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Superfluid flow past an array of scatterers
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We consider a model of nonlinear superfluid flow past a periodic array of pointlike scatterers in one
dimension. We find a rich dependence of the critical current on both the scatterer strength and separation. In
particular, in the case of attractive impurities, we find the critical current at any separation to vanish entirely at
some critical scatterer strength. An experimental application of this model is in the critical current of a
Josephson array in a regime appropriate to a Ginzburg-Landau formulation. The above results translate to the
critical current of the array depending linearly 4¢T.—T), when the temperatur€ is close to the critical
temperaturd .. Here the coefficiend depends sensitively on the array geometry and the strength and sign of
the Hartree interaction in the normal regions. Furthermore, in the case of an attractive interaction, the critical
current will vanish linearly at some temperatdre less tharT ., as well as aT . itself. We examine the origin
of a zero critical current at a critical scatterer strength, ruling out a simple explanation in terms of sound wave
radiation at low frequencies. Instead we suggest an interpretation in terms of a nonlinear mapping from the
Ginzburg-Landau equation to the sine-Gordon equafi§0163-18209)13541-0

[. INTRODUCTION ceived attention. For instance, unsteady flow past a single
scatterer in one dimensidmepresents a transition state to-
The problem of nonlinear flow, as modeled by a nonlineawards the emission of solitons and hence phase-slip nucle-
Schrodinger equation in the presence of a scattering potemtion. It has also been pointed Btthat steady-state flow may
tial, relates to a variety of physical situations. One examplenot be stable to mechanisms of quantum tunneling, leading
is a weakly interacting Bose gas with impurities, while an-to phase-slip nucleation and nonzero dissipation even below
other is a Josephson array in a regime appropriate to #ne (quasiclassicalcritical current. Higher dimensional ana-
Ginzburg-Landau formulation. Here, the array consists ofogues of the problem are also of theoretical and experimen-
short, normal-metalN) regions in the presence of a Hartree tal importance, although less tractable analytically: recent
electron-electron interaction, and embedded within a supemork has simulated numerically the flow of a superfluid past
conducting wire near its critical temperatuiie,. The latter an obstacl¥ or through a constrictidt in two dimensions,
example falls within the rapidly developing field of study of for which vortices are nucleated above the critical supercur-
the interplay of the proximity effect and charging effects duerent. These investigations relate directly to experimental
to interactions in disordered, inhomogeneous superconducwork'? on superfluid*He.
ing systems™ Further examples arise within nonlinear ~As mentioned above, an important application of this
optic and in the study of gravity waves on deep wdter. model is in the description of supercurrent flow in a meso-
We will concern ourselves with the existence of time-scopic superconducting—normal-metal—superconducting
independensolutions of the flow equations in the presence(SNS device near the critical temperature of the S region.
of a supercurrent. In general the value of the supercurrent i§he Ginzburg-Landau equations for the order parameter near
limited by a maximum value, the critical current, above the critical temperature of such a device are equivalent to the
which the flow becomes unsteady and a time-dependent sflow equations for a superfluid in the Hartree approximation.
lution must be sought. Recently Halmonsidered the su- Furthermore, a short N region may be modeled as a pointlike
perfluid flow past a single, repulsive scatterer in one dimenscatterer whose strength divergesiass approached and the
sion and deduced the dependence of the critical current o@inzburg-Landau correlation length diverges. We will ex-
the scattering strength. We extend this model to the geonploit this equivalence to translate our results directly into
etry of a regular array of scatterers. We find a rich depenexperimental predictions for the temperature dependence of
dence of the critical current on the scatterer separation antthe critical current of a Josephson array, consisting of short
strength, with markedly different behavior in the cases ofN regions embedded in a superconducting wire Agar
repulsive and attractive scatterers. In particular, in the case of The dependence of the critical current on the temperature
attractive scatterers, we find the critical current at any sepas a property that has already been examined in a number of
ration to vanish entirely at some critical scatterer strengthrelated systems. For example, it is an established réshitt
We will examine the origin of this zero value of the critical a superconducting wiréwith no N region$ has a critical
current below. current that behaves a${— T)*? asT, is approached, while
Although we will focus here on the steady-state flow, thethe introduction of a single, short N regibleads to a critical
physics of unsteady flows in related problems has also resurrent that depends quadratically s € T)2. In addition it
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has been possible to fabricate and measure experimentallyeguations. We examine the origin of this result in greater
superconducting “microladder™ consisting of a pair of S detail below, ruling out a simple explanation in terms of
wires with connecting side-branches: in this geometry, asound-wave radiation at low frequencies. Instead, we suggest
well-defined correction to theT(.— T)%? dependence of the an interpretation which is based on a nonlinear mapping
critical current of the superconducting wire has been obfrom the Ginzburg-Landau equation to the sine-Gordon
served and explained theoretically. Courtois, Gandit andquation, which in turn describes the evolution of the quasi-
Pannetiel® have also measured the critical current for an-classical Green’s function for a diffusive Josephson junction.
other geometrysomewhat complementary to that consideredAs the critical scattering strength in the Ginzburg-Landau
by ug of an array of short S regions neky within a normal  problem is approached, the width of the normal region in the
metal, again with a reasonable fit to the thetfty. sine-Gordon problem diverges. This leads trivially to a van-
The case oftwo short N regions, comprising a double- ishing critical current in the sine-Gordon system, which then
barrier structure, has also been examined theoretically, bgnaps back to a zero critical current in the Ginzburg-Landau
Zapata and SolsThey interpret such a system as representsystem.
ing a nonlinear analogue of resonant tunneling: such a scat- The plan of this paper is as follows. In Sec. Il, we de-
tering structure is well known in #near system to lead to scribe the model and flow equations for a superfluid in the
phenonema such as the sensitivity of the transmission coepresence of scatterers. In Sec. lll we review briefly the solu-
ficient to the scatterer separation, peaking near well-definetion of these equations for a single scatterer in the time-
resonances due to multiple inner reflection. The introductionndependent regime. In Sec. IV we address the geometry of
of nonlinearity leads immediately to markedly different be-an array of scatterers and present the results for the critical
havior, the added complexity precluding even any kind ofcurrent as a function of scatterer strength and separation. In
crossover regime in terms of a nonlinearity parameter. Th&ec. V we derive analytically the form of the critical current
critical current of the double-barrier structure drops to zerdn the various limiting cases of scatterer strength and sepa-
(or, more accurately, a parametrically small valower a  ration, while in Sec. VI we translate these results into pre-
whole temperature regim&,<T<T., where T, is some dictions for the temperature dependence of a Josephson array

temperature belowl . At temperatures just beloW., the nearT_C_. Section VI_I examines th_e origin of the zero value of
critical current behaves ad {—T)Y2 It appears that in this the critical current in more detail, ruling out a simple expla-
system there is a cooperation between the two barrier rdlation in terms of sound-wave radiation at low frequencies.
gions, mediated by the nonlinear term in the intervening re!nStéad we suggest an interpretation based on a mapping
gion, to strongly dephase the quantum interference requiretiom the Ginzburg-Landau equation to the sine-Gordon
to sustain a supercurrent between the normal regions. ~ €duation. Section VIII concludes with a summary.

Our results mentioned above allow us to examine how
such nonlinear effects manifest themselves in a different ge- Il. MODEL
G wiin 3 superconducting wire, We arive at the preeic.. e derive the reevant equations first for the problern of a
tion of a linear dependence of the critical current 2T, one-dimensional superfluid in the presence &function

—T), in contrast to the cases described above. Furthermoréﬁ%;zrre rs.t:}'zk:fmtir:t%nsig?‘ttﬁraersbtgVr\;ﬁ:{znstreggthnd po-
the coefficient4 depends sensitively on the sizes of the S «’ y
and N regions and the strength and sign of the electron in- 52 1
teraction. Note that the calculation of the chemical potentiallH= >, | — =2+ >, g,0(Xi—F,) | + =\ > 8(Xi—X),
while trivial in the geometry of a finite number of scatterers, ! 2m7 e 2 7k
becomes more complex in the array geometry, as it must @
incorporate a normalization condition to fix the total bosonwhere i labels theN bosons, which interact via a short-
number. This procedure leads to the increased complexity alnged, pairwise potential of strength We employ the Har-
the flow solutions. tree approximatiotl to write the ground state wave function

A further feature in the temperature dependence of thén the symmetrized form,
critical current in the case of attractive interaction is that the
critical current vanishes linearly at some temperafiirdess 1 N
than T, as well as afT, itself. This suppression of the V(X1 %z, .. vXN:t):W H P(Xi 1),
critical current may be seen as somewhat similar to the effect sys'~*
that arises in the double-barrier structure: in both cases, theighere Lsys is the system size. This leads to the following
is a cooperative effect between the multiple barriers in thenonlinear Schirdinger equation fors(x,t):
structure that acts to strongly diminish the quantum coher-
ence required to sustain the Josephson effect. There are also 1_, ) _
differences between the two cases: for the array, in which =5 Vit Y] ¢+§ Ja0(X—T)Yy=idy, (2
scattering is attractive, the critical current drops(igenti-
cally) zero at precisely one temperatulé, (apart fromT,), where we have rescaled length according to units of the heal-
whereas in the double-barrier structure, where the scatterinigg length,l,,=%/(Anm)¥2, and energyand theg,) accord-
is repulsive, the critical current drops to a parametricallying to units of the Hartree energy)\, wheren is the average
small value over a whole temperature range. Even so, thparticle density. The speed of sound in the condensate in the
zero value of the critical current in the array seems to be absence of the scatterers, i.ear(m)*? is equal to unity
subtle consequence of the nonlinearity present in the flowvith this choice of units.
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In addition, we must enforce the condition of fixed total 1.0
boson number, which is achieved by normalizing the wave
function according to

fllﬂlz(x)dx=£sys. 3) lc 05}

We now introduce the number-phase representdtioa
Madelung transformatidfy):

0.0 -
WXt = Vp(x, D expiS(x,t)). (4) 0.0 2.0 4.0

g
Inserting Eq.(4) into the Schrodinger equation, E®), gives
the continuity equation and the Bernouilli equation, respec- FIG. 1. Critical currentj, for a single, repulsive impurity of

tively, strengthg>0.
dp+dx(pdS)=0, (5) j?
M= 1+ 5
19p 1 . | | _
-z —+dS+ E(aXS)zwLE g,0(x—r,)+p=0, With the above relations, the flow equation may be inte-
2 \/; a ©) grated as follows:
. - iy _ . [tant? : g>0,
while the normalization conditior(3), becomes p(X)=j2+(1-}?) [VI= 2|+ a],
coth? g<o0.
(12)
f P(X)dxzﬁsys- (7

The integration constanty, still needs to be determined
For time-independent flow, we may sgp to zero, while the ~ from the jump condition(10). For an attractive impurityy
phaseS(t) advances uniformly in time according to the Jo- <0, the jump condition may be fulfilled for all values of the
sephson relation,S= — ., wherey is the chemical poten- supercurrent up to the speed of soupel. This is con-

tial. The continuity equation, Ed5), then integrates to nected to the fact that the value pfat the impurity(p(0))
may become arbitrarily large. Thus the critical current for a
pIS=], (8) single impurity,j. o, is in this case
where j, a constant, is the supercurrent density. Writing jeo(g<0)=1.

d(x)=p(x)*? the flow equation, Eq(6), becomes

In contrast, for a repulsive impuritg>0, the jump condi-

j2 tion can no longer be satisfied for allup to 1, due to the

——=0. (9) restriction that 8=p(0)<1. Instead we have thait; o(g
2¢3 i > . o ,

>0)<1. Although Hakin{ obtained an implicit formula for
We will discuss the solution of this equation at length in thethe critical current, we obtain in AppendiA a relatively
following sections. We see that it is of a general Ginzburg-Simple explicit formula. The resulting dependence gi(9)
Landau form, as we clarify further in Sec. VI. We consider©n g is illustrated in Fig. 1. In the limits of large and small
first the case of a single scatterer before turning to an array gicattering strengtrg, we have

scatterers.
1/(29), g>1,

- %a§¢>+¢3—u¢+2 0. 0(X—1 ) b+

lll. SINGLE SCATTERER jco(g>0)= (13

1- 2(292)1’3, g<1.
In this section we review the results for the critical current

of a single scatterérWe take the scatterer to be of strength Note that the result for largg will find relevance in Sec. VI

g and placed at a position=0. The flow Eq.(9) gives the when we examine the equivalent problem of the critical cur-

jump condition rent in an SNS junctiorfwith a single normal-metal region

close to the critical temperature. Before elaborating on this

interpretation, we keep to the example of a superfluid, and

1 ot
E[ax¢]°‘:g¢(o)' (10 turn to the case of a periodic array of scatterers.

In addition, from the normalization condition, E¢7), we

IV. ARRAY OF SCATTERERS
enforce that

d(x)—1 as x—o. (12) We now examine the case of a periodic array of scatter-
ers, of equal strength and separatioh. We place them at
From Eg.(11) and the flow equation, Eq9), we find the  positionsr ,=(2a+1)L/2, so thatp(x) is symmetric about
chemical potential immediately as x=0 and we may restrict attention fa|<L/2. We first
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(a) L b) L

FIG. 2. Critical currentj. (solid line), as a function oL for (a) a repulsive arrayd=5) and(b) an attractive arrayg=—1). In each
case,j . approaches the single-impurity val(the dotted ling for largeL.

show how the flow equations may be integrated before dis- 2 (L2
cussing the results of their full solution. Efo p(x)dx=1, (18
A. Integration of the flow equations and the jump condition,
The first integral of the flow equation, E¢9), may be
tt f ” . 1 (L/2)+ L
written as follows: z[axqs](uz),:gdy 5] (19
P2 i2 . . . ' .
J J The latter condition may be rewritten, using the first integral
2_ 44 2 4 2 )
(0xp)°=¢"—2ud 5 #(0)*+2u¢(0)*+ pYTYE in Eq. (15), as follows:
(14 :
- : - - - P PR - p(0)
VV_e may now factorize the rl_g_ht-hand side c_>f this expression: ;(g),(L/2) =9 p(L12)—p(0) K=p pY).
this operation greatly simplifies the following analysis. We (20)
find
This represents an implicit equation firsince the right-
1 hand side is dependent ¢rthroughu andp(0). Theprob-
(0x)*=—[¢*— #(0)?1(¢*—a)(¢*—B), (15  lem of calculating the critical current of the array has now
¢ been reduced to finding the maximum valuej gbr which
where the two conditiong(18) and (20) may be satisfied simulta-
neously.
a 0 0 2 2 1172
[B = __p(z)i ( __p(z)) — J(O)} . (16) B. Results
p
Having described the integration of the flow equations,
This leads to the following solution fgi(x): we present here the results for the critical current of the
array. Further details of the working towards these results
p(X)=B+(p(0)—pB) will be described in the following section.
2 It is clear that in the limit ofL—<, j. must approach its
S 0 single-impurity valuej¢q:
x{ 1 ¢ (Ja—Bx+ReK(K),k) [g> ’
Kesi? o le=0, j—ied@), Lo (2D

For general values of the parametgrandL, the deter-
mination of j. must be performed numerically. Figure 2
showsj . as a function ot for a typical repulsive and attrac-
tive case. We see that the correct behavior is reproduced in

the limit of L—<. We also see that in the attractive case, the
K= /P(O) —B (17) critical current vanishes altogether at one special value of
a—B We will show below that this value is given ly=2|g|. We
also see thaf, diverges at small in both the repulsive and
It still remains to determine the two integration constants attractive case.

u and p(0). These are specified by the normalization con- In the limit of small scatterer separation;,—0, we find
dition corresponding to Eq7), that is, further thatj satisfies the following scaling form:

where the symmetry gf(x) about the origin has been auto-
matically incorporated, sn ard are the elliptic integral and
complete elliptic functions, respectively and
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FIG. 3. The scaling functiohas a function o8, for (a) the repulsive andb) the attractive case. In the limit &f— 0, the critical current
is given byj=f(gL)/L.

1 In general, we find at such small separations the chemical
e f(gl), L0 (22)  potential approaches a large positiveegative value in the
repulsive(attractive case, reflecting the large “potential en-
The scaling functionf possesses a surprisingly nontrivial ergy” of the scatterers. In addition, for sméadj|L, the den-
structure which we have obtained numerically and show irsity p(x) remains close to 1 for all values &f In contrast,
Fig. 3. Notice the marked difference in these forms for thefor large|g|L, the value ofp(x) approaches 2 at the origin
repulsive and attractive cases. and O at the scatterers for the repulsive case, and 0 at the
The limits of large and small separation needs a morerigin and|g|L>1 at the scatterers in the attractive case.
precise definition, which in fact differs in the repulsive and To derive the critical current, it is necessary to identify
attractive cases: the limits correspondLt® L, andL <L, the somewhat subtle interplay of the various parameters of
respectively, wherd.,=1 for the repulsive case and, the problem, which requires a separate and quite different
=|g| for the attractive case. discussion for each of the four cases. We also include a
The scaling functionf will find direct relevance in the discussion of the special poirits=2|g|, at which the critical
prediction for the temperature dependence of the critical cureurrent vanishes entirely. Our approach in each case will be
rent of a Josephson array in Sec. VI. In the following sectionto indicate the existence of a looc@hther than globalmaxi-
we will demonstrate analytically the following limiting be- mum in the supercurrent. Strictly speaking, we still need to

havior of this function: justify these choices of a local maxima as the relevant values
for the critical current. To do so, we appeal to the numerical
m, s<l, results of Sec. IV B which establish the smooth interpolation
f(s,g>0)={ =2 (23  from the limit of small separation to large separation and
S s>1, hence to the single scatterer result for the critical current,
which certainly does represent a global maximum.
and
A. Repulsive case at small separatiofL <1)
V2s,  s<1, . _ . .
f(s,0<0)=1_, . (24) In the repulsive case, the limit of small separation requires
2se >, s>1 that L<1. We examine separately the subcaseg &1

The critical currentj for small L then follows bys=|g|L andgL>1, while staying within the limit of. <1.

. . ; : In both subcases, we have that-1, and henc&<1 by
and the scaling relatiof22). We will also show analytically s .
that the critical current vanishes as the speciaIEq' (17). The sn function is then well approximated by a

point L=2|g| is approached, in a linear fashion as standard cosine function:

*[L/2lg| 1], p(x)=B+[p(0)~ Bcog(y2ux), (25
V. LIMITING FORMS OF THE SOLUTIONS where 8=j?/[21p(0)]. We also have thab(x) must con-

tain no more than one half oscillation between impurities, so

In this section we derive analytically the limiting forms of that \2uL/2e (0,7/2). The normalization condition, Eq.
the scaling function given by Eq&23) and(24), and hence (18), consequently simplifies to the form,
of the critical current at small separations. We take the re-
pulsive case first, which requires the limitc 1, and then the 1 1
attractive case, which requirés<|g|. Note that the condi- 1=p+50p(0)=B] 1+ JZ_LSIn( V2ul)|. (26)
tion itself for small separation is different in the repulsive K
and attractive cases. While staying within this condition, weAs shown in Appendix B, this limiting form leads to a criti-
will examine separately the subcases|gfL<1 and|g|L cal current which behaves gs==/L for gL<1 andj.
>1. =72?/(gL?) for gL>1 (while L<1).
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B. Attractive case at small separation(L <|g|)

In the attractive case, the limit of small separation re-
quires thatL<|g|. Note that this condition itself is separate
from that in the repulsive case. Again, we will concern our-
selves with the two subcaség|L<1 and|g|L>1, while
staying withinL<¢|g|. In both subcases, the chemical poten-—_— — ——

tial is large and negativéu|>1, u<0. The behavior ok, L 0 L X
however, is different according to the limit {g|L: we have N S
k>1 for|g|L<1 butk~1 for |g|L>1. The sn function then FIG. 4. The geometry of the Josephson array.
reduces to either a cosine function or a tanh function:
As we show in Appendix D, this limiting form leads to a
B+[p(0)—Blsed(Vp(0)—Bx), [g|L<1, critical currentj, that vanishes linearly ife| as claimed.

p(X)=

B+[p(0)—Blcotit(p—a—Bx), |glL>1, In Sec. VII we will examine the origin of this zero value
of the critical current in more detail, ruling out sound-wave

27 radiation at low frequencies as a simple explanation. Instead
we will suggest an interpretation in terms of a mapping from

1 the Ginzburg-Landau equation to the sine-Gordon equation.

p=§In

8
m) (28)

Further details of the derivation of the critical current are VI. JOSEPHSON ARRAY NEAR T

contained in Appendix C: we fing.=(2|g|/L)¥? for |g|L Having the determined the behavior of the critical current
<1 andj.=2g’L exp(—|glL) for |g|L>1. This concludes for the periodic array of scatterers, we now show how these
the derivation of the behavior of the critical current andresults may be translated directly in experimental predictions

hence the scaling function contained in E@3) and(24). for the temperature dependence of the critical current of a
Josephson array in a regime where a Ginzburg-Landau for-
C. Attractive case in the limit L —2|g| mulation is appropriate. Here, the array is near the critical

temperatureT,, of its S regions, and has the quasi-1D ge-

In this section, we consider the attractive case at Separ%’metry shown in Fig. 4: the S regions are of lenthwhile

tions near t_he specia] vaIuE,=_2|.g|,. at which the .critical the N regions are of lengthy<Lg and subject to a Hartree
current vanishes entirely. This limit is characterized by apotential vV N

divergencen one of the parameters, nameky-». Conse-

quently, — p(0)/2, and hence We first show that the Ginzburg-Landau equations for the

array are of the same form as the flow equation, (E}gé:‘or
a superfluid. Furthermore, as shown by Zapata and‘Sbks,
p()—p(0)secT\p(0)x], L—2[g]. @9 short normal-metal regions, in the presence of the Hartee

The normalization condition, Eq18), and the jump condi- Potential, may be mimicked by a series of repulsive or at-

tion, Eq.(20), become equivalent in this limit, and simplify tractive é-function scatterers, depending on the sign of the
to interactionV.

The Ginzburg-Landau equations for the order parameter
¥ (x) of the S region may be written &s

L L
5= \/P(O)ta"{ Vp(0) E}' (30

Equation(30) for p(0) is soluble for all values of.

At this point it is still not obvious that the special point . . .
L=2|g| does not admit a steady solution at any nonzerd"’here2""(21—)2 |szn2egatlve and proportional toT{—T), b
supercurrent. To demonstrate this fact, we consider the poirt 27« €:°/m°c®, and « is the Ginzburg-Landau param-
L=2|g|(1+e) for some smalk (positive or negative and  €ter. Writing ¥ =|y[exp(S) and defining the supercurrent
show thatj, vanishes age|—0. (per unit of cross-sectional areas j = (efi/m)|4|24,S, we

In this limit, we identify the small parametey=p  have
—p(0)/2, | y|]<1. We will find y to be proportional tce at
the critical current. Then

ﬁZ
— 2 2\ —
Y +a(T) W +b| W2V =0,

B T+ byl mj* =0 32
— amoxraMy+ ¢+4e2¢//3_ : (32

1/2

o 2
,3] = Vi( = 0(0) In addition to the above differential equation f¢r we need
p to specify appropriate boundary conditions. In &sencef
We find thatk?®=p(0)/[2(y— )], and hence the limiting any N regions, the order parameter of the homogeneous su-
form for the density is perconductor, and hence condensate density, is fixed at the
value ¢/5(T). Furthermore, for a geometry containing only a
-B) singleN region, the appropriate boundary condition is to set
Vp(0) —,3< 1- (Zp(f) )X} that (x) approachegs for limiting values ofx far from the
N region, by analogy with the boundary condition used in
(31 Sec. Il in considering a single scatterer. For an array, how-

p(x)=B+[p(0)— Blsed
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ever, no such condition at infinity can apply; instead, we fix 1 .
the total boson number at a certain temperature to equal that - E[é’yqs]z, =
in the absence of the N regions. This gives the condition

L

—— 04, (37
V2&(T) ¢

1 [Lg2 as long as
L—Sf_lezd/(X)dF s,
Ly<<én-
in similarity to the normalization condition, E¢L8), of Sec. .
IV. Here the integration extends over a single S region. Td\otice that we have dropped the current-dependent term on
proceed, we rescale the position variable and current as foll'® fight-hand side of E¢36) as is consistent for a suffi-

lows: ciently short N region neaf, (see Ref. 2 By identification
of Eq. (37) with Eqg. (19), we see that we may model the
X short N regions bys-function scatterers of strength
y= , (33
V2&(T) Ly&(T)
g=sgnV) : (38)
J2#hc? ] - V28,
J = . 4 y
167 Kk*eé(T)* At the same time, following the rescaling of the size of the S

regions,Lg, under the transformatio33), we may also

where the coherence length is defined as . . !
g identify the scatterer separation as

§M=—75— L
2(bm) Y2y L= ——. (39)
V2&(T)
T —-1/2
:§6< 1- T_c) ; By Egs.(38) and(39), we see that the limit oT —T., and

hence&(T)—x, corresponds to taking—o andL—0 si-
and £,=0.74, for a clean superconductor and,  multaneously, such that the produgt(=LyLs/(2£3)) is
=0.85\1&, for a dirty superconductor, whegg andl are the fixed.
zero-temperature coherence length and mean free path, re- Given the above information we are now in a position to
spectively. In these rescaled variables, the Ginzburg-Landapredict the temperature dependence of the critical current of
equation, Eq(32), becomes the array. For orientation, however, we start with the simpler
geometry of asingle S-N-S junction with a repulsive inter-
1 action. As the temperature approachies g diverges by Eq.
- §5§¢_“¢+ ‘f’3+2753 =0, (39 (38) and we insert the largg limit of the critical current for
a single impurity, Eq(13): J.=1/(2g). Relation(34) then
where n=|al/(by?). We see that for the geometry of a gives the critical current of the SNS junction as
single N junction, the chemical potential becomes-1

2

+J2/2. We also see that E35) reproduces the flow equa- hc?é T\2
tion (9) as expected, together with the normalization condi- jo(T)= T( T
tion (18). 16mex<(&)) Ly c

Notice that the rescaling leads immediately, by B#), . S . : 2
to a (T.— T)¥? dependence for the critical currerftaS wire Eeesrullfun(;te:(r:(rai%eéeb.;/ 'EZ@ rl:ggalgerﬁtel(;ally as (Te—T)* the

with no N regions, in accordance with established theory We turn now to the array. As the temperature approaches

e £, el Lol e o, ncle one or more Sort ., we havel_0 and e are bl 0 apply he scaing orm
9 ’ q 9 22) for the critical current per unit area:

variables, corresponding to E(B5), reads as

1 2 _ fic? T
o= 36 ’c”):m”s)(l‘ﬁ)'
where LyLs
0=VI(by3) T
&(T)? Recall thatf(s) is the scaling function discussed in Sec. IV,
=sgrtv) fﬁ ' illustrated in Fig. 3 for the repulsive and attractive cases and

obeying the limiting forms contained in EqR3) and (24).
and gﬁ,:hzl(4m|v|) is the Ginzburg-Landau correlation We see that we havelmear dependence of the critical cur-
length in the normal-metal. Following Ref. 2, we may now rent asj.=.A(T.—T). In addition, the associated coefficient,
integrate trivially the flow equatioi36) over the whole N A, of this linear dependence depends on the paramkters
region[located inye (y~,y"), sayl to give Ls, andV through the product yLgV:
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5c2 A. Sound wave propagation

- 8mex2&T,

2mLyL sV
ﬁ2

- Having identified the special valud &2|g|) of the (at-
tractive) scatterer separation at which the critical current

Notice that both large and small values of this product ma);akes a zero value, we_here examine W“ethef a_simple expla-
be probed while staying within the requirement thag nation for this effect exists in terms of the radiation of sound

<&y . Through the scaling functioh the coefficient4 con- waves at arbitrarily low frequencies. Such sound waves

tains a rich dependance on the geometry of the array, as wé’NOUId serve to _degrade any supercurrent and so provide a
as the strength and sign of the Hartree interaction, simple explanation of the inapplicability of the steady-state

In moving away fromT, for the attractive Y<0) case, rov_\I{ eguathgs in thedpresenc_e of a sup.efrcurrent :jn th|stl|m|t.
an additional feature arises in accordance with the vanishinﬂ1 0 descri te sgund Waveséi(n a nofnunl orm ?On Ge.”s"". e, we
of the critical current at. =2|g|: we have that the critical dy use a standard procedusee, for example, iorgini,

current vanishes at the temperatilife<T., as well as af; Pitaevskii and Strmga%t) of pertur_bmg the wave fu.nctlon
itself. Here,T* is determined by P(Xx,t) (see Sec. )Iby a small contribution that is oscillatory

in time:

(%)= Lsg p(x,t)=e M p(x)+u(x)e” “+v*(x)e'].
=\/5—&y.

2Ly We emphasize that these fluctuations in the wave function
are purely classical in origin and and are distinct from fluc-
tuations of a quantum nature; as mentioned in the Introduc-

approached. We point out some similarity of this result withtlon’ q“a”“!m fluctuat|ons have been'(jlscu%smja source
of phase-slip nucleation below the critical current, although

that found earlier by Zapata and Sofsr the different ge- such effects are beyond the scope of this paper.

ometry of a double-barrier structure; as mentioned in the . ! . .
. . .~ The flow equation2) may be linearized in the small os-
Introduction, the latter geometry displays also a suppression.

of the critical current, although there the critical currentﬁ'(nxa)t'ggz\f?xg_'ve the following coupled flow equations for
drops to a parametrically small val@eot strictly zerg over :
a whole temperature range artd for repuls'l\./e scattering. In LU(X) + p(X)V(X) = wu(x), (40)
both geometries, the suppression of the critical current may
be seen as a cooperative effect between the multiple barriers —

X)u(x) + Lv(X)=—wVv(X), 41
of the structure that acts to dephase the quantum coherence P(X)UX) (x) wv(X) “D
required for the Josephson effect. where

This concludes our discussion of the temperature depen-
dence of the critical current of the Josephson array fgar C
« . . ) U

(@andT*). In the following section we will examine in more
detail the origin of the result of a zero critical current at a
critical scattering strength.

Moreover, sincd . vanishes linearly inL/2|g|— 1|, we have
that the critical current vanishes linearly|ihi—T*| asT* is

= = 2= pF2p(X)+ 2 Gad(X—X,).

These equations are supplemented with the normalization
condition,

VIl. ORIGIN OF A ZERO CRITICAL CURRENT

f dx[u* (x)u(x) =v*(x)v(x)]=1, (42)
In this section we will examine in more detail the result of
a zero critical current in the array at a critical scattereryhile trivial integration of the flow equation&0) and (41)
Strength. In Sec. VII A we will |nVESt|gate whether sound over each scatterer gives the Jump ConditionS,
waves may propagate within the array structure at arbitrarily
low frequencies, as the critical strength is approached. In 1 ul e u
d = Xq)- 43
x(v> ) g(v)( a) (43

such a situation a channel for energy dissipation would open —

at low frequencies and so provide a simple explanation for 2 -

the inapplicability of the steady-state, dissipation-free flow

equations in this limit. We find the answer to be negative:Our aim is to determine whether fluctuations in the wave
such sound waves daot exist, and hence some alternative function, propagating as sound waves, exist at arbitrarily low
explanation must be sought which incorporates the inhererftequencies at the separatibe- 2|g|. To this end, we search
nonlinearity of the system. In Sec. VII B, we suggest an in-for a consistent solution fou(x) andv(x) in the limit of
terpretation in terms of a nonlinear mapping from thew—0.

Ginzburg-Landau equation to the sine-Gordon equation. The For preparation we review the solutions in the homoge-
latter equation in turn describes the evolution of the quasineous case, i.e., in the absence of any scatterers. In this case,
classical Green’s function of a diffusive Josephson junctionthe perturbations are plane waveg(x) =exp(—ikx)u/Lsys
with a normal region of varying width: as the critical scat- andv(x)=exp(—ikx)v/Ls, whereLyis the system size as
tering strength is approached in the Ginzburg-Landau sydpefore. The flow equation@l0) and (41), together with the
tem, the width of the normal region in the sine-Gordon sys-hormalization condition(42), are now easily solved to give
tem diverges. This leads trivially to a zero critical current in

the Josephson junction, which then maps back to a zero criti- 2= Ltw (44)

cal current in the Ginzburg-Landau system. 20w "’
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2 L0 45
V= 49

where £L=k?/2+ p. The dispersion relation reads

1
w?=5 K¥(k2+2p).

We now generalize to the case of the nonuniform densm(/vhich the jump conditior(43) becomes

at the separatior, =2|g|. In this case, we need to incorpo-
rate the jump condition given by E¢43) at each scatterer.

Given the periodicity of the arrangement of the scatterers, we

will search for purely periodic solutions farandv:

X

so that we may restrict attention to only a single regixin
<L/2 with one jump condition. Equatio#6) may be seen
as a Bloch theorem farandv, at Bloch momenta which are
precisely multiples ofr/L: odd and even multiples give rise
to solutions inu andv which are odd and even i respec-
tively.

Bearing in mind the form of the solutiong4) and (45)
for the uniform case, a consistent series expansiorn (g}
andv(x) in the limit of o—0 becomes

(46)

u
(x+L)=i(V)(x),

w00=""% 114 0w
Vo '

_ Vo(X)
V(= == 1+ O],

The normalization condition42), to zeroth order then gives
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wherey,=/p(0)L/2. This simplifies by use of Eq30) to

LZ
0=p(0)+ 7.

which clearly cannot be satisfied for any L, as the right-hand
side always exceeds zero. This solution must therefore be
discarded. We are left with the even solutian(y), for

_ 5c08(yo)
sin(yo)u(yo)

L
5 =\p(0)

which follows from standard properties of the hypergeomet-
ric function!® Use of Eq.(30) simplifies this condition to the
form

+ cot(y) + 2 tan(yy)

;
F( 1,2;§;cosz(y0)) =5, (48)

However, it is easy to check thak(F(1,2;7/2z)<5 for 0
<z<1, withF(1,2;7/2;0)=0 andF(1,2;7/2;1)=5: clearly
the condition(48) cannot be satisfied either for ahy>0.

We conclude that a periodic solution fax) does not
exist in the limit of w—0 and hence such sound waves do
not propagate at arbitrarily low frequencies. Instead we must
turn to another interpretation for the inability of the conden-
sate to support a supercurrent in this geometry.

B. Mapping to the sine-Gordon equation

In this section we suggest an interpretation for the zero
critical current atL=2|g| in terms of a nonlinear mapping
from the Ginzburg-Landau equation to the sine-Gordon

ugzvg; by analogy with the homogeneous case, we takeequation. More specifically, we will transform the first inte-

Ug=Vo. The zeroth-order differential equation for(x),
corresponding to Eq40), becomes

1
- E&i—,u+3p(x) u(x)=0,

for xe (—L/2,L/2). We substitute the forr(9) for the den-
sity p(x): we find

(47)

where y=+/p(0)x. The two independent solutions of this
differential equation are as follows:

[95+(1—6sedy)Ju(y)=0,

sin 7

b uz(y)=F(1,2;—;co§y>co§y,
cosy 2

whereF is Gauss's hypergeometric functiéhBy the Bloch
theorem, Eq(46), we will take u(y) to be either purely odd
or purely evenu(y)=Au(y) or u(y)=Bu,(y). We now

uy(y)=

gral of the flow equation, Eq14), to the first integral of the
sine-Gordon equation. In this way, information on the
boundary conditions for the sine-Gordon equation is in-
cluded within this transformation. The mapping is simplest
in the case of a zero supercurrept=(0), for which we make
the substitution

H(y)), 49

b(x)= </>(0)Sin(T

which defines the variabl@. Here,y=x+Xx., wherex, is a
constant that allows for a shift in coordinates. Equatib4)
transforms to

1 7]
7(9y0)2=2u—p(0) ~ p(0)sirP 5,

which in turn differentiates to a sine-Gordon equatiﬂiw
+p(0)sind=0. The sine-Gordon equation also arises as the

check whether either solution is compatible with the jumpequation of motion of the quasiclassical Green'’s function for
condition. We see that this check is independent of the coefa disordered normal region, contacted to one or more super-

ficients A and B. Taking the odd solution first,(y), the
jump condition(43) becomes

L
5= Vp(0)[cot(yq) +2 tar(yo) ],

conducting regions and in the diffusive linfgee, e.g., Ref.
22). This Green’s functiong(r), is known as the Usadel
Green’s function and has axX2 matrix structure, corre-
sponding to particle and hole sectors. As it is normalized to
g(r)®>=1, it may be represented in polar coordinates as
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cosé singe'? Since a diverging widthl.y— <, for the normal region of
the Josephson junction leads trivially to a vanishing critical
current, it seems desirable to infer that this result should map
For a bulk normal metah=0, and the Usadel Green’s func- back to a zero critical current in the Ginzburg-Landau prob-
tion collapses tors. In contrast, in a bulk superconductor lem. In order to make this logical step, it is necessary to
with an order parameteX, 6 takes the value of tart(A/e),  generalize the mapping to include a nonzero supercurrent.
wheree is the energy. We use here the Matsubara represer-he required mapping isb(x) =Asin(6(y)/2), where the
tation for the energye, in which case the Usadel angle,is  constantA is given by

real. In a mixed superconductor-normal system, the Usadel - 5 o 112

equation describes the smooth interpolation of the Green's A*=p+{[p(0)— u]"—jp(0)}

function between these two, bulk limits. If we specialize toThe first integral of the flow equation, E€L4), then trans-

the geometry of a quasi-one-dimensional SNS junctionfgms to

where the normal region is of a finite width.{, say, the
Usadel equation in the normal region takes the form

9% | singe ¢ —cose)"

1 0 42
—(9,0)*=2u—A?—A?si? 5 — ————.
Dd26=—2e sing. (50) 4 2 A*sire

HereD is the diffusion coefficient angthe coordinate along This is none other than the Usadel equation for the Joseph-
the junction. The energy has in fact been taken here to be Son junction, again in the presence of a supercudenhich
negative for the following mapping to hold, although this may be written

choice remains physical in the context of a superconducting

system. Solution of the Usadel equation follows from the 1(07 0)2=E<si Lo)—si Ly))

addition of suitable boundary conditions at the location of 4 D 2 2

the superconductor-normal interfadesy= * L /2, say. If

we make the assumption that the energy daps much +J2( 1 _ 1 )

larger than the energy, then we may simply impose that 4 sirf0(0) 4 sirfo(y) '
0(£Lo/2)=m/2. We now write the first integral of the Us-

adel equatior(50) as under the identifications of
1 2¢[ .60 0 2e/D=A?, (53
Z(aye)zzﬁ Si (T)—si (Ty) (51)
J=4jIA?, (54)
Here 0(0) is the Usadel angle at the center of the normal
region?®> wherey=0 and, by symmetryg,6=0. We see 6(0) p(0) J? J?

i i - . SiP——= 2u—p(0)]— + :
that the mapping49) transforms the Ginzburg-Landau equa > X [2u—p(0)] 2AZSiP9(0) | 160(0)
tion of the superfluid, Eqg(14), to the sine-Gordon equation

of the Josephson junction, E@1), under the identification (59
of p(0)=2¢/D and We see by relationf55) that asu— p(0)/2, a positive value
for sir?(6(0)/2) is preserved only for vanishingly small val-
sir? (0) — 2/ p(0)—1. (52) ues ofJ. In other words, the critical supercurrehtfor the

Josephson junction vanishes in this limit, which makes
i i _ i physical sense as the length of the normal region is diverg-
The integration constan®(0) in the sine-Gordon problem ing. This result maps back, by relati¢f4), to a vanishing
has the significance that it contains information on the 9e0Mgypercurreni in the Ginzburg-Landau problem in the limit
etry of this system: in particular, the value €f0), and the s L—2[gl.

boundary conditionsf(y=*=Ly/2)=m/2 at the interfaces,
together determine the width, of the normal region of the

2

Josephson junction. This effective widthy, is therefore not VIll. SUMMARY

the same for all mappings, but willary according to the In this paper we have examined the superfluid flow past
original parameterp(0) andu (or, equivalentlyl andg) in  an array of pointlike scatterers in one dimension. We have
the Ginzburg-Landau system. determined the critical current of the flow, above which the

As the Usadel angle, is real, we see that this mapping flow becomes unsteady. While the result for a single scatterer
makes sense for0sirf(#(0)/2)<1, or p/2<u<p. Refer- s recovered in the limit of large scatterer separation, we find
ring to Sec. V, we see that this regime in the Ginzburg-a scaling form for the critical current in the opposite limit of
Landau(superfluid problem is precisel. >2|g|, with at-  small scatterer separation. The scaling function takes a par-
tractive impurities. Indeed, one sees immediately from Eqticular form, separate in the repulsive and attractive cases,
(52 what is special about the limit of —2|g|: as it is that we have obtained numerically, as well as derived ana-
approached, we hayg(0)— w/2 and henced(0)—0 in the Iytically in the various limiting cases of scatterer strength
equivalent sine-GordofJosephson junctigrproblem. Con- and separation. We also find the additional feature in the
sequently, in the Josephson junction, purely metallic behavattractive case that the critical current vanishes altogether at
ior is approached at the center of the normal region and thene special value of the scatterer separatios 2|g|).
effective width,L,, of the normal region divergés. While these results are applicable to a variety of physical
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situations, an important application is in the prediction of the APPENDIX B: REPULSIVE IMPURITIES AT SMALL

temperature dependence of a Josepshon array, in the pres- SEPARATION

ence of a Hartee potential and ndar. In contrast to depen- . . . - .

dencies already derived and observed experimentally in other In t.h.'s section we obtaln_ the critical current for repulsive
y p y

geometries, we find for the array a linear dependence of th'énpurltles at small separatioh,<1. We treat the subcases

critical current as4(T.—T). The coefficientd depends sen- 0f gL>1 andglL<1 separately.

sitively on the size of the normal regionty) and of the

superconducting region.§) and the Hartree interactioN, 1. SubcaseglL>1

through the productsLyV. In addition, for the attractive In this limit, we have that the densify(x) approaches 2

case {/<0), the critical current is suppressed to zerolas at the origin and zero at the impurities. Using E25), we

—T*, as well as all; itself, whereT* is some temperature see that the latter limit means th@2uL/2=7/2. Writing
less thanT.. We have ruled out a simple explanation for this

suppression of the critical current in terms of sound wave 2n L =«
o

propagation at low frequencies. Instead we have suggested 279 " (B1)
an interpretation in terms of a nonlinear mapping from the
Ginzburg-Landau equation to the sine-Gordon equationwherey<1, we have from Eq(25) that
which in turn describes the evolution of the quasiclassical -
Green'’s function for a diffusive Josephson junction. L
phson p(L/Z):JZ—2+2y2. (B2)
an
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APPENDIX A: SINGLE IMPURITY: CRITICAL CURRENT =—g? —=+2 +j2+
To find the critical current for a single impurity, we re-
place the integration constaatin Eg. (12) in favor of the  Of
constantp(0), where tanha=[p(0)—j?J/(1—j?), and refor- , 112
mulate the jump conditiofil0) as .m { ( 2'—97) }
j=—|1-(1-—=| | .
gL? m

9%p(0)*=[p(0)—j?I[p(0)—17%, (A1) o _ . : :
Maximization of this expression with respect {0is now
where we have used the first integral of the flow equationirivial and gives
Eq. (9). The critical currentj. o, is determined by the con-
dition 9j./dp(0)=0, or o om?
Je=—=, gL>1,
gL?

29°p(0)=[p(0)~1][3p(0)—1-2j35].  (A2)
as required. At this critical current, we have= m/(2gL)
Eliminating g from Egs.(Al) and(A2), we find <1 andp(L/2)=7?/(gL)?<1.

1 . 2. SubcasegL <1
p(0)=5[—1+(1+8j29"), (A3) heassn _

We now take the opposite limit @fL<<1. In this case, we
have that the density(x) is close to 1 for all values of. We
setu=p(0)—1<1, and definey as before, in Eq(B1). As

1134202 -0 A4 may be verified at the end of the calculation, we have that
[p(0)=1] 9°p(0)=0 (Ad) u,y<<1 (for j near its critical valug We first use the normal-
EquationgA3) and(A4) give the following solution foj.,:  ization condition, Eq(26), and the jump condition, Eq20),
to determine a relation betweenand y. This will allow us
R2 1 ) to obtain an expression fgrin terms of onlyy, which may

while eliminatingj in a similar manner gives

292 3g( R 1 )

jed@>0)=1-—+—=| -+ =|+0*| =+= then be maximized simply.
c0 3 21 3 R 9 R? The normalization condition, Eq26), now reads
- 2
. 229 1-p+ p(0)—p 142 )
—1+\1+8g%27 2 ™2y
leading to

This formula reduces to the forms shown in the main text in
the limits of large and small scattering strenggh, B=1—-u+---. (B3)
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Since8=?/(2up(0)), this gives and hencep(x)=g?csct(p—|g||x|). The normalization
condition, Eq.(18), then leads to
j2L2 4,)/ )
I ST IO B 4lg
T ™ 1=Texp(—2p+|g|L),

In Egs.(B3) and (B4) we have kept to first order iy and . < .
second order i, which may be checked to be an appropri- ﬁ)nde[]heenrce)'grl;/ti)e_égpa?f én TheEexrzrzegsL(;n é?;’efq'.(gl)'
ate level of accuracy at the end of the calculation. The lim- 9 Wi inition of, Eq. » 109 g

iting form for the density, Eq(25), now gives i2=g2p(0)(4|g|L exp( —|g|L)— p(0)),
p(LI2)=B+[p(0)— B]y? which is again easily maximized with respect to the param-
> eter p(0), to give j.=2g°L exp(—|g|L) as required. At the
- 42uy? critical current, we have that(0)=2|g|L exp(—|g|L)<1, «
2up(0) =—2|g|L exp(—|g|L)<1, and|B|=2g°>1.

Inserting this into the jump condition, EQO), we find
2. Subcasdg|L<1
j2=— g—2+j2+4,uuy2. In the limit of |g|L<1, we have thap(x) is again close
2u to 1 for all values ok. Consider the limiting expressions, Eq.
(16), for the parametera and 8: we see that takingr— 3
= u—p(0)/2 andhencej?— (u— p/2)?p(0) leads to a local
maximum for the supercurrent as the solutions loses its ap-
plicability above such values gf In this limit, we havek
uy=-—. (B5) >1 and the form(27) follows for the density. The normal-
™ ization condition,(18), gives

Notice the cancellation of thg? terms, which allows us to
find

Inserting Eq.(B5) into Eq. (B4), we find

| |+1+l O)E—(| |+§ 0)E (C2
j2L2_ 4y (QL)? “ 2p( ) 5=\ 1K 2p() >

2 T 4ly? ' where we have uselt|L?<1, which we will find to hold
) ) o ) ) iven |g|L<1. We see that the normalization condition is
This expression may now be maximized simply with respecgatisﬁed automatically ap(0)=1. We also have that
to 7y, with the result p(L/12)=p(0)+j?L?/4, and it may be checked retrospec-
tively that p(L/2)=1 for |g|L<1. The jump condition, Eq.

2/3
=Tl 3[gL 86 (20 then leads to
L 2\ 2| |
L At
as required. At the critical current, we have that Jc:jz?_zjc’
C
1 s 172 ;
- (gL)?P<1: u=——(gL)<1, and hencg .= (2|g|/L)"* as required.
2 13 7213
APPENDIX D: ATTRACTIVE IMPURITIES AT L—2|g|
APPENDIX C: ATTRACTIVE IMPURITIES AT SMALL In this section, we consider the special value of the sepa-
SEPARATION ration, L=2|g|, at which the critical current vanishes en-

tirely in the attractive case. More specifically, we take
=2|g|(1+ €) and consider the limit of very smad (which
may be positive or negatiyeUsing the limiting form of the
density, Eq.(31), in the main text, we see that the boson-
number fixing condition, Eq(18), leads to

In this section we obtain the critical current for attractive
impurities at small separatior,<|g|. We again treat the
subcases dfg|L>1 and|g|L<1 separately.

1. Subcasdg|L>1

2
In the limit of |g|L>1, we have thap(x) is close to zero _ (1 L 7’_5)
at the origin andp(L/2)>1 at the impurities. As may be p(LI=p(0)+(1=5) 4 ! p(0) /)"
confirmed at the end of the calculation, we had>|«| . . . . iy
and hencek=1, or more precisely, Inserting Fhls value fop(L/2) into the jump condition, Eg.
(20), we find
0)+|a
k:”%’ €D A +5|2 L 1,2
p(0)p(L12)? p(0)] " "p(0) " p(Li2)]

wherea=—j?/(2up(0)). The jump condition20) gives
At this point we are justified in substituting the values of
0=g2-2|ul, p(0) andp(L/2) by their values aty=0: that is, we take
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p(0) as the solution of EQ(30), while p(L/2)=p(0)
+L2/4. This leads to the following expression fof:

-2:_L0)[ _( ZP_(°)> }
] R B (W) A4
x| ep(0)— 4p(0)—l+2L0)) 'y}.

p(L/2)

It may be verified that foe=0, i.e.,L=2|g|, the solution
j=0 exists fory=0, while as soon ay becomes nonzero,

the solution forj becomes imaginary: the flow equations are
unable to admit a well-behaved solution for any nonzero
supercurrent. In contrast, for nonzerpwe may maximizg
straightforwardly with respect te to arrive at

2 €’p(0)®
e [2p(0)/p(LI2)+1][4p(0)+2p(0)/p(L/2) - 1](.D1)

In particular, we see that. vanishes linearly ase| as e
—0.
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ZWe notice that in general the shift=y—x is nonzero: in fact it
is equal to a quarter of one of the periods of tdeubly peri-
odic) Jacobi sn function that appears in the solutiondgx) in
Sec. V. This shift in coordinates need not concern us, however,
at the level of the flow equations.

24We notice that in the opposite limit df—c in the Ginzburg-
Landau (superfluig problem, we have thap(0)— «, which
maps to #(0)— x/2 in the sine-GordonJosephson junction
problem, and hence a vanishing width of the Josephson junction,
Lo—0.



