into account the electron-electron correlati
We have checked its accuracy by applying it to the probl
of the hydrogen ionH2, which provides an analog to th
present problem without the electron-phonon coupling. T
calculations performed with wave function~15! yield theH2

ground-state energyEvar521.0514 Ry, whereas the exa
value16 is Eexact521.0555 Ry (1Ry513.6 eV). If the cou-
pling with phonons is included, the expectation value of t
effective Hamiltonian~12! is a functional of the electron
density~11!. Therefore, the variational procedure cannot
linearized, and we have to minimize the expectation value
He f f over all the variational parameters, which makes
problem numerically complicated. Nevertheless, we p
formed such a minimization for the ground-state energy a
function of R.

We have done our numerical calculations for mater
data corresponding to the CdSe nanocrystal in glass.17 We
have used the following material parameters3 for the electron
band mass,me50.13m0, the dielectric constants,«059.56,
and «`56.23, the LO-phonon energy,\vLO526.46 meV.
The depth of the potential well for the CdSe nanocrystal i
glass matrix has recently been estimated18 to be 1.3 eV. As a
consequence of such a deep potential well value, the p
ability of penetration of the electrons into the barrier regi
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is negligibly small, at least for theD2 ground state, and fo
QD’s of intermediate and large sizes. Therefore, in the c
of CdSe QD’s, the assumption of an infinitely deep poten
well seems to be justified.

We have first determined the influence of the elect
phonon coupling on the Coulomb ‘‘interaction energies’’
the neutral and charged donorsD0 andD2, defined respec-
tively by WD05ED02Ee andWD25ED222Ee . Here,ED0,
ED2, and Ee are the energies of the neutral and charg
donors as well as of an electron in a QD. In Fig. 1, t
interaction energiesW are plotted as functions of the QD’
radius for both theD0 andD2 donor centers with,@Hamil-
tonian ~12!#, and without,@Hamiltonian ~2!#, the electron-
phonon coupling. It appears that the electron phonon c
pling shifts the interaction energies to higher values, i
smaller absolute values, which results from a larger scre
ing of the electron-donor attraction. In Fig. 2, the electr
phonon interaction energiesVep for the electron~polaron!,
the neutral donorD0, and the negatively charded donorD2,
are plotted against the QD’s radius. For comparison, we h
also plotted the free polaron ground-state energy in the b
CdSe crystal. For QD’s of small radii, there is no apprecia
difference between the electron-phonon interaction ener
of the confined polaron and of the neutral donorD0. The
electron-phonon interaction energy for the negativ
charged donor is roughly equal to twice the value for
neutral donor.

Let us comment on the results of the present paper
compare them with those of other authors. The localizat
of the electrons in a semiconductor QD leads to an enha
ment of the electron-phonon coupling. Indeed, the abso
value of the interaction energy rapidly increases with
creasing QD’s radii. However, the present treatment of
electron-phonon coupling is based on the strong-coup

FIG. 1. Coulomb interaction energy as a function of radiusR for
a CdSe quantum dot forD0 andD2 donor centers with and withou
electron-phonon coupling.
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~Pekar! approach. The validity of this method has been
cently studied19 by Oshira et al. in the case of a polaron
confined in a spherical QD embedded in a nonpolar mate
The authors19 concluded that in the case of CdSe QD’s
small radii, (R&3 nm), the Pekar method provides a go
approximation to the electron-phonon coupling effect. Mo
over, they19 studied the effect of surface~SO! phonons and
found that the effect of the coupling with the SO phonons
weak compared to that of the bulk LO phonons. Therefo
the SO phonons can be neglected in a first approximatio20

Moreover, it was shown21,3 that–due to the spherica
symmetry–the on-centerD1 impurity is not coupled to the
SO phonons.

The problem of electron-phonon coupling and its infl
ence on the one-electron states in QD’s have been studie
several authors.21–23,3,24–26,19These studies lead to the con
clusion that the Pekar method14 yields the correct results in
the limit case of strong electron localization. For the QD
made of II-VI semiconducting compounds, the polaron
dius is comparable to the radius of the QD. This is the c
of the intermediate localization, for which we argue that w
can extend the applicability of the strong-coupling metho
However, for the III-V nanostructures with weak electro
localization, a more general treatment of the electron-pho
coupling is needed. To our knowledge, we have presen
the first calculations of electron-phonon coupling for a tw
electron system confined in a quantum dot.

This work has been performed in the framework of t
French-Polish scientific cooperation program POLONIU
during the stay of one of us~B. Szafran! at the University of
Metz. It has also been partially supported by the Polish S
entific Research Committee~KBN! under Grant No.
P03B05613.

FIG. 2. Electron-phonon interaction energy for the confined
laron, D0 andD2 donor centers as a function quantum-dot rad
for a CdSe quantum dot. The thin line shows the self energy o
free polaron in a bulk crystal.
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