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Measurement of the percolation threshold for fully penetrable disks of different radii
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We perform simulations of gradient percolation to study the percolation threshold for systems of homoge-
neous fully penetrable disks of variable radii. We find that, if the radii follow a uniform distribution, the
percolation threshold is 0.686 62®.000 007. We also investigate binary dispersions, studying the influence
of constitutive parameters on the percolation threshold and suggesting an empirical formula for the threshold.
We find that, with the appropriate parameters, a percolation threshold of approximately 0.76 can be achieved.
The minimal threshold of 0.676 3390.000 004 is achieved by disks of equal radius.
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I. INTRODUCTION radius[7]. In Sec. lll, we investigate the percolation thresh-
old ¢.(f,\) of binary dispersions of disks with two different
Measurement of the percolation threshold for fully pen-radii Rand\R, where 6=\ <1 andf is the fraction of disks
etrable disks has received much attention in the literature. Iwith the smaller radius\R. We also develop an empirical
this paper, we define the percolation threshold to be the profermula for ¢.(f,\) that reasonably fits our data. Finally, we
ability that a randomly chosen point is covered by a disk; thisnvestigate the accessible part of the frontier and find that
guantity has also been called the covered volume fractiorbinary dispersions exhibit the Grossman-Aharony effect in
Techniques using spatial statistics have been proposed ftihe same manner as equal-sized disks.
the theoretical prediction of percolation threshojd$ the

purpose of the present work is efficient measurement of the II. UNIFORMLY DISTRIBUTED RADII
threshold via simulations. For disks of equal radius, the ) . ) )
threshold has recently been measured toghe 0.676 339 In this section, we study the percolation threshold of disks

+0.000 004 2]. This value was found by using gradient per- Of _variabl_e rgdii_when th_e radiR; are chosen to follow a

colation, a technique that simulates disks that are centered ¢Hiform distribution; that is,

the points of an underlying inhomogeneous Poisson figld

The percolation threshold was then computed by measuring Prol(R, = x)dx=

: . i

the average location of the frontier, or the edge of the perco-

lating cluster that naturally forn{gl]. The frontier was found ) ) ) )

using two different efficient techniques: the gap-traversaWhereR is the largest permitted radius. To do so, we will

method and the frontier-walk method, previously used forsimulate within a unit square an underyling inhomogeneous

lattice system$5]. Poisson field and independently place disks of random radius
While much attention has been given to fully penetrableon the points of this Poisson field. Following RE2], we do

disks of equal size, relatively little study has been undertakefot simulate regions for all possible particle volume fractions

for analogous percolation problems for systems of disks with# but only in a prescribed range

different radii. Monte Carlo studies have shown that the per-

colation threshold for polydispersed disks is different than Prin< $< bmax. @

that of monodispersed disk$,7]. However, these studies

dx/R 0=x=R
0 otherwise,

()

where ¢,in and ¢ax are so chosen that the simulated fron-

d th derving distributi £ radii. M Sier lies between these values. We also defineetfiective
pendence on the underlying distribution of radii. More re'system lengtlas

cently, the existence of a binary dispersion with a higher

percolation threshold than for monodispersed disks has been L

mathematically proven; it has also been conjectured that the /= W ©)]
monodisperse distribution minimizes the percolation thresh- maxrmin

old [8].

. . This dimensionless parametéris the inverse of the gradient
In the present paper, we use gradient percolation to studgf %, measured in terms of the maximum disk radRiand

the percolatic_)n thre_shold for two di_fferent systems of fully o lengthL=1 of the unit square. The effective system
penetrable disks with variable radii. In both systems, our

. . - length is analogous to the lattice size of a lattice system.
results gdd wo decimal places 1o previous estimates of _the We choose a linear variation in the particle volume frac-
percolation thresholds. In Sec. I, we consider the percolation -\ isin the unit square; that is
threshold ¢"™™ for disks whose radii follow a uniform ' '

distribution on[0,R], whereR is the maximum permitted D (X) = (1=X) brmint XPmax- 4

To achieve this, we recall that, for homogeneous sys{&ins
*Electronic address: johnqg@unt.edu the particle volume fraction is given by
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p=1—e "Mz, (5) 0.6869 ' ' e
where p is the number density of the disks aii, is the /4“
second moment of the distribution of radii. In the present  0.6868 - 17
problem, using Eq(1), z 7
= I //
8 -
1 - mpRY3 £ 06867 | prad
¢=1-e ' (6) 5 I /’f —— Frontier
o o . o 5 g2 ——- Centers
Therefore, ifR is sufficiently small[9], a linear variation 8
may be obtained by choosing & 0.6866
=3 1IN (1= X) Pmint XPmax]
p(x)= Rzmm : (7 0.6865
T

to be the number density of the underlying inhomogeneous ° ,:,?,e,se systom ,ens&, 10°/4 %
Poisson field.

The details of the frontier-walk method are given else- FIG. 1. Estimates of the percolation threshold, as a function of
where[2]. During the simulations, the frontier-walk method 1/, for disks whose radii follow a uniform distribution. The bars
of Ref.[2] was used to identify the frontier. Systems with show the estimated error of 1B for each measurement. The lower
3000< /<50 000 were simulated on a 400-MHz microcom- line shows the estimate((/"), obtained from the average loca-
puter with 128 MB of RAM. For each simulation, the perco- tion of the frontier, while the upper line shows the estimates
lation threshold was measured in two different ways. First$¢(#). obtained from the average location of the centers of the
the average location of the frontietgl)(/) was computed FiISkS comprising the frontlgr. Regression fits to both sets pf data are
using an expression given elsewhf4@ (This quantity was in agreemen_t within the given error t_olerance, and the yigter-
simply calledp in this referencg.Second, and more simply, cepts only differ by approximately this error tolerance.
the average locationp?)(/) of the centersof the disks on ) . .
the frontier was computed. These two estimates were ogh terms of thg dimensionless number density. We note that
tained simultaneously in the simulations. On intuitive WO extra decimal places of accuracy have been added to the
grounds, these two averages are both expected to convergeREgvious estimate o™= 0.6860(12)[7].
the actual percolation threshold as the effective system In these evaluations, the number in parenthesis represents
length/ increases, and the numerical evidence for such corthe error toleranc¢one standard deviatignn the last digit.
vergence is quite compelling. However, a rigorous proof ofThese error estimates are found by using the errors of the
this convergence has yet to be found. individual measurements and computing the variance of the

For 3000</<50000, we calculatedp{)(/) and Y intercept in the regression monO], which we now
$@(/) with an error tolerance of %105, To obtain this  Priefly describe. Suppose a set of poifts;,Y;)} are given,
accuracy using a 400-MHz microcomputer, roughly 125 towh_ere thex; are known but the, are random variables with
200 h were required to generate and measure the 6 to 1d9iven meary; and standard deviatiom. Then the expected
billion frontier arcs for each displayed value of Larger Value of they intercept of the regression line may be found
values of/ required greater computational effort. In full, a USing the ordinary regression model using the points
total of 53 billion arcs were generated over 6 weeks of comd (*i i)}, while the variance of thg intercept is given by
puter time.

In Fig. 1, we presen!"(/) and ¢{?)(/), the individual

error bars for each measurement, and their regression lines as 022 xi2

functions of 1/. We see that, for sufficiently large, the 5. (10)
observed values of both{")(/) and ${?)(/) appear to vary S-S x,

linearly with 1/. Using a regression fit for the data, we also ' '

find that they intercepts of the two regression lines differ,

not surprlsmgly., by an amount of the order.of the size of theThis formula was previously applied to determine the error
error bars. Taking the average of these WWIEICepts, We ¢ the percolation threshold equal-sized di§ks We note
estimate the pe_rco!anon thre§hold for fully penetrable d'5k§hat, as a consequence of EQ0), the error estimate 7
with uniformly distributed radii to be % 1078 for the percolation threshold is slightly smaller than
the error estimate % 10 ° associated with each individual
measurement op{M (/) and ¢{2)(/).

As a further check of our simulations, we also compute
the fractal exponents for the perimeteiand the widtho of
Uniformi2 the frontier as a function of’. Expressions for these quanti-
pe 'R°=1.10801Q7) (9 ties may be found ifi4]. We find that, within the tolerances

PunTOM= 0,686 6107), (8)

which corresponds to
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TABLE I. Estimates of the percolation thresholgl(f,\) for binary dispersions of fully penetrable disks, whéris the fraction of
smaller disks and <1 is the ratio of the two radii. Each value has an estimated error of 5 in the last decimal place. All values are larger
than ¢.~0.676 339, which is both the percolation threshold for disks of equal size and also the valuye of) for f=0 andf=1.

f=0.1 f=0.2 f=0.3 f=0.4 f=0.5 f=0.6 f=0.7 f=0.8 f=0.85 f=0.9

A=0.1 0.67658 0.67693 0.67727 0.67785 0.67856 0.67973 0.68161 0.68525 0.68877 0.69542
A=0.2 0.67706 0.67796 0.67917 0.68052 0.68261 0.68557 0.69013 0.69798 0.70450 0.71429
A=0.3 0.67751 0.67893 0.68061 0.68275 0.68548 0.68912 0.69417 0.70119 0.70541 0.70849
A=0.4 0.67777 0.67928 0.68112 0.68326 0.68593 0.68896 0.69262 0.69607 0.69695 0.69601
A=0.5 0.67762 0.67903 0.68075 0.68245 0.68438 0.68640 0.68809 0.68892 0.68843 0.68679
A=0.6 0.67742 0.67858 0.67968 0.68085 0.68206 0.68285 0.68338 0.68317 0.68251 0.68136
A=0.7 0.67705 0.67768 0.67846 0.67899 0.67960 0.67986 0.68002 0.67946 0.67908 0.67841
A=0.8 0.67675 0.67713 0.67728 0.67762 0.67780 0.67778 0.67774 0.67754 0.67728 0.67696
A=0.9 0.67639 0.67656 0.67668 0.67662 0.67666 0.67661 0.67670 0.67652 0.67659 0.67658

of simulation,P=/¥7 and o=/ ~¥7. These same exponents 5X 10 °. With this larger error tolerance, the error bars on
were found in previous work for equal-sized dig@$and on  ¢{(/) and{®(~) will actually overlapfor large values of
the lattice[11,12. /. As a result, we cannot expect linear regression over mul-
tiple values of/” to provide much improvement in estimating
IIl. BINARY DISPERSIONS the true percolation threshold. Furthermore, based on Fig. 1,
) ) the difference of theverageof the two estimates from the
We now consider the percolation threshad(f,\) for  trye threshold will be much smaller than the difference of the
binary dispersions. In these systems, the rBdiof the disks o estimates.
can be eithekR or R with probabilitiesf and 1-f: In short, for sufficiently large/, the finite-size effect
f X=\R should be_significantly smaller than bot_h the error tolerance
(11) and the difference of the two error estimates. We therefore
1-f x=R. only need to perform one simulation at an appropriately large
, , . value of/ for each §,\) pair. This computational technique
Once again, the largest permitted radiusRisand so we a5 also used to measure the percolation threshold on the
require 0<sA=<1. We also note that€f<1. The radii are |5iice[5]. Using only one value of also saves considerable
assigned independently of each other and the underlying insomputational resources in measuring the percolation thresh-
homogeneous Poisson field. We also note the obviougy.
boundary conditions om(f,)), To obtain the error tolerance of>610 ° using a 400-
_ _ _ _ MHz microcomputer, each value took between 3 and 215 h
Pe(OM)=Pe(1M) = be(1.0= el V=66, (12 of computer time to generate the 0.3 to 1.5 billion arcs on
where ¢, is the percolation threshold for equal-sized disks.€ach frontier. The computational burden increased signifi-

(The degenerate cage=1,\ =0 is obviously not considered cantly for largef and small\. All told, about 56 billion arcs
in the above boundary conditions. were generated over 13 weeks of computer time.

In Tables | and Il, we present estimates @f(f,\) for
various values off and N\. These reported values are the
_ o _ _ _ _ . averages of the two estimate§")(/) and¢{?)(/), where/

In simulating binary dispersions, we again specify a lineatg -nosen so that these two estimates are withirl@ 5 of
variation of the particle volume fractiofi(x). To do this, we  o5ch other(and, in fact, are often closerWe see that all

ProR;=x) =

A. Simulation results

note that, for homogeneous binary dispersions, values are greater than the monodisperse threshigld
=1— — R N2+ (1—f 13 ~0.676 339, in agreement with the conjecture mentioned in
¢ exp—pmR ( M 13 the introduction. We also see that percolation thresholds
from Eq. (5), and so we choose much larger than¢g. can be achieved with appropriate
choices forf and \. The largest value o (f,\) found in
—=In[(1—X) P min+ X this study is
p(X)= [(1—X) bmin </Jmax]_ (14)

TR A%+ (1—1)]

As before, the simulated values ¢{(/) and ${3(/) $¢(0-99.0.1=0.759813), 13
are used to estimate the true percolation threshold. However,
because we wish to study the behaviokg{f,\) over many and we conjecture that higher thresholds can be achieved at
values of botH and\, less computational effort is expended appropriate choices dfwith smaller values ok. In fact, for
to measure the two estimates than in the previous sectiosmall \, it appears thatp.(f,-) is maximized nearf=1
We choose to measure these two estimates with an error 6f \2.
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TABLE II. Estimates of the percolation threshaofg(f,\) for small\ andf close to 1. Again, each value has an estimated error of 5 in
the last decimal place.

f=092 =095 =096 =097 =098 f=0985 =099 =0.992 {=0.995 {=0.998 f{=0.999

A=0.1 0.70027 0.71313 0.72064 0.73120 0.74643 0.75504 0.75981 0.75799  0.74570  0.71402 0.69718
A=0.2 0.71929 0.72647 0.72746 0.72607 0.72010 0.71423 0.70564 0.70116  0.69329  0.68387 0.68007

A=03 0.70876 0.70581 0.70333 0.69967 0.69412 0.68671 0.68195
A=0.4 0.69082 0.68387
A=0.5 0.68324 0.67958

The data, presented as functiond &@r selected values of thatp/(f,\)<p, for f>0; for such systems, the large disks
\, is also plotted in Fig. 2. The bottom axis corresponds tdhy themselves are not sufficient to achieve percolation. An-
the monodisperse threshold. We observe that the maximu@ther boundary condition that must be obeyedpf$1,\)
value of (- ,\) increases ak tends to zero and is achieved =0; again, we ignore the degenerate chsel and\=0.
for values off close to 1; this behavior was conjectured by |n Fig. 3, we showp/(f,\)/p. as a function of for se-
Dhar [13]. We also note in passing that the results for |ected values of. We see that, for each, the data may be
=0.9 are not as smooth as the results for smalleiThis  \yell approximated using hyperbolas
occurs because the deviation f(f,0.9) from ¢, is on the
order of the error tolerance. pe(fN) a(1—f)

—, (17)
Pc a—f
B. Empirical formula
While it would be desirable to find an explicit formula for Wherea is some parameter that dependsnBy directly
&.(f,\) or find some kind of governing differential equa- fitting data for 0.5\ <0.9, a reasonable empirical formula

tion, such efforts appear to be difficult at best. Instead, wdor @ is

present here an empirical formula féi(f,\) based on the 6.8
simulated values in Tables | and II. This empirical formula is a=1+ e_. (18)
found in terms of thenumber densityof the larger disks, 115

which may be given as ) ) . _ )
While this empirical formula is satisfactory for G=\

—In ¢ (f,\) =<0.9, it does not satisfy the necessary limiting requirements.
— (16  As A—1, we expect the number density of the “bigger”
A I+ (1-1)] disks to approach (f)p.. This occurs in Eq(17) asa
—o. On the other hand, as— 0, the small disks should not
contribute much at all to the percolation behavior. Therefore,
we expecp, to remain close t@. even for moderately large

pL(f RP=(1-1)

Clearly p.(0\)R?=p.R?~0.359 072, the number density of
monodisperse dis®]. Also, it is clear on physical grounds

0.760 ' ' "
1

0.750 |

0.740 | 0.8
k=]
2 o730 |
g O
L
‘é 0.720 | 0.6
5 pult, M,
S 0710
E 0.4

0.700 |

0.690 0.2

0680

0 0.2 0.4 0.6 0.8 1 0 , ) , ,
Fraction of smaller disks, f 0 0.2 0.4 0.6 0.8 1

. . . Fraction of smaller disks, f
FIG. 2. Estimates of the percolation thresh@dd(f,\) for bi-

nary dispersions. The bottom axis corresponds to the percolation FIG. 3. Estimates op;(f,\)/p., as obtained from simulations
threshold¢, for disks of equal radius; this value is conjectured to for selected values of, are shown in circles. The hyperbolas are
be the smallest possible percolation threshold for disks. For smakpproximations of the forna(1—f)/(a—f), wherea is given by

\, the functiong.(f,\) is maximized forf~1—\2. Eq. (18). These appear to be a reasonable empirical fit to the data.
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values off. However,p. must drop to its boundary value of 18 - - - 06
0 atf=1. Thus, for smalk, the graph ofp. should be very NI
angled; this occurs in Eq17) asa—1". 7 los
We do not claim that Eq(17) is exact or a rigorous ap-
proximation to the true number density of the large disks at
percolation; it is only claimed to be a reasonable empirical fit 1.6 .. 3,)(8) {04
to the data for 0.51<0.9. We also note in passing that, g ‘ -+l a0, 0(0)
with this approximation, the percolation threshold itself may
then be estimated by using Ed46) and (17). 157 198
As mentioned in the Introduction, there has not been
much study of the percolation threshold for disks of variable _ , | N U Py
radii. One exception is the work of Dht3], who used a ) )
correlation-length argument for~0 to derive the estimate
13 : : : 0.1
' 2 0 0.05 0.1 0.15 0.2
Pc(f ,)\) RZE Pc( f’)\)R f)\2+ 1-f ( ) Dimensionless invasion distance, ¢

%XC s
1-f fAZ+(1— )N n
FIG. 4. Variation of the exponentgy(c) and a,(c) and the
wherex, is a constant. However, this estimate does not agrefactal dimensiorD(c) for f=0.6 and\ =0.4. BothD(c) anday
with our data for disks whose radii are within an order ofdecrease rapidly to limiting values of approximately 4/3 and 1/5,
magnitude of each other. respectively, whilea,(c) remains nearly constant after an initial
decrease.
C. Fractal dimension and the Grossman-Aharony effect measure the fractal dimension of the hull foff,X)
The fractal dimensio; of the frontier is computed by =(0.6,0.4), (0.4, 0.8)(0.8,0.2 and (0.2,0.9).
investigating the power-law behavior of the perime®esind For each frontier, we also simulate thecessibleportion
width o of the frontier as a function of . The calculation of of the frontier. To do so, after simulating the frontier, the
P and o from the simulated frontier is given in Ref4].  radius of each disk on the frontier — small and large — is
Because the frontier is scaled to fit inside the unit square anthcreased by a small amouniR. This procedure closes small
the effective system length is inversely proportional to theopenings in the frontier to “invading” particles of radius

gradient of the concentration, we note that 2cR. A new front is then constructed as before, and the
, o radius-dependent quantitiesy(c), «,(c), and D¢(c) are
Poc/*N and oo/ o™, (20 also computed.

Our results for {,\)=(0.6,0.4) are shown in Fig. 4; the
graphs for the other choices of,{) are similar. This figure
is analogous to Fig. 4 of Refl14]. We see that binary dis-
persions exhibit the Grossman-Aharony effgdd, 16| in pre-
an=(Di—1)a,. (21)  Cisely the same manner as monodisperse systems. We ob-
serve thaD¢(c) rapidly decreases from roughly 1.75 to 1.33
To ascertain power-law behavior, several simulations ofas ¢ increases from 0. We also observe tlhgfc) slowly
/ are required for eachf(\) pair. By contrast, only one increases after an initial decrease, whilg(c) rapidly de-
value of/ was needed to accurately measure the percolationreases to a limiting value of approximately 0.2. We con-
threshold. Therefore, the results of this section are not aslude that diameter disorder has little to no effect on the
exhaustive as our measurementsgef{f,\). We choose to fractal dimension.

where ay and «, are the analogous critical exponents in
previous percolation studid41,14. The fractal dimension
of the frontier is related to these two exponents via

[1] K. R. Mecke, inStatistical Physics and Spatial Statistiesd- [8] R. Meester, R. Roy, and A. Sarkar, J. Stat. Ph§5. 123
ited by K. R. Mecke and D. StoyafSpringer, New York, (1994.
2000. [9] J. Quintanilla and S. Torquato, Phys. Rev5E 1558(1997).
[2] J. Quintanilla, S. Torquato, and R. M. Ziff, J. Phys38, L399 [10] J. A. Rice,Mathematical Statistics and Data Analysénd ed.

; <Dzogo. WS, Kendall and 3. M ostic G (Duxbury, Belmont, CA, 1994
[3] D. Stoyan, v. S. Rendall, and J. eckstochastic Geometry [11] B. Sapoval, M. Rosso, and J. F. Gouyet, J. Pliysance Lett.
and Its Applications2nd ed.(Wiley, New York, 1993. 46, L149 (1985

[4] J. Quintanilla and S. Torquato, J. Chem. Phg41, 5947

(1999. [12] H. Saleur and B. Duplantier, Phys. Rev. L&, 2325(1987).
[5] R. M. Ziff and B. Sapoval, J. Phys. A9, L1169 (1986. [13] D. Dhar, Physica A242, 341 (1997.
[6] M. K. Phani and D. Dhar, J. Phys. 27, L645 (1984 [14] M. Rosso, J. Phys. 22, L131 (1989.
[7] B. Lorenz, I. Orgzall, and H.-O. Heuer, J. Phys.28 4711  [15] T. Grossman and A. Aharony, J. Phys.18, L745 (1986.
(1993. [16] P. Meakin and F. Family, Phys. Rev. 34, 2558(1986.

061108-5



