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The influence of the surrounding semiconducting matrix upon the polarizability of embedded nanoobjects
�quantum dots� has been investigated. The previously proposed hybrid model has been extended to accommo-
date the influence of embedding. It turns out that excess discrete dipoles having an excess polarizability against
a uniform background identical to the dielectric host material build the basis for a modified discrete dipole
model, suited to describe the optical response of this system. The individual dipoles are described by means of
dielectric embedded oblate ellipsoids as to their static response. An efficient description of the electrostatics of
these ellipsoids has been given in terms of explicit functions using cylindrical coordinates and compatible with
similar derivations for spherical dielectric objects. The dynamic contribution, responsible for frequency depen-
dence is determined quantum mechanically and added to the embedded bare polarizability. The result of the
model for the particular InAs quantum dot GaAs host combination investigated is a slightly decreased internal
reflectance as compared to vacuum and an overall strong increment of the absorbance, the structure in the
reflectance and of the ellipsometric angles.
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I. INTRODUCTION

To make materials from at least two other materials �el-
ementary or compound� by changing the dimensions and ge-
ometry of their interface is the essence of metamaterials re-
search. Modern metamaterials research concentrates upon
dimensions in the nanometer range. Especially the construc-
tion of metamaterials based upon III-V semiconductor na-
noobjects �nanosized quantum dots, nanorings, etc.� is a
promising field of research, particularly for its high potential
to develop optical applications. The present quest for nega-
tive refractive index materials1–3 is a good example of such
research opening a completely unorthodox field of optics.
Negative refractive index metamaterials have been made in
the frequency range up to THz,4 but the building blocks of
these metamaterials were mm sized. Smaller building blocks
will be required to move the desired material characteristics
to higher frequencies and semiconductor nano-objects are
ideal candidates. This kind of research will need appropriate
model descriptions to guide it. In the traditional use of nano-
object based metamaterials for lasing applications the mod-
elling focuses upon photoluminescence and spontaneous
emission, but such modelling is not really adequate for
metamaterials such as negative refractive index materials.
Then a proper description of the basic linear optical proper-
ties of these materials is a first necessity. In two previous
papers we have addressed already some fundamental issues
concerning this problem, but those papers treated only iso-
lated nano-objects.5,6 The next step to make this model of
real use is to put these nano-objects in a suitable host mate-
rial. In other words, we want to know what happens with the

�linear� optical properties of the nano-objects upon embed-
ding, and this is the question this paper wants to address for
composite nano-object metamaterials.

We consider a metamaterial build from nano-objects of
characteristic size a. For such a system we assume

� � aL � a ,

where � is the wavelength of the electromagnetic wave and
aL an average distance between the nano-objects in the
metamaterial. We will start our treatment by explaining the
difference between bare and dressed polarizabilities for the
case of embedded nano-objects and consider the commonly
known problem of the dielectric sphere in an external field.
This sphere, as we will show, can be replaced by a discrete
excess dipole and a corresponding excess polarizability. As a
result an ensemble of these nano-objects can effectively be
treated by means of modified discrete dipole theory, where
frequency dependence enters the modelling through quantum
mechanics, as treated before by the authors of this paper.6

The response of an embedded dielectric ellipsoidal nano-
object is subsequently added to the description in order to
model as closely as possible realistic semiconductor quantum
dots. The resulting hybrid model will be used to treat the
change in optical properties of semiconducting nanosized ob-
jects �InAs quantum dots� upon embedding in a foreign
semiconducting host material �GaAs�. Hybrid means for this
model that we combine the discrete nonlocal description for
the excess response of the dots with a local continuum de-
scription for a uniform background, extending over the host
material, but also over the dots. Temperature dependence
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will not be taken into account, which means for this paper
that the calculations will relate to the T=0 K situation. Also
aspects of nonlocal quantum mechanical interactions, since
those involve typical surface effects which are ignored al-
ready implicitly in the envelope function approximation, will
be left out from consideration, although we have investigated
those in detail in the past for different systems.7

II. THEORY

In this section we will derive the hybrid model we will
use to describe the optical response of metamaterials com-
posed of nano-objects like quantum dots, embedded in a di-
electric host material �see Fig. 1�. The nano-objects will be
assumed in this paper to have a dielectric constant � different
from the dielectric constant �m of the host material.

In order to keep the paper more transparent we will use
during the derivation of the model itself the more familiar
and simpler dielectric spheres, to represent the nano-objects.
The use of that representation allows for a stronger focus
upon the main issue: the consequences of embedding upon
the optical properties of an ensemble of nano-objects, in this
case a square lattice of quantum dots. For the actual calcu-
lations, as told before, flat oblate ellipsoidal dielectric nano-
objects will be used. A derivation of the required electromag-
netic properties of these ellipsoidal bodies is given in the
Appendix. This derivation is such that it can be joined
smoothly with the spherical body treatment by replacing a
minimum of characterizing parameters.

A. Bare and dressed polarizabilities of semiconductor
nano-objects

Quantum dots are generally classified as artificial atoms.
Therefore their optical response should also be described in
an atomiclike fashion, e.g., by means of polarizabilities. Op-
tics in combination with quantum dot structures relies either
upon expressions for optical absorption8 or upon oscillator
strengths,9,10 being the squared modulus of the optical tran-
sition matrix element.11 The proper approach should be to
use the Kramers-Heisenberg expressions, but it is not
straightforward to apply those to the case of a dot, described

by means of envelope functions.6 This holds even more
when we have to model embedded nano-objects by means of
a hybrid description. Then it becomes necessary to distin-
guish adequately between bare and dressed polarizabilities,
although we have used those already implicitly in our previ-
ous papers.5,6 From Ref. 6 we summarize the important defi-
nitions. The dressed polarizability �D is defined by

p = �JDEL, �1�

where EL is the classical local field, which equals the exter-
nal field EX for the case of a single nano-object. This polar-
izability is the polarizability which follows directly from ex-
perimental observations, since the external field is
measurable. The bare polarizability �B is defined with re-
spect to the applied electric field EA by

p = �JBEA,

EA = EL + tIp , �2�

where t is the full electromagnetic selfinteraction tensor for
the nano-object, to be called further intracellular transfer ten-
sor. It is easily verified that for the case of a dielectric sphere
or ellipsoid, the applied field equals statically the internal
field. For that case it is also the average electric field. The
bare polarizability �B is not measurable and the only way to
obtain it independently is by means of theory. Further we
repeat from Ref. 6 the elementary relationship between the
two kinds of polarizability:

�J D
−1 = �J B

−1 − tI. �3�

The distinction between bare and dressed polarizabilities, al-
though not always under these labels, is old and goes back to
the discussion about the validity of the Sellmeier and
Lorentz-Lorenz, Clausius-Mossotti descriptions.12,13 The dis-
tinction however is still relevant and here necessary even to
understand properly the physics behind the hybrid method.

The key reason why for hybrid models the distinction
between bare and dressed polarizabilities needs to be empha-
sized concerns the fundamental issue to which static polariz-
ability the dynamical contribution ��, as derived before in6

FIG. 1. Conceptual picture of the building of a metamaterial from semiconductor nano-objects �embedded ellipsoidal quantum dots�.
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needs to be added. Our choice6 has been to add it to the bare
polarizability. On the other hand the expression of the polar-
izability in Ref. 5 which was used to derive �4� is definitely
a dressed one. As shown above it is all a matter of the elec-
tric field with respect to which we define the polarizability.
In Ref. 5 the extension of the original Kramers-Heisenberg
induction derivation to a corresponding polarizability was at
stake. In the original Kramers-Heisenberg paper23 the choice
of the electric field was explicitly the external one. In that
derivation the electric field comes out from the matrix ele-

ment of the perturbation ĤD+W, where W is the part of the
perturbation due to the external electric field EX �in Ref. 5,

EX� and ĤD the �dissipative� part due to the internal electric
field EI.

5 In the original Hamiltonian �Eq. �14� of Ref. 5� the
perturbation is governed by A being the unique microscopic
vector potential and it is this potential which governs the
transition strength’s involved. The concept of the polarizabil-
ity requires a finite integration volume with the atomic vol-
ume as its preferred minimum and uses therefore inherently
approximate electric fields. In our view the electric field
must be external to the quantum mechanics. Therefore we
have chosen to define the theoretical quantum mechanical
polarizability with respect to the electric field being closest
to the microscopic one and that is the applied or average field
as defined above. This choice agrees with the approach used
in Refs. 13–16. This choice will not change the expression of
the polarizability as such, since it affects only the dissipative

part ĤD and that is accounted for already by the Lorentz
radiation damping term. For larger systems like a nano-

object this does not mean that ĤD vanishes. There it becomes
replaced by the electronic decay mechanisms like electron-
electron or electron-phonon interactions, but these are in-
cluded phenomenologically through the choice of ��	�, the
imaginary part of the complex resonance frequency 	̂lk be-
tween states l and k.5 Therefore we will use for the bare
embedded dynamical polarizability �BE�	� the expression:

�BE�	� = �BE + ���	� , �5�

where ���	� is the same as used before in Ref. 6 and �BE

the bare embedded static polarizability.

B. The hybrid method for embedded dielectric objects

Bare and dressed polarizabilities are generic concepts. To
show how they relate to realistic situations and what their
specific expressions are, we begin by considering the static
polarizability of a spherical body. From this specification we
will learn how our hybrid method must be set up. As men-
tioned already we will leave the case of the ellipsoidal di-
electric bodies to the Appendix, but will use the results for
the actual calculations.

The classical problem of a dielectric sphere embedded in
a different dielectric medium is solved by means of the mac-
roscopic version of the Poisson equation:

� · D = 0,

where D=��0E is the dielectric displacement and � the di-
electric constant. We introduce the electrostatic potential
��r� in the usual way and because of the cylindrical sym-
metry of the problem we are left with

1

r2

�

�r
	r2���r�

�r

 +

1

r2 sin 


�

�

	sin 


���r�
�



 = 0. �6�

The full details of the derivation can be found in Jackson17

and we only repeat here what is necessary for the discussion
later on. The external field EX�r�=E0=E0ẑ is brought in
through the external potential �X�r�,

�X�r� = − E0r cos 
 �7�

and it is required that the full potential ��r� must equal this
potential at infinity. Jackson gives the solution as a series
expansion in Legendre polynomials Pm�cos 
� for the poten-
tials �I�r� inside and �O�r� outside the sphere:

�I�r� = �
m=0

�

am	 r

R

m

Pm�cos 
� ,

�O�r� = − E0rP1�cos 
� + �
m=0

�

bm	R

r

m+1

Pm�cos 
� . �8�

This derivation relies entirely upon the macroscopic bound-
ary equations, being that the electrostatic potential must be
continuous across the sphere surface and that the normal
component of the dielectric displacement must be continuous
as well,

�I�r� = �O�r� ,

�
d

dr
�I�r� = �m

d

dr
�O�r� . �9�

In a single action the final shape for the only two nonzero
coefficients is obtained,

a1 = − 	 3�m

� + 2�m

E0R ,

b1 = 	 � − �m

� + 2�m

E0R . �10�

So the final shape for the potentials becomes

�I�r� = − 	 3�m

� + 2�m

E0r cos 
 ,

�O�r� = − �1 − 	 � − �m

� + 2�m

	R3

r3 
�E0r cos 
 . �11�

For the construction of the hybrid model the potential is not
as useful as the electric fields, which we prefer to write as
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EI�r� = − ��I�r� = 	 3�m

� + 2�m

E0,

EO�r� = E0 + 	 � − �m

� + 2�m

R3	3r̂r̂T − 1

r3 
E0, �12�

where we have used the common differentiation rules.
We will rewrite the result for the outer electric field.

Therefore we first introduce the excess dipole strength p by
using the continuum induction rule

p = V�P = �0V�� − �m�	 3�m

� + 2�m

E0 = 3�0V�m	 � − �m

� + 2�m

E0,

�13�

where �P is the difference between the polarization density
inside a sphere with dielectric constant � and one with �m.
V= 4

3�R3 is the volume of the dielectric sphere. This result
yields a definition for the �excess� polarizability � as

� = 3�0V�m	 � − �m

� + 2�m

 , �14�

where the excess character is clear from the difference be-
tween � and �m in the numerator. When � happens to equal
�m, there is no excess dipole strength. The nano-object is still
polarized then, but no more than its surroundings. The outer
field �12� can be rewritten now as

EO�r� = E0 +
1

�m
tI�r�p

tI�r� =
3r̂r̂T − 1

4��0r3 , �15�

where t�r� is the vacuum static transfer kernel from discrete
dipole theory.

We can proceed using these rewritten equations to handle
systems with more embedded nano-objects. This extension
requires no more but the systematic replacement above of the
external field E0 by the local field EL, as follows:

ELi = E0 +
1

�m
�
i�j

tIijp j , �16�

where tij is the vacuum intercellular transfer tensor, where
the presence of the index ij indicates intercellular character
in the notation of this paper. The induction for the excess
dipole strength’s pi becomes

pi = �Ji	E0 +
1

�m
�
i�j

tIijp j
 , �17�

where we return to the dynamic equations by using for tij the
frequency dependent expressions. We see that although we
started our treatment of the embedded dielectric spheres as
an exercise in macroscopic dielectric continuum theory, the
final result can be directly interpreted as an effectively dis-
crete description. This remark builds the essence of the hy-
brid method. The system of equations to be solved becomes

�J i
−1pi −

1

�m
�
i�j

tIijp j = E0, �18�

where �i is the excess polarizability defined above �14�. Here
some comment should be given about the influence of the
embedding medium upon the polarizability and transfer ten-
sor, commonly called “screening.” If we understand screen-
ing of a certain quantity as its division by �m of its un-
screened �vacuum� value, then definitely the embedded
transfer tensor is screened. This is remarkable, since at first
inspection of the result �12� it looks as if there is no screen-
ing at all. It is not possible to say whether the polarizability
is screened. Again, at first glance it looks as if the �m in front
of the expression for the polarizability �14� is there because
of screening. Such interpretation however violates what we
have just written about screening. Since the polarizability
here is an excess one, there is no properly defined vacuum
value to refer to. We return to this point in the next section.

A next question concerns the external field E0, in the
sense of the field applied to the dipole. When the sphere is
surrounded by vacuum this field is the external field and it is
clear what is meant by that. When the sphere is surrounded
by a medium, we have from the result above as an immediate
answer that what we have to call here the external field, is
the macroscopic (average) field inside the surrounding me-
dium far from the nano-object. From this definition it is clear
that the excess polarizability �14� is a dressed polarizability.

We determine now the bare and dressed �excess� static
polarizabilities for the case of embedded ellipsoidal nano-
objects as derived in the Appendix. At forehand we mention
already that dressed has nothing to do with screening. Nano-
objects either in vacuum or embedded have both dressed and
bare polarizabilities, all being different. The dressed embed-
ded polarizability �DE can directly be taken from the Appen-
dix, since the analogy with the dielectric sphere is obvious,

�DE,u = �0V	 �m�� − �m�
�m + Nu�� − �m�


Nz =
1

1 − �2	1 −
� cos−1 �


1 − �2 
 �ellipsoid� ,

Nz = 1
3 �sphere� ,

Nx = Ny =
1 − Nz���

2
, �19�

where u=x ,y ,z. We prefer to classify this result as local
electromagnetic. The bare embedded polarizability �BE fol-
lows from a reorganization of the expression for �DE:

�DEu =
�BE

1 − tEu�BE
,

�BE = �0V�� − �m� , �20�

where we see that �BE is an excess quantity too, but it is also
not screened. This reorganization yields further the intracel-
lular embedded transfer tensor tE which brings in the elec-
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tromagnetic interactions taking place inside the nano-object,
opposite to the intercellular transfer tensors which account
for the electromagnetic interactions between nano-objects.
Therefore we will classify this result as nonlocal electromag-
netic. The embedded intracellular transfer tensor tE is for
ellipsoidal bodies given by

tEu =
1

�m
tu,

tu = −
Nu

�0V
+

ik3

6��0
, �21�

where t is the corresponding tensor for the vacuum situation.
For embedded nano-objects the intracellular transfer tensor
tE is screened by �m, the dielectric constant of the embedding
medium. For a nano-object in vacuum the intracellular trans-
fer tensor t is, in contrast, not screened by the dielectric
constant � of the nano-object. The dressed polarizability de-
pends on the bare polarizability and on the intracellular
transfer tensor. Only that tensor is screened in the case of
embedding and only through the influence of that tensor
screening enters the dressed embedded polarizability. By it-
self it is strange that the intracellular transfer tensor happens
to be screened by the surrounding �m, but the derivation
leaves no other choice. All that can be said to understand it,
is that we are dealing with an excess polarizability and not
with a full polarizability.

We investigate in detail the behavior of the dressed and
bare polarizability. Using the definitions collected in �19� it is
easy to give an explicit relation for the ratio between �D and
�B,

	�D

�B

 =

�m

�m + Nu�� − �m�
. �22�

For the case of the dielectric sphere this ratio has been plot-
ted in Fig. 2 as a function of the dielectric function � of the
nano-object. For free nano-objects, the vacuum case, the ra-
tio is shown by the dashed line. For semiconductors � is
large, above 11, and the bare polarizability is at least 4 times

larger than the dressed one. Embedding changes all this. For
the case of GaAs we have �m=13.1 and the dressed to bare
ratio is shown by the solid line. Then for embedded semi-
conductor nano-objects, there is hardly any difference left
anymore between the dressed and bare polarizability.

For the oblate ellipsoid-type of nano-objects to be treated
further on, the dressed to bare ratio is plotted in Fig. 3. For
that case the consequences of embedding upon the ratio are
even more outspoken. When we use for the dielectric con-
stant of the nano-object the value �=15.15,18 the ratio �D /�B

increases by a factor of 11.9 for the z component and by a
factor of 1.8 for the x component. So the increments caused
by embedding are highly anisotropic. For values of � below
�m ���13.1� this results even in a reversal of the anisotropy.
For InAs there is not yet reversal, but the anisotropic incre-
ment of the dressed polarizability results into an almost dis-
appearance of the externally observable anisotropy. The ratio
�D /�B is for that case 0.878 for the z direction and 0.991 for
the x direction. The consequences are twofold. First the dif-
ference between dressed and bare polarizability is almost
gone. Next the anisotropy has almost vanished. Both phe-
nomena have the same origin. In the expression for the
dressed polarizability the influence of the intracellular trans-
fer tensor t has been severely weakened by the �m. Since this
tensor is responsible in the nonlocal description for both the
dressing and the anisotropy �the bare polarizability is isotro-
pic�, it explains both effects.

C. Electromagnetic response

The calculation of the optical response of an embedded
square lattice of nano-objects can be performed using the
same �Vlieger� expressions19,20 for the reflected and transmit-
ted electric fields from a square lattice with lattice constant
aL, as used before in Ref. 6 �we leave out transmittance’s�:

FIG. 2. �D /�B for a sphere as a function of its dielectric con-
stant �. Shaded, semiconductor regime.

FIG. 3. �D /�B for an oblate ellipsoid as a function of its dielec-
tric constant �. Shaded, semiconductor regime. The two upper
curves are for �m=13.1, the embedded case, and the two lower
curves are for �m=1, the vacuum case. x �dashed�, z �solid� Carte-
sian directions.
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rss =
fk

Ay cos 
i − fk
,

rpp =
fk cos 
i

Ax − fk cos 
i
−

fk sin2 
i

Az cos 
i − fk sin2 
i
. �23�

The following abbreviations are used to make the expres-
sions more concise, but they contain also all elements which
change, when the nano-object gets embedded:

Au = �0�BEu�	�−1 −
1

�m
�fu� + tu� ,

fk = 2�iaLkm, �24�

where u is x ,y ,z and �0=4��0aL
3. We use here the bare ex-

cess polarizability �21�, since we combine the intracellular
transfer tensor t with the planar transfer tensor f Refs. 21 and
22 �see also �3��. Both tensors are made dimensionless
through f=�0f and t=�0t. All transfer tensors are screened,
as described before. An overview of the numerical procedure
to determine the dipole strength p and through that of the
optical response is shown in the diagram of Fig. 4. The wave
number km changes also upon embedding, as will be treated
next. Although externally only dressed polarizabilities are
observable, the entire theoretical derivation makes only use
of bare polarizabilities which definitely improves the trans-
parency of it. Effectively the bare polarizabilities turn into
dressed ones through the intracellular transfer tensor t but

this tensor is added only at the last stage, when the Vlieger
equations are invoked.

Since the Vlieger equations are dynamical they contain
the wave number k, which is directly affected by the dielec-
tric constant �m of the embedding medium, because it fol-
lows from the dispersion equation for the embedding me-
dium:

�2E − �0�0�m
�2

�t2E = 0.

We refer to the wave number inside the medium as km and to
the vacuum wave number as k0=	 /c. The result becomes

km = 
�m
	

c
= 
�mk0.

The embedded wave number km turns out to be almost 4
times �3.89� as large as the vacuum wave number k0 for InAs
and affects the reflection coefficients by the same amount, as
can be seen from Eq. �23�.

III. NUMERICAL RESULTS

We show the results of the influence of embedding upon
the optical response of an embedded square lattice of nano-
objects for the case of quantum dots. We use the same
InAs/GaAs-quantum dots and lattice configuration as stud-
ied in Ref. 6 The dots are statically modelled by oblate di-
electric ellipsoids with a ,c as the long, respectively, short
axis. The relevant data are given in Table I. For further de-
tails we refer to Ref. 6.

The bare polarizabilities of this system are given as

�Bx�	� = �By�	� = �B + ���	� ,

�Bz�	� = �B, �25�

where �B is as given by the second line of Eq. �20�. The
addition of the dynamical ���	� restores the anisotropy as
we will discuss later. We compare these static bare embedded
�excess� polarizabilities �BE to the vacuum bare polarizabil-
ity �BV of the same quantum dot,

FIG. 4. Flow diagram of process steps to arrive at reflection and
transmission for an embedded monolayer of nano-objects. Transfer
tensors f� , t are for vacuum. Susceptibility �=�−1.

TABLE I. Basic input parameters for lattices of dots. For mean-
ing of symbols see the text and Ref. 6.

Quantum dot

aL 80.0 nm

a 18.45 nm

c 1.49 nm

��Fh0 �Fc0�V� 0.9454

��Fh,−1 �Fc,−1�V� 0.9285

��Fh,−2 �Fc,−2�V� 0.9120

rch 0.60

� 15.15

�m 13.1

EG �T=0 K� 0.42 eV
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�BV = 4.672 45 � 10−3�0,

�BE = 6.769 27 � 10−4�0, �26�

where the standard polarizability �0 has the value 5.69677
�10−32 Fm2 for the lattice chosen in Ref. 6. We see that the
bare polarizability of this system drops by a factor of 0.145,
almost one order of magnitude, as a result of the embedding,
because

	�BE

�BV

 = 	 � − �m

� − 1

=

D

gB. �27�

The corresponding static dressed polarizabilities depend
upon orientation and are given in Table II. The values in the
table confirm what we have mentioned before about the gen-
eral behavior of bare and dressed polarizabilities upon em-
bedding. For the x orientation the embedded polarizability
equals 0.26 times the vacuum polarizability, so it drops upon
embedding, and for the z orientation it equals 1.72 times the
vacuum polarizability, so it increases upon embedding. The
anisotropy, the ratio �x /�z drops from 7.45 for vacuum to
1.13 for embedded. These anisotropies are the same as the
anisotropies in the dressed to bare ratio discussed before.
This must be, since the bare polarizability drops out as a
common factor in the anisotropy ratio.

The consequences of embedding hence are strong and
definitely at first glance counter-intuitive. This holds particu-
larly for the increased dressed polarizability in the z orienta-
tion and for the almost disappearance of the anisotropy for
such a highly anisotropic body. The reference point to under-
stand this behavior is the bare polarizability, which behaves
according to expectation. These bare polarizabilities are iso-
tropic. Only the internal electromagnetic interactions as ac-
counted for by the intracellular transfer tensor, are respon-
sible for the anisotropy of the static dressed polarizabilities.
It is the screening of this tensor inside the quantum dot
which is responsible for the decreased anisotropy, as argued
before. Of course this is a result of choosing excess quanti-
ties, but within that choice it is understandable. From Eqs.
�22� and �20� it is easy to show that

	�DE

�DV



u
= �m	 1 + Nu�� − 1�

�m + Nu�� − �m�
gB. �28�

This expression becomes useful, when we realize that the
anisotropy of the ellipsoid is so large that Nx�0 and Nz
�1. For these two limiting cases we find

	�DE

�DV



x
� gB,

	�DE

�DV



z
� �mgB, �29�

and the second line shows directly that in the z direction for
our quantum dots the dressed embedded �excess� polarizabil-
ity �DE is larger than its vacuum normal counterpart �DV.
Going from vacuum to embedded the bare polarizability de-
creases. The factor however which turns the bare polarizabil-
ity into the dressed one �Eq. �22�� increases for the z orien-
tation by an even larger amount. For the x orientation this
factor is 1 and has hence no effect. The behavior in the z
direction is entirely related to the electromagnetic interac-
tions inside the nano-object and its screening. So both re-
markable effects have the same origin: the screening of the
intracellular transfer tensor.

The frequency dependent behavior of the x component of
the bare polarizability �B is shown in Fig. 5 and has been
calculated using Eqs. �20�, �4�, and �5�. We have used for the
damping 
�=5 meV. The z component of the bare polariz-
ability �B is constant according to �25� and has the value of
�BE, hence

�Bz = 6.769 27 � 10−4�0. �30�

In the left-hand panel �a� of Fig. 5 we show the real part of
the bare polarizability �Bx. This is the stronger component.
For the free floating quantum dots �vacuum embedding�
there is just very weak structure in the real part as can be
seen in the left-hand panel of Fig. 5. The first strong effect of
embedding for the real part is a decrement of the mean value
by almost one order of magnitude. The reduction factor is
given by 1/gB and the value is 6.9. Simultaneously however
the structure due to the quantum mechanical transitions is
relatively enhanced. As can be seen from Eq. �21� the re-
sponsible mechanism is the subtraction of the embedding
dielectric constant �m. The addition of the dynamic quantum
mechanical contribution ���	� to only the x and y compo-
nent restores the anisotropy, almost lost by the embedding.
The picture is quite different for the imaginary part as shown
in the right-hand panel �b� of Fig. 5. Since the embedding
dielectric constant has no imaginary component in our region
of interest, the only imaginary contribution is from ���	�.
As a result the imaginary part is not influenced by the em-
bedding, as we see in Fig. 5, where the results for vacuum
and embedding with �m=13.1 coincide.

The first �internally� observable optical response term is
the reflectance. For a single monolayer these reflectance’s are
weak. Embedding however does not deteriorate that situation
much. For an angle of incidence of 
i=60° the reflectance’s
for the two polarization directions s and p are shown in Fig.
6. This angle is close to the Brewster angle, where s type of
reflectance is always �much� stronger than for p type. The
left-hand panel �a� shows that there is only weakly decreased

TABLE II. Dressed static polarizability �D for x ,z orientation
for vacuum and embedded situation.

Vacuum Embedded

�Dx 2.583 09�10−3 �0 6.731 66�10−4 �0

�Dz 3.467 74�10−4 �0 5.966 24�10−4 �0
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reflectance for the s component upon embedding. That this is
correct can easily be understood. In the denominator of the
Vlieger expression for rss, Eq. �23� the dominant term is
�0�Bu

−1. This dominance is so strong that approximately we
have that

rss �
fk�By

�0 cos 
i
. �31�

The bare polarizability �By decreases by the factor gB being
0.145. This is compensated by the numerator fk which in-

FIG. 6. Reflectance R for angle of incidence 
i=60°. �a� Rss, �b� Rpp. Dashed curves, vacuum �no embedding�; solid curves, embedding
with �m=13.1.

FIG. 5. Bare polarizability �x. �a� Real part of �B,x /�0, dashed curves, vacuum �no embedding�; solid curves, embedding with �m

=13.1 �b�, imaginary part of �B,x /�0 �see text�.
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creases with 
�m or 3.9, but the overall result is a decrement
of about 0.6, in agreement with the calculations. For the p
component the situation is different. There the embedded re-
flectance is larger than the vacuum reflectance even up to a
factor of 3, but also this is consistent. Roughly the arguments
are the same as before for the s component, but now the
second term in the expression for rpp becomes the dominant
one. Then �Bz takes over and we have mentioned already that
this polarizability is larger than its vacuum counterpart. The
result is a reflectance larger than for free floating quantum
dots. The relevant contribution however is the one due to the
quantum mechanical transitions taking place in the quantum
dot ���	�. This contribution is hardly visible in the vacuum
reflectance’s, but it gives rise to a strong modulation of the
embedded reflectance’s. The dynamical structure in the
s-component resembles the behavior of the imaginary com-
ponent of the bare embedded polarizability, whereas the p
component resembles its real part.

In Fig. 7 we show the absorbance’s for the lattice of quan-
tum dots. At the left, panel �a�, are the results for s polariza-
tion and at the right, panel �b�, for p polarization. The absor-
bance for p polarization by the free floating dots is about a
factor of 4 �peak values� below the absorbance for s polar-
ization. For completely isotropic objects the absorbance for
both polarization directions would have been the same. The
difference must be ascribed to the anisotropic behavior of the
quantum mechanical dynamic part ���	� and has been dis-
cussed already in Ref. 6. Both absorbance’s, s type and p
type have in common that the absorbance for the vacuum
case is one order of magnitude below the absorbance for the
embedded case. Only because the embedding dielectric con-
stant is not absorbing a simple explanation can be given. We
use the continuum description to describe the total power

dissipation dU /dt �proportional to the absorbance� inside the
dot,

dU

dt
=

	

2
�0V�2��E��2,

�E� = EI = 	 �m

�m + �� − �m�Nu

E0ẑ . �32�

Using this result we see that for the electric field in vacuum
the external field EX �amplitude E0� hardly can enter the dot.
The internal field strength becomes then 0.55 E0 for the x
and 0.074 E0 for the z direction. Upon embedding the inter-
nal field strength becomes 0.99 E0 for the x and 0.88 E0 for
the z direction. These increased field penetrations are respon-
sible for the increased absorbance. Actually however Fig. 7
shows the excess absorbance, but since the embedding me-
dium is transparent the fast expression above must be as-
signed completely to the excess.

The ellipsometric angles � and � are important because
they represent the experimental values which can be mea-
sured with the highest accuracy. They obey the definitions

rpp

rss
= tan �ei�. �33�

The ellipsometric angles are relative quantities as is clear
from the definition in the sense that they do not depend upon
the absolute intensities of the reflected light. Yet, since the
phase shift �, can be obtained separately and independently
from the relative intensity variation as represented by �, the
full response function can be recovered. In this case this
would mean the full polarizability of the embedded dot, if we
assume the dielectric constant of the medium to be a known

FIG. 7. Absorbance A for angle of incidence 
i=60°. �a� Ass, �b� App. Dashed curves, vacuum �no embedding�. Solid curves, embedding
with �m=13.1.
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parameter. For the ellipsometric angle � the vacuum results
are systematically below the embedded results, as can be
seen in Fig. 8. The value of �=8.6° as an average for the
vacuum situation, corresponds to a value of 44 for the ratio
between Rss and Rpp as found in Fig. 6. The variation of �
for the vacuum case is about 2.5% for the investigated re-
gion. For the embedded case the situation is very different.
The mean value of � centers now around 22.5° in agreement
with the fact that the embedded Rss and Rpp are one order of
magnitude closer to each other now. The absolute variations
in � upon embedding have increased by two orders of mag-
nitude as compared to the vacuum case. The observed behav-
ior for � cannot be connected to the reflectance’s Rss and Rpp
since in these quantities the phase information is lost. We see
that the vacuum and embedded values are 180° out of phase,
meaning that rss and rpp have different sign. Also here the
absolute variation in � has greatly improved, well over one
order of magnitude, upon embedding, but not as large as for
�, where the improvement amounts a full two orders of
magnitude. The variation in both ellipsometric angles is
comfortably within range of an ellipsometer, the weak reflec-
tance, the infrared frequency and the low temperature re-
quired for proper measurement conditions being more of a
problem.

IV. SUMMARY AND CONCLUSIONS

For a system of nano-objects �here quantum dots� we
have derived a hybrid discrete-continuum model to describe
the optical response of a square lattice of these dots. It is
possible to model the optical behavior of this lattice by
means of discrete excess dipoles against a uniform back-

ground �including the space occupied by the nano-objects� of
the embedding dielectric host medium. For InAs quantum
dots with �=15.15 embedded in GaAs with �m=13.1 and
modelled by means of dielectric ellipsoids the excess polar-
izability of the dot can be larger than the normal polarizabil-
ity of the same quantum dot in vacuum. All electromagnetic
interactions in the system, either between the quantum dots
or inside the quantum dot itself, turn out to be screened by
the dielectric constant of the host material. This may seem
obvious, but the internal electromagnetic interactions inside
a free quantum dot are, in contrast, not screened. The dy-
namical quantum mechanical contributions responsible for
both the magnetic field and the frequency dependence are
calculated in a Kramers-Heisenberg like fashion and added
to the embedded bare polarizability. The first effect of the
embedding upon the internal optical response is a decreased
reflectance, but no more than a factor of 4. Most other as-
pects of the response tend to increase upon embedding for
the investigated quantum dot host combination. This holds
for the structure in the reflectance, the absorbance and par-
ticularly for the ellipsometric angles which have increased
from measurable �a few tenth of a degree� to large �above
10 degree�. Based upon this hybrid model and for this quan-
tum dot host combination the influence of embedding is to
increase the effects which can be used for applications.
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FIG. 8. Ellipsometric angles �, � for angle of incidence 
i=60°. �a� ��°�, �b� vacuum, ��°�; embedded, ��°�−180°. Dashed curves,
vacuum �no embedding�. Solid curves, embedding with �m=13.1
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APPENDIX: DIELECTRIC OBLATE ELLIPSOID

Although a derivation of the electric fields for an oblate
dielectric ellipsoid can be found in Stratton24 and more re-
cently in Avelin,25 the expressions given there are not suited
for direct use. We will give a straightforward derivation here,
using no implicit functions or unresolved integral expres-
sions. Further we will keep the derivation as close as pos-
sible to the derivation by Jackson17 for the spherical case
enabling the shortcuts used in this paper. We consider the
oblate ellipsoid with short axis c and long axis a as treated in
Ref. 6 We will use again �=c /a. For the transformation to
elliptic coordinates we use

x = f cosh � cos � cos � ,

y = f cosh � cos � sin � ,

z = f sinh � sin � , �A1�

where f =
a2−c2. Because of the cylindrical symmetry of
the problem �no � dependence� we must solve the following
Poisson equation for the electrostatic potential ��r�:

	 �2

��2 + tanh �
�

��
+

�2

d�2 − tan �
�

��

� = 0. �A2�

This differential equation can be solved by separation of co-
ordinates,

���,�� = G���F��� . �A3�

A first solution to this differential equation is the externally
applied uniform electric field E0=E0ẑ and its corresponding
potential �0:

�0��,�,�� = − E0z = G0���F0��� ,

G0��� = − E0f sin � ,

F0��� = sinh � . �A4�

Since the condition �=�0 establishes the surface of the oblate
ellipsoid, varying � ,� means scanning this surface. Freezing
the � dependence to the one above, reduces the problem to
one dimensional.

As a next ingredient to solve the dielectric ellipsoid, we
need the solution F��� for a perfectly conducting sphere in a
uniform electric field. For this case �A2� becomes

	 �2

��2 + tanh �
�

��
− 2
F��� = 0. �A5�

It is readily seen that F0��� is a solution as is easily verified
by substitution. However we need one independent solution
more, which can be shown to be

F1��� = 1 − sinh � tan−1	 1

sinh �

 . �A6�

We will use the functions F0��� and F1��� to solve the di-
electric case.

The solution for the dielectric ellipsoid is based upon the
superposition

�v��,�,�� = G0����AvF0��� + BvF1���� , �A7�

where the index v equals I for the inner and O for the outer
region of the ellipsoid, making four unknowns in total. Two
of the unknowns can be eliminated by requiring that the
electric field inside is constant and that the electric field out-
side for large � must coincide with the externally applied
field E0. As a result BI=0 and AO=1. The remaining coeffi-
cients AI, BO follow from the boundary conditions:

�I��0� = �O��0� ,

��d�I���
d�

�
�=�0

= �m�d�O���
d�

�
�=�0

�A8�

which yields as a system of equations

�1 − h1

� − �mh2
�� AI

BO
� = � 1

�m
� ,

where the factors h1, h2 are given by

h1 =
F1��0�
F0��0�

=
1

sinh �0
− tan−1	 1

sinh �0

 ,

h2 =
F1���0�
F0���0�

=
sinh �0

cosh2 �0
− tan−1	 1

sinh �0

 , �A9�

and we find the coefficients AI and BO to be

AI =
�m�h1 − h2�
�h1 − �mh2

,

BO =
�m − �

�h1 − �mh2
. �A10�

We use AI to determine the electric field inside the ellipsoid,

EI = AIE0 =
�m�h1 − h2�

�m�h1 − h2� + �� − �m�h1
Eo �A11�

with which we can determine the polarizability � and the
excess polarizability �X used in this paper �as ��,

�E0 = VP = �0V�EI = �0V�m	 � − 1

�m + �� − �m�Nz

E0,

�XE0 = V�P − Pm� = �0V�� − �m�EI

= �0V	 �m�� − �m�
�m + Nz�� − �m�
E0,

Nz =
h1

h1 − h2
, �A12�

where V= 4
3�a2c is the volume of the ellipsoid and the sus-

ceptibility �=�−1. The depolarization factor Nz is exclu-
sively determined by the values of the eigenfunctions of the
problem at the boundary �0 and accounts for the shape de-
pendence. To make the expression more accessible we use
that
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sinh �0 =
c


a2 − c2
=

�


1 − �2
�A13�

and this enables us to write

h1 =

1 − �2

�
− tan−1	
1 − �2

�

 ,

h1 − h2 =
�1 − �2�3/2

�
, �A14�

and we find for the depolarization factor Nz,

Nz =
1

1 − �2	1 −
� cos−1 �


1 − �2 
 �A15�

which is exactly the same as the depolarization factor ob-
tained by Avelin25 and for �m=1 this depolarization factor
produces also Avelin’s polarizability when used in �A12�.
For the treatment of the embedded case when �m�1 the
reader is referred to the text.

The real benefit of this derivation is in the expressions for
the external field EO�r�,

EO�r� = E0 − BO � G0���F1��� = E0 + EE�r� . �A16�

We refrain from the details and give only the final result in
cylindrical coordinates,

EE�r� = E��̂ + Ezẑ ,

r = ��̂ + zẑ = 
x2 + y2�̂ + zẑ ,

�̂ = cos �x̂ + sin �ŷ , �A17�

where the component fields E�, Ez are given by

E� = − E0BO	 z̃�̃
S

�S2 + z̃2��1 + S�

 ,

Ez = − E0BO�tan−1	 1

S


 −
S
S

S2 + z̃2� ,

BO = −
�

�1 − �2�3/2	 �� − �m�
�m + �� − �m�Nz���
 , �A18�

where the crucial auxiliary variable S is defined by

S = 
s2 + z̃2 − s ,

s = 1
2 �1 − ��̃2 + z̃2�� , �A19�

where ũ=u / f u=� ,z. Using these expressions for the outer
field, backtransformation to cylindrical coordinates is estab-
lished, but those coordinates are equivalent to Cartesian, be-
cause of the cylindrical symmetry of the problem. Since the
outer electric field expressions are explicit functions of the
Cartesian coordinates, they are suited for direct use.
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