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Superfluid flow past an array of scatterers
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We consider a model of nonlinear superfluid flow past a periodic array of pointlike scatterers in one
dimension. We find a rich dependence of the critical current on both the scatterer strength and separation. In
particular, in the case of attractive impurities, we find the critical current at any separation to vanish entirely at
some critical scatterer strength. An experimental application of this model is in the critical current of a
Josephson array in a regime appropriate to a Ginzburg-Landau formulation. The above results translate to the
critical current of the array depending linearly asA(Tc2T), when the temperatureT is close to the critical
temperatureTc . Here the coefficientA depends sensitively on the array geometry and the strength and sign of
the Hartree interaction in the normal regions. Furthermore, in the case of an attractive interaction, the critical
current will vanish linearly at some temperatureT* less thanTc , as well as atTc itself. We examine the origin
of a zero critical current at a critical scatterer strength, ruling out a simple explanation in terms of sound wave
radiation at low frequencies. Instead we suggest an interpretation in terms of a nonlinear mapping from the
Ginzburg-Landau equation to the sine-Gordon equation.@S0163-1829~99!13541-0#
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I. INTRODUCTION

The problem of nonlinear flow, as modeled by a nonline
Schrodinger equation in the presence of a scattering po
tial, relates to a variety of physical situations. One exam
is a weakly interacting Bose gas with impurities, while a
other is a Josephson array in a regime appropriate t
Ginzburg-Landau formulation. Here, the array consists
short, normal-metal~N! regions in the presence of a Hartre
electron-electron interaction, and embedded within a su
conducting wire near its critical temperature,Tc . The latter
example falls within the rapidly developing field of study
the interplay of the proximity effect and charging effects d
to interactions in disordered, inhomogeneous supercond
ing systems.1–5 Further examples arise within nonline
optics6 and in the study of gravity waves on deep water.7

We will concern ourselves with the existence of tim
independentsolutions of the flow equations in the presen
of a supercurrent. In general the value of the supercurre
limited by a maximum value, the critical current, abo
which the flow becomes unsteady and a time-dependen
lution must be sought. Recently Hakim8 considered the su
perfluid flow past a single, repulsive scatterer in one dim
sion and deduced the dependence of the critical curren
the scattering strength. We extend this model to the ge
etry of a regular array of scatterers. We find a rich dep
dence of the critical current on the scatterer separation
strength, with markedly different behavior in the cases
repulsive and attractive scatterers. In particular, in the cas
attractive scatterers, we find the critical current at any se
ration to vanish entirely at some critical scatterer streng
We will examine the origin of this zero value of the critic
current below.

Although we will focus here on the steady-state flow, t
physics of unsteady flows in related problems has also
PRB 600163-1829/99/60~18!/13139~13!/$15.00
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ceived attention. For instance, unsteady flow past a sin
scatterer in one dimension8 represents a transition state t
wards the emission of solitons and hence phase-slip nu
ation. It has also been pointed out9 that steady-state flow ma
not be stable to mechanisms of quantum tunneling, lead
to phase-slip nucleation and nonzero dissipation even be
the ~quasiclassical! critical current. Higher dimensional ana
logues of the problem are also of theoretical and experim
tal importance, although less tractable analytically: rec
work has simulated numerically the flow of a superfluid p
an obstacle10 or through a constriction11 in two dimensions,
for which vortices are nucleated above the critical superc
rent. These investigations relate directly to experimen
work12 on superfluid4He.

As mentioned above, an important application of th
model is in the description of supercurrent flow in a mes
scopic superconducting–normal-metal–superconduc
~SNS! device near the critical temperature of the S regio
The Ginzburg-Landau equations for the order parameter n
the critical temperature of such a device are equivalent to
flow equations for a superfluid in the Hartree approximatio
Furthermore, a short N region may be modeled as a point
scatterer whose strength diverges asTc is approached and th
Ginzburg-Landau correlation length diverges. We will e
ploit this equivalence to translate our results directly in
experimental predictions for the temperature dependenc
the critical current of a Josephson array, consisting of sh
N regions embedded in a superconducting wire nearTc .

The dependence of the critical current on the tempera
is a property that has already been examined in a numbe
related systems. For example, it is an established result13 that
a superconducting wire~with no N regions! has a critical
current that behaves as (Tc2T)3/2 asTc is approached, while
the introduction of a single, short N region1 leads to a critical
current that depends quadratically as (Tc2T)2. In addition it
13 139 ©1999 The American Physical Society
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13 140 PRB 60D. TARAS-SEMCHUK AND J. M. F. GUNN
has been possible to fabricate and measure experimenta
superconducting ‘‘microladder,’’14 consisting of a pair of S
wires with connecting side-branches: in this geometry
well-defined correction to the (Tc2T)3/2 dependence of the
critical current of the superconducting wire has been
served and explained theoretically. Courtois, Gandit a
Pannetier15 have also measured the critical current for a
other geometry~somewhat complementary to that consider
by us! of an array of short S regions nearTc within a normal
metal, again with a reasonable fit to the theory.16

The case oftwo short N regions, comprising a double
barrier structure, has also been examined theoretically
Zapata and Sols.2 They interpret such a system as represe
ing a nonlinear analogue of resonant tunneling: such a s
tering structure is well known in alinear system to lead to
phenonema such as the sensitivity of the transmission c
ficient to the scatterer separation, peaking near well-defi
resonances due to multiple inner reflection. The introduct
of nonlinearity leads immediately to markedly different b
havior, the added complexity precluding even any kind
crossover regime in terms of a nonlinearity parameter. T
critical current of the double-barrier structure drops to z
~or, more accurately, a parametrically small value! over a
whole temperature regimeTc8<T<Tc , where Tc8 is some
temperature belowTc . At temperatures just belowTc8 , the
critical current behaves as (Tc82T)1/2. It appears that in this
system there is a cooperation between the two barrier
gions, mediated by the nonlinear term in the intervening
gion, to strongly dephase the quantum interference requ
to sustain a supercurrent between the normal regions.

Our results mentioned above allow us to examine h
such nonlinear effects manifest themselves in a different
ometry, namely, that of an array of short N regions emb
ded within a superconducting wire. We arrive at the pred
tion of a linear dependence of the critical current asA(Tc
2T), in contrast to the cases described above. Furtherm
the coefficientA depends sensitively on the sizes of the
and N regions and the strength and sign of the electron
teraction. Note that the calculation of the chemical potent
while trivial in the geometry of a finite number of scattere
becomes more complex in the array geometry, as it m
incorporate a normalization condition to fix the total bos
number. This procedure leads to the increased complexit
the flow solutions.

A further feature in the temperature dependence of
critical current in the case of attractive interaction is that
critical current vanishes linearly at some temperatureT* less
than Tc , as well as atTc itself. This suppression of the
critical current may be seen as somewhat similar to the ef
that arises in the double-barrier structure: in both cases, t
is a cooperative effect between the multiple barriers in
structure that acts to strongly diminish the quantum coh
ence required to sustain the Josephson effect. There are
differences between the two cases: for the array, in wh
scattering is attractive, the critical current drops to~identi-
cally! zero at precisely one temperature,T* ~apart fromTc),
whereas in the double-barrier structure, where the scatte
is repulsive, the critical current drops to a parametrica
small value over a whole temperature range. Even so,
zero value of the critical current in the array seems to b
subtle consequence of the nonlinearity present in the fl
y a
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equations. We examine the origin of this result in grea
detail below, ruling out a simple explanation in terms
sound-wave radiation at low frequencies. Instead, we sug
an interpretation which is based on a nonlinear mapp
from the Ginzburg-Landau equation to the sine-Gord
equation, which in turn describes the evolution of the qua
classical Green’s function for a diffusive Josephson juncti
As the critical scattering strength in the Ginzburg-Land
problem is approached, the width of the normal region in
sine-Gordon problem diverges. This leads trivially to a va
ishing critical current in the sine-Gordon system, which th
maps back to a zero critical current in the Ginzburg-Land
system.

The plan of this paper is as follows. In Sec. II, we d
scribe the model and flow equations for a superfluid in
presence of scatterers. In Sec. III we review briefly the so
tion of these equations for a single scatterer in the tim
independent regime. In Sec. IV we address the geometr
an array of scatterers and present the results for the cri
current as a function of scatterer strength and separation
Sec. V we derive analytically the form of the critical curre
in the various limiting cases of scatterer strength and se
ration, while in Sec. VI we translate these results into p
dictions for the temperature dependence of a Josephson
nearTc . Section VII examines the origin of the zero value
the critical current in more detail, ruling out a simple expl
nation in terms of sound-wave radiation at low frequenci
Instead we suggest an interpretation based on a map
from the Ginzburg-Landau equation to the sine-Gord
equation. Section VIII concludes with a summary.

II. MODEL

We derive the relevant equations first for the problem o
one-dimensional superfluid in the presence ofd-function
scatterers. Taking the scatterers to have strengthga and po-
sitions r a , the Hamiltonian may be written

H5(
i

S 2
\2

2m
]xi

2 1(
a

gad~xi2r a! D 1
1

2
l(

iÞk
d~xi2xk!,

~1!

where i labels theN bosons, which interact via a shor
ranged, pairwise potential of strengthl. We employ the Har-
tree approximation17 to write the ground state wave functio
in the symmetrized form,

C~x1 ,x2 , . . . ,xN ,t !5
1

L sys
N/2 )

i 51

N

c~xi ,t !,

whereLsys is the system size. This leads to the followin
nonlinear Schro¨dinger equation forc(x,t):

2
1

2
¹x

2c1ucu2c1(
a

gad~x2r a!c5 i ] tc, ~2!

where we have rescaled length according to units of the h
ing length,l h5\/(lnm)1/2, and energy~and thega) accord-
ing to units of the Hartree energy,nl, wheren is the average
particle density. The speed of sound in the condensate in
absence of the scatterers, i.e., (nl/m)1/2, is equal to unity
with this choice of units.
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PRB 60 13 141SUPERFLUID FLOW PAST AN ARRAY OF SCATTERERS
In addition, we must enforce the condition of fixed tot
boson number, which is achieved by normalizing the wa
function according to

E ucu2~x!dx5Lsys. ~3!

We now introduce the number-phase representation~the
Madelung transformation18!:

c~x,t !5Ar~x,t !exp„iS~x,t !…. ~4!

Inserting Eq.~4! into the Schrodinger equation, Eq.~2!, gives
the continuity equation and the Bernouilli equation, resp
tively,

] tr1]x~r]xS!50, ~5!

2
1

2

]x
2Ar

Ar
1] tS1

1

2
~]xS!21(

a
gad~x2r a!1r50,

~6!

while the normalization condition,~3!, becomes

E r~x!dx5Lsys. ~7!

For time-independent flow, we may set] tr to zero, while the
phaseS(t) advances uniformly in time according to the J
sephson relation,] tS52m, wherem is the chemical poten
tial. The continuity equation, Eq.~5!, then integrates to

r]xS5 j , ~8!

where j, a constant, is the supercurrent density. Writi
f(x)5r(x)1/2, the flow equation, Eq.~6!, becomes

2
1

2
]x

2f1f32mf1(
a

gad~x2r a!f1
j 2

2f3
50. ~9!

We will discuss the solution of this equation at length in t
following sections. We see that it is of a general Ginzbu
Landau form, as we clarify further in Sec. VI. We consid
first the case of a single scatterer before turning to an arra
scatterers.

III. SINGLE SCATTERER

In this section we review the results for the critical curre
of a single scatterer.8 We take the scatterer to be of streng
g and placed at a positionx50. The flow Eq.~9! gives the
jump condition

1

2
@]xf#02

01

5gf~0!. ~10!

In addition, from the normalization condition, Eq.~7!, we
enforce that

f~x!→1 as x→`. ~11!

From Eq. ~11! and the flow equation, Eq.~9!, we find the
chemical potential immediately as
l
e

-

-
r
of

t

m511
j 2

2
.

With the above relations, the flow equation may be in
grated as follows:

r~x!5 j 21~12 j 2!H tanh2

coth2J @A12 j 2uxu1a#, H g.0,

g,0.
~12!

The integration constant,a, still needs to be determine
from the jump condition,~10!. For an attractive impurity,g
,0, the jump condition may be fulfilled for all values of th
supercurrent up to the speed of sound,j <1. This is con-
nected to the fact that the value ofr at the impurity„r(0)…
may become arbitrarily large. Thus the critical current fo
single impurity, j c,0 , is in this case

j c,0~g,0!51.

In contrast, for a repulsive impurity,g.0, the jump condi-
tion can no longer be satisfied for allj up to 1, due to the
restriction that 0<r(0)<1. Instead we have thatj c,0(g
.0),1. Although Hakim8 obtained an implicit formula for
the critical current, we obtain in Appendix A a relatively
simple explicit formula. The resulting dependence ofj c,0(g)
on g is illustrated in Fig. 1. In the limits of large and sma
scattering strength,g, we have

j c,0~g.0!5H 1/~2g!, g@1,

12
3

4
~2g2!1/3, g!1.

~13!

Note that the result for largeg will find relevance in Sec. VI
when we examine the equivalent problem of the critical c
rent in an SNS junction~with a single normal-metal region!
close to the critical temperature. Before elaborating on t
interpretation, we keep to the example of a superfluid, a
turn to the case of a periodic array of scatterers.

IV. ARRAY OF SCATTERERS

We now examine the case of a periodic array of scat
ers, of equal strengthg and separationL. We place them at
positionsr a5(2a11)L/2, so thatf(x) is symmetric about
x50 and we may restrict attention touxu,L/2. We first

FIG. 1. Critical current,j c , for a single, repulsive impurity of
strengthg.0.
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FIG. 2. Critical current,j c ~solid line!, as a function ofL for ~a! a repulsive array (g55) and~b! an attractive array (g521). In each
case,j c approaches the single-impurity value~the dotted line! for largeL.
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show how the flow equations may be integrated before
cussing the results of their full solution.

A. Integration of the flow equations

The first integral of the flow equation, Eq.~9!, may be
written as follows:

~]xf!25f422mf22
j 2

f2
2f~0!412mf~0!21

j 2

f~0!2
.

~14!

We may now factorize the right-hand side of this expressi
this operation greatly simplifies the following analysis. W
find

~]xf!25
1

f2
@f22f~0!2#~f22a!~f22b!, ~15!

where

H a

bJ 5m2
r~0!

2
6F S m2

r~0!

2 D 2

2
j 2

r~0!G
1/2

. ~16!

This leads to the following solution forr(x):

r~x!5b1~r~0!2b!

3H sn2

1

k2sn2
J ~Aa2b x1ReK~k!,k!, H g.0,

g,0,

where the symmetry ofr(x) about the origin has been auto
matically incorporated, sn andK are the elliptic integral and
complete elliptic functions, respectively,19 and

k5Ar~0!2b

a2b
. ~17!

It still remains to determine the two integration constan
m and r(0). These are specified by the normalization co
dition corresponding to Eq.~7!, that is,
s-

:

,
-

2

LE0

L/2

r~x!dx51, ~18!

and the jump condition,

1

2
@]xf# (L/2)2

(L/2)1

5gfS L

2D . ~19!

The latter condition may be rewritten, using the first integ
in Eq. ~15!, as follows:

j 2

r~0!r~L/2!
5g2

r~L/2!

r~L/2!2r~0!
12m2r~L/2!2r~0!.

~20!

This represents an implicit equation forj, since the right-
hand side is dependent onj throughm andr(0). Theprob-
lem of calculating the critical current of the array has no
been reduced to finding the maximum value ofj for which
the two conditions~18! and ~20! may be satisfied simulta
neously.

B. Results

Having described the integration of the flow equation
we present here the results for the critical current of
array. Further details of the working towards these res
will be described in the following section.

It is clear that in the limit ofL→`, j c must approach its
single-impurity value,j c,0 :

j c→ j c,0~g!, L→`. ~21!

For general values of the parametersg and L, the deter-
mination of j c must be performed numerically. Figure
showsj c as a function ofL for a typical repulsive and attrac
tive case. We see that the correct behavior is reproduce
the limit of L→`. We also see that in the attractive case,
critical current vanishes altogether at one special value oL.
We will show below that this value is given byL52ugu. We
also see thatj c diverges at smallL in both the repulsive and
attractive case.

In the limit of small scatterer separation,L→0, we find
further thatj c satisfies the following scaling form:
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FIG. 3. The scaling functionf as a function ofs, for ~a! the repulsive and~b! the attractive case. In the limit ofL→0, the critical current
is given by j 5 f (gL)/L.
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f ~gL!, L→0. ~22!

The scaling functionf possesses a surprisingly nontrivi
structure which we have obtained numerically and show
Fig. 3. Notice the marked difference in these forms for
repulsive and attractive cases.

The limits of large and small separation needs a m
precise definition, which in fact differs in the repulsive a
attractive cases: the limits correspond toL@L0 andL!L0,
respectively, whereL051 for the repulsive case andL0
5ugu for the attractive case.

The scaling functionf will find direct relevance in the
prediction for the temperature dependence of the critical c
rent of a Josephson array in Sec. VI. In the following secti
we will demonstrate analytically the following limiting be
havior of this function:

f ~s,g.0!.H p, s!1,

p2

s
, s@1,

~23!

and

f ~s,g,0!.H A2s, s!1,

2s2e2s, s@1.
~24!

The critical currentj c for small L then follows bys5uguL
and the scaling relation~22!. We will also show analytically
that the critical current vanishes as the spec
point L52ugu is approached, in a linear fashion asj c
}uL/2ugu21u.

V. LIMITING FORMS OF THE SOLUTIONS

In this section we derive analytically the limiting forms o
the scaling function given by Eqs.~23! and ~24!, and hence
of the critical current at small separations. We take the
pulsive case first, which requires the limitL!1, and then the
attractive case, which requiresL!ugu. Note that the condi-
tion itself for small separation is different in the repulsi
and attractive cases. While staying within this condition,
will examine separately the subcases ofuguL!1 and uguL
@1.
n
e

e

r-
,

l

-

e

In general, we find at such small separations the chem
potential approaches a large positive~negative! value in the
repulsive~attractive! case, reflecting the large ‘‘potential en
ergy’’ of the scatterers. In addition, for smalluguL, the den-
sity r(x) remains close to 1 for all values ofx. In contrast,
for large uguL, the value ofr(x) approaches 2 at the origi
and 0 at the scatterers for the repulsive case, and 0 a
origin anduguL@1 at the scatterers in the attractive case.

To derive the critical current, it is necessary to ident
the somewhat subtle interplay of the various parameter
the problem, which requires a separate and quite differ
discussion for each of the four cases. We also includ
discussion of the special pointsL52ugu, at which the critical
current vanishes entirely. Our approach in each case wil
to indicate the existence of a local~rather than global! maxi-
mum in the supercurrent. Strictly speaking, we still need
justify these choices of a local maxima as the relevant val
for the critical current. To do so, we appeal to the numeri
results of Sec. IV B which establish the smooth interpolat
from the limit of small separation to large separation a
hence to the single scatterer result for the critical curre
which certainly does represent a global maximum.

A. Repulsive case at small separation„L !1…

In the repulsive case, the limit of small separation requi
that L!1. We examine separately the subcases ofgL!1
andgL@1, while staying within the limit ofL!1.

In both subcases, we have thatm@1, and hencek!1 by
Eq. ~17!. The sn function is then well approximated by
standard cosine function:

r~x!5b1@r~0!2b#cos2~A2mx!, ~25!

whereb5 j 2/@2mr(0)#. We also have thatr(x) must con-
tain no more than one half oscillation between impurities,
that A2mL/2P(0,p/2). The normalization condition, Eq
~18!, consequently simplifies to the form,

15b1
1

2
@r~0!2b#F11

1

A2mL
sin~A2mL !G . ~26!

As shown in Appendix B, this limiting form leads to a crit
cal current which behaves asj c.p/L for gL!1 and j c
.p2/(gL2) for gL@1 ~while L!1).
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B. Attractive case at small separation„L !zgz…

In the attractive case, the limit of small separation
quires thatL!ugu. Note that this condition itself is separa
from that in the repulsive case. Again, we will concern o
selves with the two subcasesuguL!1 and uguL@1, while
staying withinL!ugu. In both subcases, the chemical pote
tial is large and negative:umu@1, m,0. The behavior ofk,
however, is different according to the limit ofuguL: we have
k@1 for uguL!1 butk;1 for uguL@1. The sn function then
reduces to either a cosine function or a tanh function:

r~x!5H b1@r~0!2b#sec2~Ar~0!2bx!, uguL!1,

b1@r~0!2b#coth2~p2Aa2bx!, uguL@1,

~27!

p5
1

2
lnS 8

k21D . ~28!

Further details of the derivation of the critical current a
contained in Appendix C: we findj c.(2ugu/L)1/2 for uguL
!1 and j c.2g2L exp(2uguL) for uguL@1. This concludes
the derivation of the behavior of the critical current a
hence the scaling function contained in Eqs.~23! and ~24!.

C. Attractive case in the limit L˜2zgz

In this section, we consider the attractive case at sep
tions near the special value,L52ugu, at which the critical
current vanishes entirely. This limit is characterized by
divergencein one of the parameters, namely,k→`. Conse-
quently,m→r(0)/2, and hence

r~x!→r~0!sec2@Ar~0!x#, L→2ugu. ~29!

The normalization condition, Eq.~18!, and the jump condi-
tion, Eq. ~20!, become equivalent in this limit, and simplif
to

L

2
5Ar~0!tanFAr~0!

L

2G . ~30!

Equation~30! for r(0) is soluble for all values ofL.
At this point it is still not obvious that the special poin

L52ugu does not admit a steady solution at any nonz
supercurrent. To demonstrate this fact, we consider the p
L52ugu(11e) for some smalle ~positive or negative!, and
show thatj c vanishes asueu→0.

In this limit, we identify the small parameterg5m
2r(0)/2, ugu!1. We will find g to be proportional toe at
the critical current. Then

a

bJ 5g6S g22
j 2

r~0! D
1/2

.

We find thatk25r(0)/@2(g2b)#, and hence the limiting
form for the density is

r~x!5b1@r~0!2b#sec2FAr~0!2bS 12
~g2b!

2r~0! D xG .
~31!
-

-

-

a-

a

o
int

As we show in Appendix D, this limiting form leads to
critical currentj c that vanishes linearly inueu as claimed.

In Sec. VII we will examine the origin of this zero valu
of the critical current in more detail, ruling out sound-wa
radiation at low frequencies as a simple explanation. Inst
we will suggest an interpretation in terms of a mapping fro
the Ginzburg-Landau equation to the sine-Gordon equat

VI. JOSEPHSON ARRAY NEAR Tc

Having the determined the behavior of the critical curre
for the periodic array of scatterers, we now show how th
results may be translated directly in experimental predicti
for the temperature dependence of the critical current o
Josephson array in a regime where a Ginzburg-Landau
mulation is appropriate. Here, the array is near the criti
temperature,Tc , of its S regions, and has the quasi-1D g
ometry shown in Fig. 4: the S regions are of lengthLS while
the N regions are of lengthLN!LS and subject to a Hartree
potential,V.

We first show that the Ginzburg-Landau equations for
array are of the same form as the flow equation, Eq.~9!, for
a superfluid. Furthermore, as shown by Zapata and Sols,2 the
short normal-metal regions, in the presence of the Ha
potential, may be mimicked by a series of repulsive or
tractive d-function scatterers, depending on the sign of t
interactionV.

The Ginzburg-Landau equations for the order parame
C(x) of the S region may be written as20

2
\2

4m
]x

2C1a~T!C1buCu2C50,

where a(T) is negative and proportional to (Tc2T), b
52pk2e2\2/m2c2, and k is the Ginzburg-Landau param
eter. Writing C5ucuexp(iS) and defining the supercurren
~per unit of cross-sectional area! as j 5(e\/m)ucu2]xS, we
have

2
\2

4m
]x

2c1a~T!c1bc31
m j2

4e2c3
50. ~32!

In addition to the above differential equation forc, we need
to specify appropriate boundary conditions. In theabsenceof
any N regions, the order parameter of the homogeneous
perconductor, and hence condensate density, is fixed a
valuecS(T). Furthermore, for a geometry containing only
singleN region, the appropriate boundary condition is to s
thatc(x) approachescS for limiting values ofx far from the
N region, by analogy with the boundary condition used
Sec. III in considering a single scatterer. For an array, ho

FIG. 4. The geometry of the Josephson array.
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ever, no such condition at infinity can apply; instead, we
the total boson number at a certain temperature to equal
in the absence of the N regions. This gives the condition

1

LS
E

2LS/2

LS/2

c~x!dx5cS ,

in similarity to the normalization condition, Eq.~18!, of Sec.
IV. Here the integration extends over a single S region.
proceed, we rescale the position variable and current as
lows:

y5
x

A2j~T!
, ~33!

j 5
A2\c2

16pk2ej~T!3
J, ~34!

where the coherence length is defined as

j~T!5
\

2~bm!1/2cS

5j08S 12
T

Tc
D 21/2

,

and j0850.74j0 for a clean superconductor andj08
50.85Al j0 for a dirty superconductor, wherej0 andl are the
zero-temperature coherence length and mean free path
spectively. In these rescaled variables, the Ginzburg-Lan
equation, Eq.~32!, becomes

2
1

2
]y

2f2mf1f31
J2

2f3
50, ~35!

where m5uau/(bc`
2 ). We see that for the geometry of

single N junction, the chemical potential becomesm51
1J2/2. We also see that Eq.~35! reproduces the flow equa
tion ~9! as expected, together with the normalization con
tion ~18!.

Notice that the rescaling leads immediately, by Eq.~34!,
to a (Tc2T)3/2 dependence for the critical current of a S wire
with no N regions, in accordance with established the
~see, e.g., Ref. 13!. If we now include one or more short N
regions, the flow equation in an N region in the resca
variables, corresponding to Eq.~35!, reads as

2
1

2
]y

2f1uf52
J2

2f3
, ~36!

where

u5V/~bcS
2!

5sgn~V!
j~T!2

jN
2

,

and jN
2 5\2/(4muVu) is the Ginzburg-Landau correlatio

length in the normal-metal. Following Ref. 2, we may no
integrate trivially the flow equation~36! over the whole N
region @located inyP(y2,y1), say# to give
at

o
l-

re-
au

i-

y

d

2
1

2
@]yf#y2

y1

5
LN

A2j~T!
uf, ~37!

as long as

LN!jN .

Notice that we have dropped the current-dependent term
the right-hand side of Eq.~36! as is consistent for a suffi
ciently short N region nearTc ~see Ref. 2!. By identification
of Eq. ~37! with Eq. ~19!, we see that we may model th
short N regions byd-function scatterers of strength

g5sgn~V!
LNj~T!

A2jN
2

. ~38!

At the same time, following the rescaling of the size of the
regions, LS , under the transformation~33!, we may also
identify the scatterer separation as

L5
LS

A2j~T!
. ~39!

By Eqs.~38! and ~39!, we see that the limit ofT→Tc , and
hencej(T)→`, corresponds to takingg→` andL→0 si-
multaneously, such that the productgL„5LNLS /(2jN

2 )… is
fixed.

Given the above information we are now in a position
predict the temperature dependence of the critical curren
the array. For orientation, however, we start with the simp
geometry of asingle S-N-S junction with a repulsive inter
action. As the temperature approachesTc , g diverges by Eq.
~38! and we insert the largeg limit of the critical current for
a single impurity, Eq.~13!: Jc51/(2g). Relation~34! then
gives the critical current of the SNS junction as

j c~T!5
\c2jN

2

16pek2~j08!2LN
S 12

T

Tc
D 2

per unit area, i.e., it variesquadratically as (Tc2T)2, the
result described by Sols and Ferrer.1

We turn now to the array. As the temperature approac
Tc , we haveL→0 and we are able to apply the scaling for
~22! for the critical current per unit area:

j c~T!5
\c2

8pek2j08
f ~s!S 12

T

Tc
D ,

s5
LNLS

2jN
2

.

Recall thatf (s) is the scaling function discussed in Sec. I
illustrated in Fig. 3 for the repulsive and attractive cases a
obeying the limiting forms contained in Eqs.~23! and ~24!.
We see that we have alinear dependence of the critical cur
rent asj c5A(Tc2T). In addition, the associated coefficien
A, of this linear dependence depends on the parametersLN ,
LS , andV through the productLNLSV:
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A5
\c2

8pek2j08Tc

f S 2mLNLSV

\2 D .

Notice that both large and small values of this product m
be probed while staying within the requirement thatLN
!jN . Through the scaling functionf, the coefficientA con-
tains a rich dependance on the geometry of the array, as
as the strength and sign of the Hartree interaction,V.

In moving away fromTc for the attractive (V,0) case,
an additional feature arises in accordance with the vanish
of the critical current atL52ugu: we have that the critica
current vanishes at the temperatureT* ,Tc , as well as atTc
itself. Here,T* is determined by

j~T* !5A LS

2LN
jN .

Moreover, sincej c vanishes linearly inuL/2ugu21u, we have
that the critical current vanishes linearly inuT2T* u asT* is
approached. We point out some similarity of this result w
that found earlier by Zapata and Sols2 for the different ge-
ometry of a double-barrier structure; as mentioned in
Introduction, the latter geometry displays also a suppres
of the critical current, although there the critical curre
drops to a parametrically small value~not strictly zero! over
a whole temperature range and for repulsive scattering
both geometries, the suppression of the critical current m
be seen as a cooperative effect between the multiple bar
of the structure that acts to dephase the quantum coher
required for the Josephson effect.

This concludes our discussion of the temperature dep
dence of the critical current of the Josephson array neaTc
~andT* ). In the following section we will examine in mor
detail the origin of the result of a zero critical current at
critical scattering strength.

VII. ORIGIN OF A ZERO CRITICAL CURRENT

In this section we will examine in more detail the result
a zero critical current in the array at a critical scatte
strength. In Sec. VII A we will investigate whether soun
waves may propagate within the array structure at arbitra
low frequencies, as the critical strength is approached
such a situation a channel for energy dissipation would o
at low frequencies and so provide a simple explanation
the inapplicability of the steady-state, dissipation-free fl
equations in this limit. We find the answer to be negati
such sound waves donot exist, and hence some alternativ
explanation must be sought which incorporates the inhe
nonlinearity of the system. In Sec. VII B, we suggest an
terpretation in terms of a nonlinear mapping from t
Ginzburg-Landau equation to the sine-Gordon equation.
latter equation in turn describes the evolution of the qua
classical Green’s function of a diffusive Josephson juncti
with a normal region of varying width: as the critical sca
tering strength is approached in the Ginzburg-Landau s
tem, the width of the normal region in the sine-Gordon s
tem diverges. This leads trivially to a zero critical current
the Josephson junction, which then maps back to a zero c
cal current in the Ginzburg-Landau system.
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A. Sound wave propagation

Having identified the special value (L52ugu) of the ~at-
tractive! scatterer separation at which the critical curre
takes a zero value, we here examine whether a simple ex
nation for this effect exists in terms of the radiation of sou
waves at arbitrarily low frequencies. Such sound wav
would serve to degrade any supercurrent and so provid
simple explanation of the inapplicability of the steady-sta
flow equations in the presence of a supercurrent in this lim

To describe sound waves in a nonuniform condensate
may use a standard procedure~see, for example, Giorgini
Pitaevskii and Stringari21! of perturbing the wave function
c(x,t) ~see Sec. II! by a small contribution that is oscillator
in time:

c~x,t !5e2 imt@f~x!1u~x!e2 ivt1v* ~x!eivt#.

We emphasize that these fluctuations in the wave func
are purely classical in origin and and are distinct from flu
tuations of a quantum nature; as mentioned in the Introd
tion, quantum fluctuations have been discussed9 as a source
of phase-slip nucleation below the critical current, althou
such effects are beyond the scope of this paper.

The flow equation~2! may be linearized in the small os
cillations to give the following coupled flow equations fo
u(x) andv(x):

Lu~x!1r~x!v~x!5vu~x!, ~40!

r~x!u~x!1Lv~x!52vv~x!, ~41!

where

L52]x
2/22m12r~x!1(

a
gad~x2xa!.

These equations are supplemented with the normaliza
condition,

E dx@u* ~x!u~x!2v* ~x!v~x!#51, ~42!

while trivial integration of the flow equations~40! and ~41!
over each scatterer gives the jump conditions,

1

2 F ]xS u

v D G
x

a
2

xa
1

5gS u

v D ~xa!. ~43!

Our aim is to determine whether fluctuations in the wa
function, propagating as sound waves, exist at arbitrarily l
frequencies at the separationL52ugu. To this end, we search
for a consistent solution foru(x) and v(x) in the limit of
v→0.

For preparation we review the solutions in the homog
neous case, i.e., in the absence of any scatterers. In this
the perturbations are plane waves,u(x)5exp(2ikx)u/Lsys
andv(x)5exp(2ikx)v/Lsys, whereLsys is the system size a
before. The flow equations~40! and ~41!, together with the
normalization condition,~42!, are now easily solved to give

u25
L1v

2v
, ~44!
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v25
L2v

2v
, ~45!

whereL5k2/21r. The dispersion relation reads

v25
1

2
k2~k212r!.

We now generalize to the case of the nonuniform den
at the separation,L52ugu. In this case, we need to incorpo
rate the jump condition given by Eq.~43! at each scatterer
Given the periodicity of the arrangement of the scatterers,
will search for purely periodic solutions foru andv:

S u

v D ~x1L !56S u

v D ~x!, ~46!

so that we may restrict attention to only a single regionuxu
,L/2 with one jump condition. Equation~46! may be seen
as a Bloch theorem foru andv, at Bloch momenta which are
precisely multiples ofp/L: odd and even multiples give ris
to solutions inu andv which are odd and even inx, respec-
tively.

Bearing in mind the form of the solutions~44! and ~45!
for the uniform case, a consistent series expansion foru(x)
andv(x) in the limit of v→0 becomes

u~x!5
u0~x!

Av
@11O~v!#,

v~x!5
v0~x!

Av
@11O~v!#.

The normalization condition,~42!, to zeroth order then give
u0

25v0
2: by analogy with the homogeneous case, we ta

u05v0. The zeroth-order differential equation foru0(x),
corresponding to Eq.~40!, becomes

F2
1

2
]x

22m13r~x!Gu~x!50,

for xP(2L/2,L/2). We substitute the form~29! for the den-
sity r(x): we find

@]y
21~126 sec2 y!#u~y!50, ~47!

where y5Ar(0)x. The two independent solutions of th
differential equation are as follows:

u1~y!5
siny

cos2 y
; u2~y!5FS 1,2;

7

2
;cos2 yD cos3 y,

whereF is Gauss’s hypergeometric function.19 By the Bloch
theorem, Eq.~46!, we will takeu(y) to be either purely odd
or purely even:u(y)5Au1(y) or u(y)5Bu2(y). We now
check whether either solution is compatible with the jum
condition. We see that this check is independent of the c
ficients A and B. Taking the odd solution first,u1(y), the
jump condition~43! becomes

L

2
5Ar~0!@cot~y0!12 tan~y0!#,
y

e

e

f-

wherey05Ar(0)L/2. This simplifies by use of Eq.~30! to

05r~0!1
L2

4
,

which clearly cannot be satisfied for any L, as the right-ha
side always exceeds zero. This solution must therefore
discarded. We are left with the even solution,u2(y), for
which the jump condition~43! becomes

L

2
5Ar~0!F2

5 cos2~y0!

sin~y0!u~y0!
1cot~y0!12 tan~y0!G ,

which follows from standard properties of the hypergeom
ric function.19 Use of Eq.~30! simplifies this condition to the
form

FS 1,2;
7

2
;cos2~y0! D55. ~48!

However, it is easy to check that 0,F(1,2;7/2;z),5 for 0
,z,1, with F(1,2;7/2;0)50 andF(1,2;7/2;1)55: clearly
the condition~48! cannot be satisfied either for anyL.0.

We conclude that a periodic solution foru(x) does not
exist in the limit of v→0 and hence such sound waves
not propagate at arbitrarily low frequencies. Instead we m
turn to another interpretation for the inability of the conde
sate to support a supercurrent in this geometry.

B. Mapping to the sine-Gordon equation

In this section we suggest an interpretation for the z
critical current atL52ugu in terms of a nonlinear mapping
from the Ginzburg-Landau equation to the sine-Gord
equation. More specifically, we will transform the first int
gral of the flow equation, Eq.~14!, to the first integral of the
sine-Gordon equation. In this way, information on t
boundary conditions for the sine-Gordon equation is
cluded within this transformation. The mapping is simple
in the case of a zero supercurrent (j 50), for which we make
the substitution

f~x!5f~0!sinS u~y!

2 D , ~49!

which defines the variableu. Here,y5x1xc , wherexc is a
constant that allows for a shift in coordinates. Equation~14!
transforms to

1

4
~]yu!252m2r~0!2r~0!sin2

u

2
,

which in turn differentiates to a sine-Gordon equation,]y
2u

1r(0)sinu50. The sine-Gordon equation also arises as
equation of motion of the quasiclassical Green’s function
a disordered normal region, contacted to one or more su
conducting regions and in the diffusive limit~see, e.g., Ref.
22!. This Green’s function,g(r ), is known as the Usade
Green’s function and has a 232 matrix structure, corre-
sponding to particle and hole sectors. As it is normalized
g(r )251, it may be represented in polar coordinates as
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g5S cosu sinueif

sinue2 if 2cosu D .

For a bulk normal metal,u50, and the Usadel Green’s func
tion collapses tos3. In contrast, in a bulk superconducto
with an order parameterD, u takes the value of tan21(D/e),
wheree is the energy. We use here the Matsubara repre
tation for the energy,e, in which case the Usadel angle,u, is
real. In a mixed superconductor-normal system, the Usa
equation describes the smooth interpolation of the Gree
function between these two, bulk limits. If we specialize
the geometry of a quasi-one-dimensional SNS juncti
where the normal region is of a finite width (L0, say!, the
Usadel equation in the normal region takes the form

D]y
2u522e sinu. ~50!

HereD is the diffusion coefficient andy the coordinate along
the junction. The energye has in fact been taken here to b
negative for the following mapping to hold, although th
choice remains physical in the context of a superconduc
system. Solution of the Usadel equation follows from t
addition of suitable boundary conditions at the location
the superconductor-normal interfaces~at y56L0/2, say!. If
we make the assumption that the energy gapD is much
larger than the energye, then we may simply impose tha
u(6L0/2)5p/2. We now write the first integral of the Us
adel equation~50! as

1

4
~]yu!25

2e

D S sin2
u~0!

2
2sin2

u~y!

2 D . ~51!

Here u(0) is the Usadel angle at the center of the norm
region,23 where y50 and, by symmetry,]yu50. We see
that the mapping~49! transforms the Ginzburg-Landau equ
tion of the superfluid, Eq.~14!, to the sine-Gordon equatio
of the Josephson junction, Eq.~51!, under the identification
of r(0)52e/D and

sin2
u~0!

2
52m/r~0!21. ~52!

The integration constantu(0) in the sine-Gordon problem
has the significance that it contains information on the geo
etry of this system: in particular, the value ofu(0), and the
boundary conditionsu(y56L0/2)5p/2 at the interfaces
together determine the widthL0 of the normal region of the
Josephson junction. This effective width,L0, is therefore not
the same for all mappings, but willvary according to the
original parametersr(0) andm ~or, equivalently,L andg) in
the Ginzburg-Landau system.

As the Usadel angle,u, is real, we see that this mappin
makes sense for 0,sin2

„u(0)/2…,1, or r/2,m,r. Refer-
ring to Sec. V, we see that this regime in the Ginzbu
Landau~superfluid! problem is preciselyL.2ugu, with at-
tractive impurities. Indeed, one sees immediately from
~52! what is special about the limit ofL→2ugu: as it is
approached, we haver(0)→m/2 and henceu(0)→0 in the
equivalent sine-Gordon~Josephson junction! problem. Con-
sequently, in the Josephson junction, purely metallic beh
ior is approached at the center of the normal region and
effective width,L0, of the normal region diverges.24
n-

el
’s

,

g

f

l

-

-

.

v-
e

Since a diverging width,L0→`, for the normal region of
the Josephson junction leads trivially to a vanishing criti
current, it seems desirable to infer that this result should m
back to a zero critical current in the Ginzburg-Landau pro
lem. In order to make this logical step, it is necessary
generalize the mapping to include a nonzero supercurr
The required mapping isf(x)5Asin„u(y)/2…, where the
constantA is given by

A25m1$@r~0!2m#22 j 2/r~0!%1/2.

The first integral of the flow equation, Eq.~14!, then trans-
forms to

1

4
~]yu!252m2A22A2 sin2

u

2
2

4 j 2

A4 sin2u
.

This is none other than the Usadel equation for the Jose
son junction, again in the presence of a supercurrentJ, which
may be written as22

1

4
~]yu!25

2e

D S sin2
u~0!

2
2sin2

u~y!

2 D
1J2S 1

4 sin2u~0!
2

1

4 sin2u~y!
D ,

under the identifications of

2e/D5A2, ~53!

J54 j /A2, ~54!

sin2
u~0!

2
5

r~0!

A4
@2m2r~0!#2

J2

4A2 sin2u~0!
1

J2

16r~0!
.

~55!

We see by relation~55! that asm→r(0)/2, a positive value
for sin2

„u(0)/2… is preserved only for vanishingly small va
ues ofJ. In other words, the critical supercurrentJ for the
Josephson junction vanishes in this limit, which mak
physical sense as the length of the normal region is dive
ing. This result maps back, by relation~54!, to a vanishing
supercurrentj in the Ginzburg-Landau problem in the lim
of L→2ugu.

VIII. SUMMARY

In this paper we have examined the superfluid flow p
an array of pointlike scatterers in one dimension. We ha
determined the critical current of the flow, above which t
flow becomes unsteady. While the result for a single scatt
is recovered in the limit of large scatterer separation, we fi
a scaling form for the critical current in the opposite limit
small scatterer separation. The scaling function takes a
ticular form, separate in the repulsive and attractive ca
that we have obtained numerically, as well as derived a
lytically in the various limiting cases of scatterer streng
and separation. We also find the additional feature in
attractive case that the critical current vanishes altogethe
one special value of the scatterer separation (L52ugu).

While these results are applicable to a variety of physi
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situations, an important application is in the prediction of t
temperature dependence of a Josepshon array, in the
ence of a Hartee potential and nearTc . In contrast to depen
dencies already derived and observed experimentally in o
geometries, we find for the array a linear dependence of
critical current asA(Tc2T). The coefficientA depends sen
sitively on the size of the normal regions (LN) and of the
superconducting regions (LS) and the Hartree interaction,V,
through the productLSLNV. In addition, for the attractive
case (V,0), the critical current is suppressed to zero asT
→T* , as well as atTc itself, whereT* is some temperature
less thanTc . We have ruled out a simple explanation for th
suppression of the critical current in terms of sound wa
propagation at low frequencies. Instead we have sugge
an interpretation in terms of a nonlinear mapping from
Ginzburg-Landau equation to the sine-Gordon equat
which in turn describes the evolution of the quasiclass
Green’s function for a diffusive Josephson junction.
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APPENDIX A: SINGLE IMPURITY: CRITICAL CURRENT

To find the critical current for a single impurity, we re
place the integration constanta in Eq. ~12! in favor of the
constantr(0), where tanh2a5@r(0)2j2#/(12j2), and refor-
mulate the jump condition~10! as

g2r~0!25@r~0!2 j 2#@r~0!21#2, ~A1!

where we have used the first integral of the flow equati
Eq. ~9!. The critical current,j c,0 , is determined by the con
dition ] j c /]r(0)50, or

2g2r~0!5@r~0!21#@3r~0!2122 j c,0
2 #. ~A2!

Eliminating g from Eqs.~A1! and ~A2!, we find

r~0!5
1

2
@211~118 j c,0

2 !1/2#, ~A3!

while eliminatingj in a similar manner gives

@r~0!21#312g2r~0!50. ~A4!

Equations~A3! and~A4! give the following solution forj c,0 :

j c,0~g.0!2512
2g2

3
1

3g

A2
S 2

R

3
1

1

RD1g2S R2

9
1

1

R2D ,

R35
2A2g

211A118g2/27
.

This formula reduces to the forms shown in the main tex
the limits of large and small scattering strength,g.
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APPENDIX B: REPULSIVE IMPURITIES AT SMALL
SEPARATION

In this section we obtain the critical current for repulsi
impurities at small separation,L!1. We treat the subcase
of gL@1 andgL!1 separately.

1. SubcasegL@1

In this limit, we have that the densityr(x) approaches 2
at the origin and zero at the impurities. Using Eq.~25!, we
see that the latter limit means thatA2mL/2.p/2. Writing

A2m
L

2
5

p

2
2g, ~B1!

whereg!1, we have from Eq.~25! that

r~L/2!.
j 2L2

2p2
12g2. ~B2!

In addition, the normalization condition, Eq.~26!, leads to
r(0)52(122g/p). Inserting Eq.~B2! into the jump condi-
tion, Eq. ~20!, we find

j 2.2g2r~L/2!214mr~L/2!

52g2S j 2L2

2p2
12g D 2

1 j 21
4p2g2

L2

or

j 5
p2

gL2 F12S 12
2Lgg

p D 2G1/2

.

Maximization of this expression with respect tog is now
trivial and gives

j c5
p2

gL2
, gL@1,

as required. At this critical current, we haveg5p/(2gL)
!1 andr(L/2)5p2/(gL)2!1.

2. SubcasegL!1

We now take the opposite limit ofgL!1. In this case, we
have that the densityr(x) is close to 1 for all values ofx. We
setu5r(0)21!1, and defineg as before, in Eq.~B1!. As
may be verified at the end of the calculation, we have t
u,g!1 ~for j near its critical value!. We first use the normal-
ization condition, Eq.~26!, and the jump condition, Eq.~20!,
to determine a relation betweenu andg. This will allow us
to obtain an expression forj in terms of onlyg, which may
then be maximized simply.

The normalization condition, Eq.~26!, now reads

15b1
r~0!2b

2 S 11
2g

p22g D ,

leading to

b512u1•••. ~B3!
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Sinceb5 j 2/„2mr(0)…, this gives

j 2L2

p2
512

4g

p
2u21•••. ~B4!

In Eqs. ~B3! and ~B4! we have kept to first order ing and
second order inu, which may be checked to be an approp
ate level of accuracy at the end of the calculation. The l
iting form for the density, Eq.~25!, now gives

r~L/2!5b1@r~0!2b#g2

5
j 2

2mr~0!
12ug2.

Inserting this into the jump condition, Eq.~20!, we find

j 252
g2

2u
1 j 214mug2.

Notice the cancellation of thej 2 terms, which allows us to
find

ug5
gL

2p
. ~B5!

Inserting Eq.~B5! into Eq. ~B4!, we find

j 2L2

p2
512

4g

p
2

~gL!2

4p2g2
1•••.

This expression may now be maximized simply with resp
to g, with the result

j c5
p

L F12
3

2 S gL

p2D 2/3G , ~B6!

as required. At the critical current, we have that

g5
1

2p1/3
~gL!2/3!1; u5

1

p2/3
~gL!1/3!1.

APPENDIX C: ATTRACTIVE IMPURITIES AT SMALL
SEPARATION

In this section we obtain the critical current for attracti
impurities at small separation,L!ugu. We again treat the
subcases ofuguL@1 anduguL!1 separately.

1. SubcasezgzL @1

In the limit of uguL@1, we have thatr(x) is close to zero
at the origin andr(L/2)@1 at the impurities. As may be
confirmed at the end of the calculation, we haveubu@uau
and hencek.1, or more precisely,

k511
r~0!1uau

4umu
, ~C1!

wherea52 j 2/„2mr(0)…. The jump condition~20! gives

0.g222umu,
-

t

and hencer(x)5g2 csch2(p2uguuxu). The normalization
condition, Eq.~18!, then leads to

15
4ugu

L
exp~22p1uguL !,

and hencer(L/2)5uguL@1. The expression fork, Eq. ~C1!,
together with the definition ofp, Eq. ~28!, together give

j 25g2r~0!„4uguL exp~2uguL !2r~0!…,

which is again easily maximized with respect to the para
eter r(0), to give j c52g2L exp(2uguL) as required. At the
critical current, we have thatr(0)52uguL exp(2uguL)!1, a
522uguL exp(2uguL)!1, andubu52g2@1.

2. SubcasezgzL !1

In the limit of uguL!1, we have thatr(x) is again close
to 1 for all values ofx. Consider the limiting expressions, Eq
~16!, for the parametersa andb: we see that takinga→b
.m2r(0)/2 andhencej 2→(m2r/2)2r(0) leads to a local
maximum for the supercurrent as the solutions loses its
plicability above such values ofj. In this limit, we havek
@1 and the form~27! follows for the density. The normal
ization condition,~18!, gives

S umu111
1

2
r~0! D L

2
5S umu1

3

2
r~0! D L

2
, ~C2!

where we have usedumuL2!1, which we will find to hold
given uguL!1. We see that the normalization condition
satisfied automatically asr(0).1. We also have tha
r(L/2).r(0)1 j 2L2/4, and it may be checked retrospe
tively that r(L/2).1 for uguL!1. The jump condition, Eq.
~20!, then leads to

j c
25

4g2

j c
2L2

22 j c ,

and hencej c.(2ugu/L)1/2 as required.

APPENDIX D: ATTRACTIVE IMPURITIES AT L˜2zgz

In this section, we consider the special value of the se
ration, L52ugu, at which the critical current vanishes en
tirely in the attractive case. More specifically, we takeL
52ugu(11e) and consider the limit of very smalle ~which
may be positive or negative!. Using the limiting form of the
density, Eq.~31!, in the main text, we see that the boso
number fixing condition, Eq.~18!, leads to

r~L/2!5r~0!1~12b!2
L2

4 S 12
g2b

r~0! D .

Inserting this value forr(L/2) into the jump condition, Eq.
~20!, we find

j 2

r~0!r~L/2!2
52e1bF22

1

r~0!G1gF 1

r~0!
1

2

r~L/2!G .
At this point we are justified in substituting the values
r(0) andr(L/2) by their values atg50: that is, we take
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r(0) as the solution of Eq.~30!, while r(L/2)5r(0)
1L2/4. This leads to the following expression forj 2:

j 252
r~0!

@2r~0!21#2 Fer~0!2S 11
2r~0!

r~L/2! DgG
3Fer~0!2S 4r~0!2112

r~0!

r~L/2! DgG .
It may be verified that fore50, i.e., L52ugu, the solution
j 50 exists forg50, while as soon asg becomes nonzero
s.

y,
the solution forj becomes imaginary: the flow equations a
unable to admit a well-behaved solution for any nonze
supercurrent. In contrast, for nonzeroe, we may maximizej
straightforwardly with respect tog to arrive at

j c
25

e2r~0!3

@2r~0!/r~L/2!11#@4r~0!12r~0!/r~L/2!21#
.

~D1!

In particular, we see thatj c vanishes linearly asueu as e
→0.
,

ys.
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