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COMPLEX FUNCTION ALGEBRAS

BY
H. S. BEAR

1. Introduction. This paper is a study of closed subalgebras of the algebra
C(X) of all continuous complex-valued functions on a compact Hausdorff
space X, where C(X) is topologized by uniform convergence on X and the
algebraic operations are carried out pointwise.

By the maximal ideal space of an algebra we mean the space of continuous
complex homomorphisms of the algebra with the weak* topology. (For our
purposes it is usually more convenient to consider the homomorphisms than
the maximal ideals which are their kernels.) For a subalgebra 4 of C(X) the
evaluation mapping (x—we,, where e,(f) =f(x)) is a homeomorphism of X
onto a subset of the maximal ideal space of 4. We shall accordingly always
regard the underlying space X to be a subset of the maximal ideal space in
such a way that the identity function on X is the evaluation mapping into
the maximal ideal space. Particular emphasis is given to the case in which the
algebra is defined on the whole of its maximal ideal space. This is a natural
emphasis for several reasons. First, the maximal ideal space is always avail-
able (theoretically, at least); second, an algebra defined on its maximal ideal
space has several pleasant properties not always available (e.g., a nowhere
zero function in the algebra has an inverse in the algebra); and third, the
study of such algebras provides a logical continuation of the classification
process started by Gelfand’s Theorem [2] which shows that a class of Banach
algebras are (isomorphic and isometric to) algebras of functions on their
spaces of maximal ideals.

In §2 we show that for any subalgebra 4 of C(X) there is a unique
minimal closed subset E of X such that any continuous function which agrees
on E with a function of 4 is in 4. Theorems are proved which show that the
study of any algebra can effectively be reduced to the case where this minimal
set E is all of X. In §3 maximal subalgebras are studied, and in §4 several
weaker maximality conditions are investigated.

The following notation and conventions are used throughout:

“4 is an algebra on X” means “X is a compact Hausdorff space, 4 is a
proper closed subalgebra of C(X), the constant functions belong to 4, and
for any two points of X, there is a function in 4 which takes different values
at the two points.”

The maximal ideal space of 4 is denoted 2(4), and Z(f) = {x:f(x) =0}
for each fin 4. The sets Z(f), for fEA and f5£0, are called the zero-sets of 4.
The support of f is the closure of the complement of Z(f).
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2. The essential set of an algebra. The fundamental lemma of this section
is Corollary 1 to Theorem 1 below. Theorem 1 is due to Bertram Yood, and
replaces the author’s direct proof of the corollary.

THEOREM 1. If B is a commutative topological algebra, and A is a proper
closed subalgebra, then there is a unique closed ideal I of B such that

(a) ICA,

(b) I is not contained in any larger ideal of B which is contained in A.

Proof. Let 4 be the set of all closed ideals of B which are subsets of 4.
The ideal generated by U4 is an ideal of B contained in 4, hence its closure
I belongs to 9 since 4 is closed. It is clear that I is not contained in any larger
ideal of B which is contained in 4, and that I is the only ideal of B satisfying
(a) and (b).

CoroLLARY 1. If A is a closed subalgebra of C(X), then there is a unique
minimal closed subset E of X such that any continuous function zero on E is in
A. An equivalent statement is the following: there is a unique minimal closed set
E such that for any continuous f and any gEA, if f=g on E, then fEA.

Proof. Let I be the largest closed ideal of C(X) contained in 4. Then
I={f:f=0on E}, for some closed set E, and E is uniquely minimal since T
is uniquely maximal.

DEeFINITION. If 4 is an algebra on X, the minimal closed subset E of X
whose existence is guaranteed by Corollary 1 will be called the essential set of
4 in X, or if no confusion can arise, simply the essential set of A. If E=X,
then we shall say that A4 is an essential algebra on X.

CoRrOLLARY 2. If A1;CA.CC(X), and Ei, E; are the essential sets for Ay, A,
respectively, then EsC E.

Proof. Let I, I, be the largest closed ideals of C(X) contained in 4y, 4.
respectively; then E;, E, are the hulls of I, I.. By the construction of the
I's used in the proof of Theorem 1, it is clear that I; CI,, and hence E;CE;.

For an algebra 4 on X and a closed subset E of X, we will denote by
A [ E the algebra on E of restrictions to E of functions in 4. (4 [ E)~ will de-
note the completion of 4| E in the sense of uniform convergence on E.

THEOREM 2. If E is the essential set for A, then (A| E)~=A| E=C(E).

Proof. We must show that if f,&E4 and f,.l E——>f| E, then fEA4. Any func-
tion g, which equals f, on E is necessarily in 4, and there exists a sequence
{ g,.} of such functions which converges uniformly to f on X; hence fE4.
IfA4 [ E=C(E), then 4 = C(X), which is contrary to our standing assumptions
on 4.
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We will next study the relationship between the maximal ideal spaces of
algebras and their essential sets. First we prove the following theorem, due
to H. Royden, which is extremely useful in deciding what the maximal ideal
space of a given algebra is.

THEOREM 3 (ROYDEN). If A is a separating algebra of continuous functions
on the compact space X, then X =2(A) if and only if for each finite set
{ S,y f,.} of functions in A which have no common zeros, there are functions
ey, * + +, enin A such that exfi+ - - - +eafa=1.

Proof. Note that for =1, the above says that the algebra is inverse-
closed, which is clearly a necessary condition. Suppose the above condition
holds, and M is a maximal ideal of 4. If N{Z(f): fEM} =0, then there are
a finite number of functions fi, - -+, fa in M such that N {Z(fi): i=1, .-, n}
=0, since X is compact. Then the fact that there are functions ey, - - -, €n
in 4 such that Y e;f;=1 contradicts the assumption that M is a proper
ideal. Hence all f in M must vanish at some xy, and since M is maximal,
M= {f: f(x0) =0 and fEA }. That is, each maximal ideal is represented as a
point of X, and different ideals correspond to different points since 4 is
separating.

Now suppose that X =2(4), and fi, - - -, f» have no common zeros. Let
M be the ideal generated by fi, « « + , fajiec: M={gifi+ - - - +gufu: 8. EA}.

If M is a proper ideal, then M is contained in a maximal ideal
M, = {ff(xo) = 0}

Let g1, - - -, g« be functions in 4 such that g(xo) #0, and ge(xe)= - - -
=g.(x0) =0. Since Y_gi(x0)fi(x0) =0, fi(xo) =0. The same procedure can be
repeated to show that fi(xo) =0 for 7=1, 2, - - -, », which contradicts the
assumption that the f; have no common zeros. Therefore, M is not a proper
ideal, and there are functions gy, - + + , g2&4 such that g1fi+ - - - +gfu=1.

We have shown that in considering any subalgebra 4 of C(X), we may
restrict 4 to that subset of X, the essential set, which carries the structure
of the algebra. We next show that this process of restriction leaves us an
algebra defined on its natural domain, the maximal ideal space, if the original
algebra was defined on its maximal ideal space. While it is not true in
general that (A[F)‘ has F as maximal ideal space for an arbitrary closed
subset F of X, we show in Theorem 5 that the maximal ideal space is pre-
served by this sort of restriction if F is a zero set of 4.

TrEOREM 4. If A is an algebra of functions on X, and E is the essential set
for A, then 2(A| E) =E if and only if 2(4) =X.

Proof. We have already noticed that 4 [ E is a closed subalgebra of C(E).
First assume 2(4)=X. Any continuous homomorphism ¢ on 4 I E extends
to a continuous homomorphism on 4, and hence is representable as an evalu-
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ation: for each fE4, qS(fI E) =f(xo) for some x0EX. If xo&E, then there is a
function g&4 which is zero on E and 1 at xo, and hence 0=¢(0) =¢(g| E)
=g(x0) =1, a contradiction. Therefore, each homomorphism on AIE is an
evaluation at a point of E.

Now assume that E(AIE) =E, and that A4 contains all extensions to X
of any function in AIE. We use Royden’s theorem to show Z(4)=X. If
fi, + - -, fu have no common zeros then they have no common zeros on E,
and there are functions ey, - - -, ¢, in 4 such thate;fi+ - - - +e,fa=1o0n E.
Let g be the complex conjugate of Y e.f;; gEA, since g=1 on E, and > geifs
is real and non-negative on X, and bounded away from zero on a neighbor-
hood U of E. Let ki, - - -, ks be functions which are zero on E (hence func-
tions in 4) and such that Zkif,-=1 off U. This is possible since AlXNU
=(C(X~U) and the maximal ideal space of the restricted algebra is X~ U.
Let % be the conjugate of Y kif;; then > hkifi is zero on E, real, and non-
negative. The sum 7= Y ge.fi+ D hkifi= > (gei+hk,)f: is real, positive, and
lonE,and hencer~'€A4,and Y r~(ge;+hk,)f;=1. The functions r—(ge; +hks)
are all in 4.

THEOREM 5. If A is an algebra on X and Z(A) =X, and E =Z(p) for some
¢EA, then Z(4| E)~=E.

Proof. If 7 is a continuous homomorphism on (4 [ E)-, then 7 extends to
A and hence for fEA, w(f) =f(xo) for some x,EX. If x,&E, then 7r(<p[E)
=m(0) =0 =p(x,) 0.

THEOREM 6. If A is an essential algebra on X, and Z(A) =X, then X is
perfect.

Proof. Any algebra contains the characteristic function of any open-
closed set in its maximal ideal space [9]. If X had an isolated point, x,
then any function zero on X~ {xo} would be a constant multiple of the char-
acteristic function of {xo}, and hence in the algebra, contradicting the fact
that X is the essential set.

Note. The preceding theorem would be false without the assumption
that 2(4) =X. The algebra 4 of all continuous functions on the closed unit
disc {z: | 2| =1} which agree on the rim and at the origin with some function
analytic in {z: |z| <1} has the rim plus {0} as its essential set. The maximal
ideal space of 4 can be pictured as two copies of the unit disc pasted together
at the rims and centers. That is, if we denote by f, that analytic function
which agrees with f on the rim and at the center, then a homomorphism of 4
is of the form w(f) =f(z), or of the form 7 (f) =f.(z), for some 2z in the disc.
Itis clear that 4 is isomorphic to an algebra on this space of homomorphisms,
and it is easy to verify via Theorem 3 that this space is in fact Z(4). The
essential set of 4 in Z(A4) is just one copy of the disc, and 4 on its essential
set is just the analytic functions. While it is evident that by its definition 4
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is related to the algebra of functions analytic on the disc, it is interesting to
see how the algebra of analytic functions is forced into view by the process
of first considering the maximal ideal space, and then restricting to the es-
sential set.

THEOREM 7. If A is an essential algebra on X and Z(A) =X, then X is not
completely disconnected, and no open-closed subset of X is completely discon-
nected.

Proof. If X is completely disconnected, then each point has arbitrarily
small open-closed neighborhoods. Let f be an arbitrary continuous function
on X. For each x, let F, be an open-closed neighborhood of x on which the
variation of f is less than e. Let Fy, - - -, F, be a finite number of these
which cover X, and take the F; to be pairwise disjoint. If x;&EF;, and e; is
the characteristic function of F;, then f(xi1)e1+ « - + +f(xa)en is an e-approxi-
mation to f, and hence f€A. That is, 4 is not a proper subalgebra of C(X).
If X had a completely disconnected open-closed subset, then 4 would not
be essential on X.

NotTe. Rudin has shown [6] that there is a proper subalgebra of C(X)
for any X which contains a homeomorphic image of the Cantor set. His
subalgebras actually have the Cantor set as their essential set, and the above
shows that such a subalgebra must always have maximal ideal space different
from X. Rudin’s example is defined on the Riemann sphere.

If A is an algebra on X there is a unique minimal closed subset of X,
called the Silov boundary of A, on which each function in 4 assumes its maxi-
mum modulus. A point x, belongs to the Silov boundary if and only if for
each neighborhood Uof xythereisa functionfin 4 such that max{ [ f(x)l xEX }
is assumed only at points in U. It is natural to assume that the Silov bound-
ary is closely related to the structure of a function algebra, and that con-
sideration of the boundary is a natural place to attack the problem of a
structure. (See, e.g. [7].) The foregoing discussion indicates that no general
conclusion can be drawn on the basis of boundary considerations if the alge-
bra is not essential. For example, if 4 is the algebra of all continuous functions
on a 3-dimensional sphere which are analytic on a given disc within the
sphere, then the Silov boundary is the whole space, and there is nothing
about the boundary to distinguish the algebra from C(X). This same phenom-
enon can occur in a finitely generated algebra. Let I' be a curve (a continu-
ous 1-1 image of a half-open interval) in 3-space which intersects every hori-
zontal plane in at most one point and whose closure is I'\UD, where D
= {z: lzl él}. The algebra generated by the functions ¢ (height), and
z=x-1y is the algebra of all functions whose restrictions to the open disc
are analytic. The maximal ideal space of this algebra is the space I'UD,
since the essential set is D and it is well known that the algebra of functions
on D which are analytic in the interior has D as its maximal ideal space, and
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Theorem 4 says that the whole algebra then has T'\UD as its maximal ideal
space. The Silov boundary of this algebra is the whole space I'UD.

THEOREM 8. If X s any closed set in the complex plane, and A is the algebra
of all uniform limits of rational functions with poles off X, then Z(4) =X.

Proof. (Suggested by H. Royden.) First note that 4 is inverse closed; i.e.,
if R,—f and f has no zeros, then R, has no zeros for sufficiently large », and
R;'—f'. Let 7 be any continuous homomorphism on 4, and let 7 (2) =z,. If
20X, and f(z) =z—2,, then f'€4, and w(f-f~)=1=0-7(f1), which is
impossible. If R is a rational function, then w(R)=R(z,), and hence w(g)
=g(2o) for any limit of rational functions, since m is necessarily continuous.

Mergelyan gives an example of a closed nowhere dense subset X of the
complex plane such that not every continuous function on this set can be
approximated by rational functions [4, p. 19]. Thus the algebra of all func-
tions which are rationally approximable is a proper subalgebra of C(X) which,
by the preceding theorem, has X as its maximal ideal space. It follows that
there is an essential algebra on a closed subset of X.

The importance of this example lies in the fact that the other known ex-
amples of subalgebras of C(X) for various compact spaces X are built around
an algebra of analytic functions. Thus Rudin’s and Wermer’s examples [6; 11]
are the algebras of all functions continuous on the Riemann sphere and analy-
tic off some closed nowhere dense set of positive area. The example destroys
the hope of finding, for any subalgebra, an analytic manifold embedded in
the maximal ideal space such that all the functions in the algebra are analytic
on the manifold, without further geometric restrictions on the maximal ideal
space.

3. Maximal algebras.

DEFINITION. 4 is maximal on X if and only if 4 is a proper subalgebra of
C(X) and there is no other proper closed subalgebra of C(X) containing 4.

We consider below some properties of maximal algebras, and related facts
concerning the Silov boundary of an algebra. Recall that if 4 is an algebra
on X and B is the Silov boundary, then 4 I B is a closed subalgebra of C(B)
which is isomorphic and isometric to 4.

THEOREM 9. If A is an algebra on X and B is the Silov boundary of A, then
A|B#C(B).

Proof. Assume 4 | B=C(B) and x,&X~B. (B#X since 4 is a proper sub-
algebra of C(X).) Define the homomorphism 7 on C(B) by w(f) =f(x0), where
f is the unique function in 4 which agrees with f on B. Since 7 is continuous,
and Z(C(B))=B, 7 can be represented as evaluation at a point of B: w(f)
=f(x,) for all fEA. That is, f(xo) =f(x1) for all fEA, which contradicts our
standing assumption that 4 separates points of X.
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THEOREM 10. If A is an algebra on X, and B is the Silov boundary, then
any fEA which is real on B is real on X, and f[B]=f[X].

Proof. Suppose there is a point 20&f[X ]~f[B]. Since f[B] is a compact
subset of the real line there is a polynomial $(2) such that p(z,) =1 and
Ip(z)l <1/2 on f[B]. The function p(f(z)) is in 4 but does not attain its
maximum modulus on B, which is a contradiction.

Helson and Quigley have investigated maximal subalgebras of C(X) and
shown the existence of an essential set for a maximal algebra, and that the
restriction of a maximal algebra to its essential set is maximal [3]. Theorem
12 and Corollary 1 below are due to Helson and Quigley. The proof given
here is new and will depend on Theorem 11 and Lemma 1 below, which will
also be used later.

THEOREM 11. If A is an algebra on X, F is the support of a member ¢ of
A and A| F is dense in C(F), then A contains all continuous functions zero on
Z(¢). (That is, Z(p) contains the essential set.)

Proof. Since the theorem is trivially true if Z(¢) has no interior, we restrict
our attention to the case Z(¢)°>0. Let f be any continuous function which is
zero on a neighborhood of Z(¢). We will show that fE4, and since any func-
tion zero on Z(¢) can be uniformly approximated by functions zero on a
neighborhood of Z(¢), the theorem will follow. Let go=¢~!f if ¢0, and
g0=0 elsewhere; then g, is continuous. Let g,&A4 and g,.| F——>go| F. Then
g4, and pgn—go=f, so fEA.

The fact that AI F is dense in C(F) does not imply that X ~F° contains
the essential set without the hypothesis that F is the support of a function in
A. For example, if A4 is the algebra of functions on the unit circle which have
analytic continuations to the unit disc, then AI F is dense in C(F) for every
proper closed set F.

LEMMA 1. If A is an essential maximal algebra on X, then A| F is dense in
C(F) for each closed F#X.

Proof. For any closed F> X, there is a function ¢ such that ¢ is zero on F,
and &4, since 4 is essential. Since 4 and ¢ generate C(X), polynomials
gotgio+ - - - +ga0", g4&A, are dense in C(X) and hence their restrictions
to F are dense in C(F). The restrictions to F of such polynomials are in AI F,
however, since ¢ =0 on F.

COROLLARY. If A is an essential maximal algebra on X then the Silov
boundary B of X is identical with X.

Proof. 4 | B is closed, so 4 I B=C((B), if B#X, but this contradicts Theo-
rem 9.
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A more general form of the corollary above was discovered independently
by Paul Civin [1].

TaEOREM 12 (HELSON-QUIGLEY). If A is an essential maximal algebra on
X and ¢ is a member of A which is zero on an open set, then ¢ is identically zero.

Proof. Assume ¢ &4 and ¢ is zero on an open set but not identically zero.
If F is the support of ¢, then A[ F is dense in C(F) by Lemma 1, and hence
A is not essential by Theorem 11.

COROLLARY 1. If A is an essential maximal algebra, then the only real func-
tions in A are the constants.

Proof. If ¢ is a real function in A4, then every continuous function con-
stant on the same sets as ¢ is in 4. If ¢ is not constant, there is a function in
A zero on an open set and not identically zero.

COROLLARY 2. If A is an essential maximal algebra on X and F is a closed
proper subset of X with nonempty interior, then A| F 1s not closed in C(F).

Proof. If 4| F is closed, A| F=C(F), and if F has nonvoid interior, there
are functions in 4 zero on an open subset of F and not identically zero.

COROLLARY 3. If A is an essential maximal algebra on X and A is inverse-
closed (nowhere zero functions in A have inverses in A), then each nowhere zero
function is characterized by its absolute value.

Proof. Spemﬁcally, we mean by the above that if f,g€4 and ] f | = l g| >0,
then f=ag, where a is a constant. Let h=fg~!; then k=f"1¢, and h, harein 4
and have their ranges contained in the unit circle. Any continuous function on
the unit circle can be uniformly approximated by polynomials in z and 2, so
if % is not a constant, there would be a function in the algebra which was zero
on an open set but not identically zero.

4. Maximality. In this section we investigate several variants of the idea
of a maximal algebra. The fact that none of the known maximal algebras are
maximal on their maximal ideal spaces leads us to consider a modification of
the notion of a maximality which preserves our emphasis on algebras defined
on their maximal ideal spaces. We then consider the problem of extending a
given algebra to one maximal with respect to some property of the algebra.

DEFINITION. 4 is an extremal algebra if and only if there is no other proper
subalgebra 4; of C(Z(4)) such that 4 CA4; and Z(4,) =2(4).

An algebra maximal on its maximal ideal space is certainly extremal, but
an algebra maximal on some subset of its maximal ideal space need not be
extremal. For example, the algebra A of functions analytic on the open unit
disc and continuous on the closed disc is a maximal algebra on the circle, but
is not maximal on its maximal ideal space, the disc, or even extremal. The
algebra of all continuous extensions to the unit disc of functions analytic on
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{z:]2] <1/2} and continuous on {z:|z| £1/2} contains 4 and has the
unit disc as maximal ideal space. Likewise, there is no a prior: reason to as-
sume that an extremal algebra is maximal, either on its maximal ideal space
or on a smaller set. In any case we can show that extremal algebras share
several significant properties with maximal algebras, and that the reduction
to essential algebras proceeds as before.

LemMA 2. If A is extremal, and E is the essential set of A in Z(A), then
A|E is extremal.

Proof. We have already noted that 2(4 I E)=E.If A | E is properly con-
rained in 4, and 2Z(4,) =E, then the algebra 4. of all extensions to Z(4) of
functions in 4, has maximal ideal space Z(4), and properly contains 4.

We may henceforth consider only essential extremal algebras, since no
generality is lost by this reduction.

LeMmMA 3. If A is an essential extremal algebra, then Al F is dense in C(F)
for every zero-set F of A in Z(4).

Proof. We have shown that Z(4|F)~=F if F is a zero set of 4. So if
(4| F)~#C(F), then we can form the algebra of all extensions to Z(4) of
(A| F)~ and obtain a proper subalgebra of C(Z(4)) containing A and having
2(A) as maximal ideal space.

THEOREM 13. If A is an essential extremal algebra, then A has no zero divi-
sors.

Proof. Suppose ¢1, p2EA4, 01£0#£ @3, and ¢102=0. Let E;=Z(¢1) and F,
be the support of ¢,; then FoC E;. By Lemma 3, 4 | E, is dense in C(E;) and
hence dense in C(F;). Theorem 11 then shows that A4 is not essential, which
is a contradiction.

COROLLARY. If A is an essential extremal algebra, then there is some point
xo of Z(A) such that every function in A which is zero on a neighborhood of x,
is identically zero.

Proof. If for each x&2(4) there were a function zero on a neighborhood
of x, then by covering 2(4) with a finite number of these neighborhoods, and
considering the corresponding functions, we could construct zero divisors.

DEFINITION. 4 is a regular algebra if and only if for each two disjoint
closed subsets F; and F; of 2(4) there is a function in 4 which is zero on F,
and one on F,.

Theorems 12 and 13 point out a relationship between the following im-
portant unanswered questions.

(1a) Can any proper closed subalgebra of C(X) be extended to an algebra
maximal on X?

(1b) Can any algebra be extended to an extremal algebra?
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(2) Are there any regular function algebras other than algebras of all
continuous functions?

If the answer to either (1a) or (1b) is yes, then the answer to (2) is no,
since regular algebras are obviously neither maximal nor extremal.

As indicated above, nothing is known about the general problem of when
a given algebra can be extended to a maximal or to an extremal algebra. If
each function in the algebra has a property which is definitely not enjoyed by
all continuous functions and which persists under uniform limits, then the
algebra can be extended to one maximal with respect to this property by a
simple Zorn’s lemma argument. In the case considered by Rudin [6] the
algebra maximal with respect to the critical property (viz., that the range of
the real part of each function in the algebra be connected) is in fact a maximal
algebra. We carry out below such a maximizing process with respect to the
property of having a given Silov boundary which is not the whole space.
Maximality with respect to boundary is certainly not sufficient to imply
maximality, since the analytic functions on the unit disc can not be extended
to a larger algebra which has the rim as Silov boundary [7].

LEMMA 4. If A is an algebra on X with boundary B, and B#X, then A is
contained in an algebra maximal with respect to having boundary B.

Proof. If M is a nest of algebras containing A and having boundary B,
and A, is the uniform closure of UR, then we will show that 4, has boundary
B, and hence 4, is a proper subalgebra of C(X), and hence 4 is contained
in a maximal such algebra. Let f,€EUN and ||f.||=|fa(xs)|, %.€B, and
x,—x0E B, and ||fo—7|| <1/n. Then ||f.|| —1/2 <||f|| <||fall +1/7 and | fu(x.) |
—1/n<|f(xa)] <|f,.(x,.)| +1/n; hence | ||| —|f(xn)| | <2/n, for each %, and
IIfll =17(x0)| . Hence B is the boundary of the closure of U%.

LEMMA 5. If N is a nest of algebras with common maximal ideal space X,
and Ay is the closure of UN, then Z(4,) =X.

Proof. Let ¢ be a continuous homomorphism on 4,. ¢ is evaluation at
some x, for all f in each 4 €N, and this x, is independent of 4 since N is a

nest. If f€ A4, and fu—f, [EUN, then ¢(fa) =Fu(x0)—¢(f) =f(x0).

TuEOREM 14. If 2(4) =X and the boundary of A is B#X, then A is con-
tained in an algebra Ao with maximal ideal space X and boundary B which is
maximal with respect to these conditions.

Proof. Lemmas 4 and 5 show that a Zorn’s lemma argument works under
the above assumptions.
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