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Effect of the electron-phonon coupling on the ground state of &~ center
in a spherical quantum dot
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The influence of the electron-phonon coupling on the properties of a negatively charged donor@enter (
confined in a semiconductor spherical quantum dot embedded in a glass matrix has been studied by variational
means within the strong-couplin@ekaj approach. A considerable enhancement of the binding is found for
the D~ ground state, which results from the strong confinement of electrons and electron-phonon coupling.
Numerical results are given for quantum dots made of CdSe nanocrystals of variable radii.
[S0163-18209)00544-3

Semiconductor quantum dot®D) of spherical shapes R and infinite depth. The Hamiltonian of noninteracting
formed by nanocrystals embedded in an isolating or semispherically symmetric LO phonons is given by
conducting matrix have been widely studiemh the last
years. The effect of the quantum confinement on the energy H _E 5
spectra has been studfediin the cases of neutral donors Ph_|mq @Lo
(D% and negatively charged)") donors>~°In particular, : _ -
the present authors have shown that several excited statddlereaj, (aimq) are the creatiorfannihilatior) operators
can be boun®i'%in the case of © ~ center in a QD with a  Of the LO phonons with quantum numbéys,q and energy
finite depth spherical confinement potential. The influence oft@ o - The Hamiltonian of the electron -LO phonons inter-
the electron-LO phonon coupling on the propertiesDof ~ action is given by:
centers in bulk crystals was studied by Adamowki. )

In the present paper, we consider the joint effects of the _ . +
quantum confinement and the electron-phonon coupling on a Hin= _% ;1 [Vitapii(air)Yim(6;, di)ajmgtH.c]
D~ centers in a semiconductor QD embedded in a glass
matrix. We use the effective-mass approximation for the ex-
cess electrons confined in the QD and thehfioh interac-
tion Hamiltonian for the electron-LO phonon coupling. We i . . )
assume that the donor impurity is located at the center of th&he first and second terms describe, respectively, the inter-

()

: 1
almqalmq+ z '

+%[v|<q.>i|<0>Y.m<e,¢)a.*mq+H-c.]. 4

spherical QD of radiufR. action of the twc+> electrons and of the positively charged
The Hamiltonian of theD ~ center in the spherical QD donor center D7) with the LO phonons.j(qr) and
including the coupling with LO phonons reads Yim(0, ) are respectively the spherical Bessel functions and
the spherical harmonics. The interaction amplitodéq,)
H=He+HpntHing. (1)  may be written in the forrh
The electronic Hamiltonian is given by droo |1 1\
Vila)=e| 5—5———— (———) : 5
2 2 aiR%ji(qR)] &= €0
- _ 2 2
Hei= om* (VitVa)+ el 12 whereg is the static dielectric constant. In Eq8) and(4),
¢ the summations run overl=0,1,...»o, m=-I,=I
e? +1,...J), andq=gq,, i.e., the roots of spherical Bessel
P P +V(ry)+V(ry), @ functions.

In the first step of the calculations, we perform the Platz-
where m} is the electron effective band mass, is the  man transformatiol? of the Hamiltonian(1) in order to sepa-
high-frequency dielectric constamt, andr, are the electron rate out the static lattice deformation induced by the positive
coordinates relative to the center of the sphere whjleis  donor centeD*, and to introduce a proper screening of the
the distance between the two particls4r) is the confine-  electron-donor Coulomb interactidrt’ The Platzman trans-
ment potential describing a spherical quantum well of radiugormation operator reads
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Vl(ql) t
Up=exr{ - mamq— H.c.|.

Since the ground state is spherically symmetric, only the
(6)  terms withl=m=0 are nonzero. Moreover, the convergence
of the summation oveq is very fast due to the strong local-
When applied to the Hamiltoniafl), it replaces the interac- ization of the ground state.
tion of the positive donor center with LO phonons, the sec- In order to determine the reference energy for the charged
ond term in Eq.(4), by the screening potential donorD ™ center, we have calculated the ground-state ener-
gies of the appropriate one-electron systems confined in the
QD and interacting with LO phonons: the single-confined
, (7)  electron(polaron, and the neutral donorD®), which are
described by the correspondingly simplified versions of
and additionally, introduces the self energy of the interactiof}@miltonian (1). The cglculanons for the confined polaron
of the donor center with the lattice polarization induced by2nd the neutral dondd™ have been performed with the use
the presence of the center. The self-energy term is indepe®f the following trial wave function:
dent of the quantum state of the system, and has no physical
meaning. Therefore, we neglect it throughout the present pa- N ‘
per. In the bulk-crystal limit, i.e., iR—o, the screening o(n)=jo(mr/R)exp(—ar) >, cr', (14)
potential V¢(ry,r,), added to the third term in Eq2), =0

leads? to a screening of the electron-donor center interaction L . .
by the static dielectric constast where a andc; are variational parameters afgl 7r/R) is

In the second step of calculations, we apply the PekaPhe ;ero—order Bessel function, i.e., the ?XaCt. ground—state
strong-coupling methdd in order to ge'E rid of the phonons solution of the problem of an electron confined in a spherical
from the problem. This approximation supposes that the mo'-nf'n'tel?: deep quantumhweltl) of radlui. ;?éethe ground
tion of the electrons is much faster then that of the heavieP 2 the convergence has been reache ’

ions. This may arise in the two following cases): in the For theD™ center, we gsed a trial wave fl_JnC'FIOI’l, analo-
case of a microsphere with a small radRjisvhere the quan- gous to that we used previousiyin the determination of the

tum confinement produces an orbital shrinking, which in-9round-state energy of an exciton-ionized-donor complex
creases the electron speéid) in the case of strong electron- (D".X) in a spherical QD. It reads

phonon coupling, where an electron self-localization occurs,

i.e., fast electron oscillations. According to this approach, the — ¢(r1,r2,r1)=jo(mr1/R)jo(7r,/R)

wave function of the electron-phonon system is given by the

productansatz Xexg —a(ri+r)][1+cy(ry+ry)

2 2
e r: 1 1
Veerlr1,ra)=2, —,(1——')(———
=1 I R

Ex €p

W(ry,rodalhg.amg) = e(1.r2)x({afg.amgh), (®

+Cof 1o+ C3(r3+r2) +Cyr1r 5], (15)
where is the electron part of the wave function. The pho-
non wave functiony is proposed in the form wherea andc; are variational parameters. Due to the pres-
ence of the term dependent op,, the wave function(15)
x=exp(9)|0), (9)  takes explicitly into account the electron-electron correlation.

We have checked its accuracy by applying it to the problem
where|0) is the phonon-vacuum state afids an operator  of the hydrogen iorH~, which provides an analog to the
given by present problem without the electron-phonon coupling. The

Vi) calculations performed with wave functi¢h5) yield theH ™
1

_ 1 2 ground-state energk,,,=—1.0514 Ry, whereas the exact
S=- % oo (Plmat Plngamg—H-c.l. (100 oy o e Eexac— — 1.0555 Ry (1Ry-=13.6 eV). If the cou-
pling with phonons is included, the expectation value of the
In Eq. (10), pimq is the one-electron density effective Hamiltonian(12) is a functional of the electron
density(11). Therefore, the variational procedure cannot be
Pimg={@lj1(anYm(8,¢)| ). (1)  linearized, and we have to minimize the expectation value of

_ o o ) He¢s Over all the variational parameters, which makes the
Owing to the indistinguishability of the electrong;,;  problem numerically complicated. Nevertheless, we per-
= p{3=Pimg- The expectation value of the Hamiltonian, formed such a minimization for the ground-state energy as a
calculated with the use of the phonon functi®, yields the  function of R.

effective Hamiltonian We have done our numerical calculations for material
data corresponding to the CdSe nanocrystal in diage
Herr=(0lexp(— S)H exp(S)|0) =H¢ |+ Vet Vep, have used the following material parametdts the electron

(12 band massin,=0.13m,, the dielectric constants,,=9.56,
and e,,=6.23, the LO-phonon energy,w, o=26.46 meV.
The depth of the potential well for the CdSe nanocrystal in a
V2 glass matrix has recently been estimafed be 1.3 eV. As a
vV — _42 (@ 2 13 consequence of such a deep potential well value, the prob-
ep[ ¢l |leq| . (13 . - . . .
fmq oo ability of penetration of the electrons into the barrier region

where the effective electron phonon interaction term reads
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FIG. 2. Electron-phonon interaction energy for the confined po-
laron, D® andD ™~ donor centers as a function quantum-dot radius
for a CdSe quantum dot. The thin line shows the self energy of a
free polaron in a bulk crystal.

FIG. 1. Coulomb interaction energy as a function of radifer
a CdSe quantum dot f@° andD ~ donor centers with and without
electron-phonon coupling.

is negligibly small, at least for thB~ ground state, and for - .
QD'’s of intermediate and large sizes. Therefore, in the casfepeka) approach. The validity of this method has been re-

of CdSe QD’s, the assumption of an infinitely deep potentiaFem!y stgdie(’f by _Oshiraet al. in the.case of a polaron_
well seems to be justified. confined in a spherical QD embedded in a nonpolar material.

We have first determined the influence of the eIectronThe author§’ concluded that in the case of CdSe QD’s of

phonon coupling on the Coulomb “interaction energies” of small rgdii,.(Rs3 nm), the Pekar method provides a good
the neutral and charged dondd$ andD ~, defined respec- approximation to the electron-phonon coupling effect. More-
tively by Wpo=Epo— E, andWp - = Ep, —,2E Here,Epo over, they® studied the effect of surfad&SO) phonons and

e - - e- ’ ’

. ound that the effect of the coupling with the SO phonons is
Ep-, andE, are the energies of the neutral and chargec{,veak compared to that of the bulk LO phonons. Therefore,

donors as well as of an electron in a QD. In Fig. 1, thethe SO phonons can be neglected in a first approximation
interaction energieyV are plotted as functions of the QD’s Moreover, it was showft® that—due to the spherical

radius for both theD® andD ™~ donor centers withjHamil- mmetrv—the on-centdd* impurity is not led 1o th
tonian (12)], and without,[Hamiltonian (2)], the electron- ?6 pheon%_nse on-ce purity 1s not coupled fo the
phonon coupling. It appears that the electron phonon cou- The problem of electron-phonon coupling and its influ-

pling shifts the interaction energies to higher values, i.e. i : ) .
smaller absolute values, which results from a larger screeng—gsgrgln;:fhg?fl_eszgg%igﬁle:sg‘ SQtE d?ezal\(/ezgigntr?éug:)end- by
ing of the electron-donor attraction. In Fig. 2, the electron '

phonon interaction energies,, for the electron(polaron, clusion that the Pekar methtidyields the correct results in

the neutral donob®, and the negatively charded dorr, the limit case of st_rong ele_ctron localization. For the QD’s
) , ? . made of II-VI semiconducting compounds, the polaron ra-
are plotted against the QD’s radius. For comparison, we have. = 4 e
) ius is comparable to the radius of the QD. This is the case
also plotted the free polaron ground-state energy in the bul

CdSe crystal. For QD's of small radii, there is no appreciabIeOf the intermediate localization, for which we argue that we

. . X . can extend the applicability of the strong-coupling method.
difference between the electron-phonon interaction energies | cver for thepﬁl-v nagostructures veith w%akgelectron
of the confined polaron and of the neutral dom?. The '

electron-phonon _interaction energy for the negativelyloca“.zatiqn' a more general treatment of the electron-phonon
. . coupling is needed. To our knowledge, we have presented
charged donor is roughly equal to twice the value for the : ; .
neutral donor. the first calculations pf eIeptron—phonon coupling for a two-
Let us comment on the results of the present paper antalectron system confined in a quantum dot.
compare them with those of other authors. The localization This work has been performed in the framework of the
of the electrons in a semiconductor QD leads to an enhancé&rench-Polish scientific cooperation program POLONIUM
ment of the electron-phonon coupling. Indeed, the absolutduring the stay of one of u8. Szafran at the University of
value of the interaction energy rapidly increases with de-Metz. It has also been partially supported by the Polish Sci-
creasing QD'’s radii. However, the present treatment of theentific Research CommittedKBN) under Grant No.
electron-phonon coupling is based on the strong-couplingP03B05613.
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