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Measurement of the percolation threshold for fully penetrable disks of different radii

J. Quintanilla*
Department of Mathematics, University of North Texas, Denton, Texas 76203

~Received 3 November 2000; published 23 May 2001!

We perform simulations of gradient percolation to study the percolation threshold for systems of homoge-
neous fully penetrable disks of variable radii. We find that, if the radii follow a uniform distribution, the
percolation threshold is 0.686 61060.000 007. We also investigate binary dispersions, studying the influence
of constitutive parameters on the percolation threshold and suggesting an empirical formula for the threshold.
We find that, with the appropriate parameters, a percolation threshold of approximately 0.76 can be achieved.
The minimal threshold of 0.676 33960.000 004 is achieved by disks of equal radius.
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I. INTRODUCTION

Measurement of the percolation threshold for fully pe
etrable disks has received much attention in the literature
this paper, we define the percolation threshold to be the p
ability that a randomly chosen point is covered by a disk; t
quantity has also been called the covered volume fract
Techniques using spatial statistics have been proposed
the theoretical prediction of percolation thresholds@1#; the
purpose of the present work is efficient measurement of
threshold via simulations. For disks of equal radius,
threshold has recently been measured to befc50.676 339
60.000 004@2#. This value was found by using gradient pe
colation, a technique that simulates disks that are centere
the points of an underlying inhomogeneous Poisson field@3#.
The percolation threshold was then computed by measu
the average location of the frontier, or the edge of the per
lating cluster that naturally forms@4#. The frontier was found
using two different efficient techniques: the gap-traver
method and the frontier-walk method, previously used
lattice systems@5#.

While much attention has been given to fully penetra
disks of equal size, relatively little study has been underta
for analogous percolation problems for systems of disks w
different radii. Monte Carlo studies have shown that the p
colation threshold for polydispersed disks is different th
that of monodispersed disks@6,7#. However, these studie
made no attempt to study the nature of the threshold’s
pendence on the underlying distribution of radii. More r
cently, the existence of a binary dispersion with a high
percolation threshold than for monodispersed disks has b
mathematically proven; it has also been conjectured that
monodisperse distribution minimizes the percolation thre
old @8#.

In the present paper, we use gradient percolation to st
the percolation threshold for two different systems of fu
penetrable disks with variable radii. In both systems,
results add two decimal places to previous estimates of
percolation thresholds. In Sec. II, we consider the percola
thresholdfc

uniform for disks whose radii follow a uniform
distribution on @0,R#, where R is the maximum permitted
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radius@7#. In Sec. III, we investigate the percolation thres
old fc( f ,l) of binary dispersions of disks with two differen
radii R andlR, where 0<l<1 andf is the fraction of disks
with the smaller radiuslR. We also develop an empirica
formula forfc( f ,l) that reasonably fits our data. Finally, w
investigate the accessible part of the frontier and find t
binary dispersions exhibit the Grossman-Aharony effect
the same manner as equal-sized disks.

II. UNIFORMLY DISTRIBUTED RADII

In this section, we study the percolation threshold of dis
of variable radii when the radiiRi are chosen to follow a
uniform distribution; that is,

Prob~Ri5x!dx5H dx/R 0<x<R

0 otherwise,
~1!

whereR is the largest permitted radius. To do so, we w
simulate within a unit square an underyling inhomogene
Poisson field and independently place disks of random ra
on the points of this Poisson field. Following Ref.@2#, we do
not simulate regions for all possible particle volume fractio
f but only in a prescribed range

fmin,f,fmax, ~2!

wherefmin andfmax are so chosen that the simulated fro
tier lies between these values. We also define theeffective
system lengthas

l 5
L

R~fmax2fmin!
. ~3!

This dimensionless parameterl is the inverse of the gradien
of f, measured in terms of the maximum disk radiusR and
the lengthL51 of the unit square. The effective syste
length is analogous to the lattice size of a lattice system

We choose a linear variation in the particle volume fra
tion within the unit square; that is,

f~x!5~12x!fmin1xfmax. ~4!

To achieve this, we recall that, for homogeneous systems@3#,
the particle volume fraction is given by
©2001 The American Physical Society08-1
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f512e2prM2, ~5!

wherer is the number density of the disks andM2 is the
second moment of the distribution of radii. In the prese
problem, using Eq.~1!,

f512e2prR2/3. ~6!

Therefore, if R is sufficiently small@9#, a linear variation
may be obtained by choosing

r~x!5
23 ln@~12x!fmin1xfmax#

pR2
~7!

to be the number density of the underlying inhomogene
Poisson field.

The details of the frontier-walk method are given els
where@2#. During the simulations, the frontier-walk metho
of Ref. @2# was used to identify the frontier. Systems wi
3000<l <50 000 were simulated on a 400-MHz microcom
puter with 128 MB of RAM. For each simulation, the perc
lation threshold was measured in two different ways. Fi
the average location of the frontierfc

(1)(l ) was computed
using an expression given elsewhere@4#. ~This quantity was
simply calledp in this reference.! Second, and more simply
the average locationfc

(2)(l ) of the centersof the disks on
the frontier was computed. These two estimates were
tained simultaneously in the simulations. On intuiti
grounds, these two averages are both expected to conver
the actual percolation threshold as the effective sys
lengthl increases, and the numerical evidence for such c
vergence is quite compelling. However, a rigorous proof
this convergence has yet to be found.

For 3000<l <50 000, we calculatedfc
(1)(l ) and

fc
(2)(l ) with an error tolerance of 131025. To obtain this

accuracy using a 400-MHz microcomputer, roughly 125
200 h were required to generate and measure the 6 to
billion frontier arcs for each displayed value ofl . Larger
values ofl required greater computational effort. In full,
total of 53 billion arcs were generated over 6 weeks of co
puter time.

In Fig. 1, we presentfc
(1)(l ) andfc

(2)(l ), the individual
error bars for each measurement, and their regression lin
functions of 1/l . We see that, for sufficiently largel , the
observed values of bothfc

(1)(l ) andfc
(2)(l ) appear to vary

linearly with 1/l . Using a regression fit for the data, we al
find that they intercepts of the two regression lines diffe
not surprisingly, by an amount of the order of the size of
error bars. Taking the average of these twoy intercepts, we
estimate the percolation threshold for fully penetrable di
with uniformly distributed radii to be

fc
uniform50.686 610~7!, ~8!

which corresponds to

rc
uniformR251.108 010~7! ~9!
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in terms of the dimensionless number density. We note
two extra decimal places of accuracy have been added to
previous estimate offc

uniform50.6860(12)@7#.
In these evaluations, the number in parenthesis repres

the error tolerance~one standard deviation! in the last digit.
These error estimates are found by using the errors of
individual measurements and computing the variance of
y intercept in the regression model@10#, which we now
briefly describe. Suppose a set of points$(xi ,Yi)% are given,
where thexi are known but theYi are random variables with
a given meanyi and standard deviations. Then the expected
value of they intercept of the regression line may be foun
using the ordinary regression model using the poi
$(xi ,yi)%, while the variance of they intercept is given by

s2( xi
2

( xi
22S ( xi D 2 . ~10!

This formula was previously applied to determine the er
of the percolation threshold equal-sized disks@2#. We note
that, as a consequence of Eq.~10!, the error estimate 7
31026 for the percolation threshold is slightly smaller tha
the error estimate 131025 associated with each individua
measurement offc

(1)(l ) andfc
(2)(l ).

As a further check of our simulations, we also compu
the fractal exponents for the perimeterP and the widths of
the frontier as a function ofl . Expressions for these quant
ties may be found in@4#. We find that, within the tolerance

FIG. 1. Estimates of the percolation threshold, as a function
1/l , for disks whose radii follow a uniform distribution. The ba
show the estimated error of 1025 for each measurement. The lowe
line shows the estimatesfc

(1)(l ), obtained from the average loca
tion of the frontier, while the upper line shows the estima
fc

(2)(l ), obtained from the average location of the centers of
disks comprising the frontier. Regression fits to both sets of data
in agreement within the given error tolerance, and the twoy inter-
cepts only differ by approximately this error tolerance.
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TABLE I. Estimates of the percolation thresholdfc( f ,l) for binary dispersions of fully penetrable disks, wheref is the fraction of
smaller disks andl,1 is the ratio of the two radii. Each value has an estimated error of 5 in the last decimal place. All values are
thanfc'0.676 339, which is both the percolation threshold for disks of equal size and also the value offc( f ,l) for f 50 and f 51.

f 50.1 f 50.2 f 50.3 f 50.4 f 50.5 f 50.6 f 50.7 f 50.8 f 50.85 f 50.9

l50.1 0.67658 0.67693 0.67727 0.67785 0.67856 0.67973 0.68161 0.68525 0.68877 0.6
l50.2 0.67706 0.67796 0.67917 0.68052 0.68261 0.68557 0.69013 0.69798 0.70450 0.7
l50.3 0.67751 0.67893 0.68061 0.68275 0.68548 0.68912 0.69417 0.70119 0.70541 0.7
l50.4 0.67777 0.67928 0.68112 0.68326 0.68593 0.68896 0.69262 0.69607 0.69695 0.6
l50.5 0.67762 0.67903 0.68075 0.68245 0.68438 0.68640 0.68809 0.68892 0.68843 0.6
l50.6 0.67742 0.67858 0.67968 0.68085 0.68206 0.68285 0.68338 0.68317 0.68251 0.6
l50.7 0.67705 0.67768 0.67846 0.67899 0.67960 0.67986 0.68002 0.67946 0.67908 0.6
l50.8 0.67675 0.67713 0.67728 0.67762 0.67780 0.67778 0.67774 0.67754 0.67728 0.6
l50.9 0.67639 0.67656 0.67668 0.67662 0.67666 0.67661 0.67670 0.67652 0.67659 0.6
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of simulation,P}l 3/7 ands}l 23/7. These same exponen
were found in previous work for equal-sized disks@2# and on
the lattice@11,12#.

III. BINARY DISPERSIONS

We now consider the percolation thresholdfc( f ,l) for
binary dispersions. In these systems, the radiiRi of the disks
can be eitherlR or R with probabilitiesf and 12 f :

Prob~Ri5x!5H f x5lR

12 f x5R.
~11!

Once again, the largest permitted radius isR, and so we
require 0<l<1. We also note that 0< f <1. The radii are
assigned independently of each other and the underlying
homogeneous Poisson field. We also note the obvi
boundary conditions onfc( f ,l),

fc~0,l!5fc~1,l!5fc~ f ,0!5fc~ f ,1![fc , ~12!

wherefc is the percolation threshold for equal-sized dis
~The degenerate casef 51,l50 is obviously not considered
in the above boundary conditions.!

A. Simulation results

In simulating binary dispersions, we again specify a line
variation of the particle volume fractionf(x). To do this, we
note that, for homogeneous binary dispersions,

f512exp$2rpR2@ f l21~12 f !#% ~13!

from Eq. ~5!, and so we choose

r~x!5
2 ln@~12x!fmin1xfmax#

pR2@ f l21~12 f !#
. ~14!

As before, the simulated values offc
(1)(l ) and fc

(2)(l )
are used to estimate the true percolation threshold. Howe
because we wish to study the behavior offc( f ,l) over many
values of bothf andl, less computational effort is expende
to measure the two estimates than in the previous sec
We choose to measure these two estimates with an erro
06110
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531025. With this larger error tolerance, the error bars
fc

(1)(l ) andfc
(2)(l ) will actually overlapfor large values of

l . As a result, we cannot expect linear regression over m
tiple values ofl to provide much improvement in estimatin
the true percolation threshold. Furthermore, based on Fig
the difference of theaverageof the two estimates from the
true threshold will be much smaller than the difference of
two estimates.

In short, for sufficiently largel , the finite-size effect
should be significantly smaller than both the error toleran
and the difference of the two error estimates. We theref
only need to perform one simulation at an appropriately la
value ofl for each (f ,l) pair. This computational techniqu
was also used to measure the percolation threshold on
lattice@5#. Using only one value ofl also saves considerabl
computational resources in measuring the percolation thr
old.

To obtain the error tolerance of 531025 using a 400-
MHz microcomputer, each value took between 3 and 21
of computer time to generate the 0.3 to 1.5 billion arcs
each frontier. The computational burden increased sign
cantly for largef and smalll. All told, about 56 billion arcs
were generated over 13 weeks of computer time.

In Tables I and II, we present estimates offc( f ,l) for
various values off and l. These reported values are th
averages of the two estimatesfc

(1)(l ) andfc
(2)(l ), wherel

is chosen so that these two estimates are within 731025 of
each other~and, in fact, are often closer!. We see that all
values are greater than the monodisperse thresholdfc
'0.676 339, in agreement with the conjecture mentioned
the introduction. We also see that percolation thresho
much larger thanfc can be achieved with appropriat
choices forf and l. The largest value offc( f ,l) found in
this study is

fc~0.99,0.1!50.759 81~5!, ~15!

and we conjecture that higher thresholds can be achieve
appropriate choices off with smaller values ofl. In fact, for
small l, it appears thatfc( f ,•) is maximized nearf 51
2l2.
8-3
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TABLE II. Estimates of the percolation thresholdfc( f ,l) for smalll andf close to 1. Again, each value has an estimated error of
the last decimal place.

f 50.92 f 50.95 f 50.96 f 50.97 f 50.98 f 50.985 f 50.99 f 50.992 f 50.995 f 50.998 f 50.999

l50.1 0.70027 0.71313 0.72064 0.73120 0.74643 0.75504 0.75981 0.75799 0.74570 0.71402 0.
l50.2 0.71929 0.72647 0.72746 0.72607 0.72010 0.71423 0.70564 0.70116 0.69329 0.68387 0.
l50.3 0.70876 0.70581 0.70333 0.69967 0.69412 0.68671 0.68195
l50.4 0.69082 0.68387
l50.5 0.68324 0.67958
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The data, presented as functions off for selected values o
l, is also plotted in Fig. 2. The bottom axis corresponds
the monodisperse threshold. We observe that the maxim
value offc(•,l) increases asl tends to zero and is achieve
for values off close to 1; this behavior was conjectured
Dhar @13#. We also note in passing that the results forl
50.9 are not as smooth as the results for smallerl. This
occurs because the deviation offc( f ,0.9) fromfc is on the
order of the error tolerance.

B. Empirical formula

While it would be desirable to find an explicit formula fo
fc( f ,l) or find some kind of governing differential equa
tion, such efforts appear to be difficult at best. Instead,
present here an empirical formula forfc( f ,l) based on the
simulated values in Tables I and II. This empirical formula
found in terms of thenumber densityof the larger disks,
which may be given as

rc8~ f ,l!R25~12 f !
2 ln fc~ f ,l!

p@ f l21~12 f !#
. ~16!

Clearlyrc8(0,l)R2[rcR
2'0.359 072, the number density o

monodisperse disks@2#. Also, it is clear on physical ground

FIG. 2. Estimates of the percolation thresholdfc( f ,l) for bi-
nary dispersions. The bottom axis corresponds to the percola
thresholdfc for disks of equal radius; this value is conjectured
be the smallest possible percolation threshold for disks. For s
l, the functionfc( f ,l) is maximized forf '12l2.
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that rc8( f ,l),rc for f .0; for such systems, the large disk
by themselves are not sufficient to achieve percolation. A
other boundary condition that must be obeyed isrc8(1,l)
50; again, we ignore the degenerate casef 51 andl50.

In Fig. 3, we showrc8( f ,l)/rc as a function off for se-
lected values ofl. We see that, for eachl, the data may be
well approximated using hyperbolas

rc8~ f ,l!

rc
'

a~12 f !

a2 f
, ~17!

wherea is some parameter that depends onl. By directly
fitting data for 0.1<l<0.9, a reasonable empirical formu
for a is

a511
e6.8l

115
. ~18!

While this empirical formula is satisfactory for 0.1<l
<0.9, it does not satisfy the necessary limiting requireme
As l→1, we expect the number density of the ‘‘bigger
disks to approach (12 f )rc . This occurs in Eq.~17! as a
→`. On the other hand, asl→0, the small disks should no
contribute much at all to the percolation behavior. Therefo
we expectrc8 to remain close torc even for moderately large

on

ll

FIG. 3. Estimates ofrc8( f ,l)/rc , as obtained from simulations
for selected values ofl, are shown in circles. The hyperbolas a
approximations of the forma(12 f )/(a2 f ), wherea is given by
Eq. ~18!. These appear to be a reasonable empirical fit to the d
8-4
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values off. However,rc8 must drop to its boundary value o
0 at f 51. Thus, for smalll, the graph ofrc8 should be very
angled; this occurs in Eq.~17! asa→11.

We do not claim that Eq.~17! is exact or a rigorous ap
proximation to the true number density of the large disks
percolation; it is only claimed to be a reasonable empirica
to the data for 0.1<l<0.9. We also note in passing tha
with this approximation, the percolation threshold itself m
then be estimated by using Eqs.~16! and ~17!.

As mentioned in the Introduction, there has not be
much study of the percolation threshold for disks of varia
radii. One exception is the work of Dhar@13#, who used a
correlation-length argument forl'0 to derive the estimate

rc~ f ,l!R2[
rc8~ f ,l!R2

12 f
'xc

f l2112 f

f l21~12 f !l3/4
, ~19!

wherexc is a constant. However, this estimate does not ag
with our data for disks whose radii are within an order
magnitude of each other.

C. Fractal dimension and the Grossman-Aharony effect

The fractal dimensionD f of the frontier is computed by
investigating the power-law behavior of the perimeterP and
width s of the frontier as a function ofl . The calculation of
P and s from the simulated frontier is given in Ref.@4#.
Because the frontier is scaled to fit inside the unit square
the effective system length is inversely proportional to
gradient of the concentration, we note that

P}l aN and s}l as21, ~20!

where aN and as are the analogous critical exponents
previous percolation studies@11,14#. The fractal dimension
of the frontier is related to these two exponents via

aN5~D f21!as . ~21!

To ascertain power-law behavior, several simulations
l are required for each (f ,l) pair. By contrast, only one
value ofl was needed to accurately measure the percola
threshold. Therefore, the results of this section are no
exhaustive as our measurements offc( f ,l). We choose to
06110
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measure the fractal dimension of the hull for (f ,l)
5(0.6,0.4), (0.4, 0.8),~0.8,0.2! and (0.2,0.9).

For each frontier, we also simulate theaccessibleportion
of the frontier. To do so, after simulating the frontier, th
radius of each disk on the frontier — small and large —
increased by a small amountcR. This procedure closes sma
openings in the frontier to ‘‘invading’’ particles of radiu
2cR. A new front is then constructed as before, and
radius-dependent quantitiesaN(c), as(c), and D f(c) are
also computed.

Our results for (f ,l)5(0.6,0.4) are shown in Fig. 4; th
graphs for the other choices of (f ,l) are similar. This figure
is analogous to Fig. 4 of Ref.@14#. We see that binary dis
persions exhibit the Grossman-Aharony effect@15,16# in pre-
cisely the same manner as monodisperse systems. We
serve thatD f(c) rapidly decreases from roughly 1.75 to 1.3
as c increases from 0. We also observe thatas(c) slowly
increases after an initial decrease, whileaN(c) rapidly de-
creases to a limiting value of approximately 0.2. We co
clude that diameter disorder has little to no effect on
fractal dimension.

FIG. 4. Variation of the exponentsaN(c) and as(c) and the
fractal dimensionD f(c) for f 50.6 andl50.4. BothD f(c) andaN

decrease rapidly to limiting values of approximately 4/3 and 1
respectively, whileas(c) remains nearly constant after an initia
decrease.
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