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FUNCTION RINGS AND RIEMANN SURFACES

BY JOHN WERMER¥*

(Received November 7, 1956)

1. Introduction

Let C be the Banach algebra of all continuous complex valued functions
on the unit circle. We want to classify, as far as this is possible, the
closed subalgebras of C which contain the constant 1 and which separate
points on the circle. It appears that rings of analytic functions on certain
Riemann surfaces play a central part in this classification.!

In this paper we consider a restricted class of subalgebras of C. The
method used here can be applied to a much wider class and we aim to
consider this more general situation later on.

Let f,, f, be two functions in C and let B be a closed subalgebra of C
containing f, and f,. We say that B is generated by f, and f, if B is the
smallest closed subalgebra containing these functions and the constant 1.

Let f, ¢ be functions in C. We impose conditions

(a) For each pair of points 4,, 4, on the circle with 4, # 4, either ¢(4,) #
() or f(&) # f(4).

(b) There exists an annulus », < | 2| < 7, with , < 1 < r, such that ¢
and f may be extended from the unit circle to this annulus to be analytic
there.

(¢) For each point 2 with |1| =1, ¢'(2) # 0.

Our main theorem is the following:

THEOREM 1. Let A be a closed proper subalgebra of C which is generated
by two functions ¢ and f. Assume that ¢ and f satisfy conditions (a), (b),
(c). Then there exists a Riemann surface % and a simple closed curve
7 on F having the following properties:

7 bounds a region Z on F with Z U 7T compact. There exists a homeo-
morphism ¥ of 7 on the unit circle such that for each g in A the function
§ defined on 7 by §(t) = 9(x(t)) is extendable to Z to be analytic there and
continuous in Z U 7.

Let y denote the image of the unit circle under the map 2 — ¢(2). Then
7 is a closed analytic curve in the complex plane. Let M denote the set
of multiple points on 7, i.e. let M consist of all points 2 on 7 such that

* This research was supported by the United States Air Force through the Air Force
Office of Scientific Research of the Air Research and Development Command, under Contract
No. AF18 (600)-1109.

1 Cf. [2] and [3] in the list of references at the end of the paper.
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46 JOHN WERMER

there is more than one point % on the unit circle with o(u) = A

Without loss of generality we may assume that the set M is finite. To
see this, we proceed as follows:

Fix a point %, on the unit circle. Set

_ () — ¢(uo)
W= ) - fou

Q is then meromorphic in an annulus containing || = 1. Let 7 denote
the image of the unit circle under Q. Then 7 is the union of finitely many
analytic curves.

Choose a positive number r so small that for each 2 with | 1| < r the
funetion ¢ + 2f has non-vanishing derivative on |« | = 1. This is possible
by (¢). Choose now some 2 with | 2| < » and — 2 not in 7. Set

d=9¢+af.
We assert that ¢(u) # ¢(u,) for all u # u, with |u| = 1. For suppose the
contrary. Then there is some u, # u,, |u,| = 1, such that

o) + Af () = @(wo) + 21 (o)
whence

o(u) — o(uy) = — A(f(w,) — S(w)) .
Also f(u,) + f(u,), for else (a) would be violated. Hence
Q(u'l) = —12 ’

and so — 2 lies in 7 contrary to choice of 1. This contradiction shows that
the value ¢(u,) is taken on only once by ¢ on |u| = 1. Also ¢'(x) + 0 on
|u| =1 by choice of ¢. Now a function analytic on |% | = 1 which takes
infinitely many values more than once on |% | = 1 and has derivative no-
where zero, takes every value more than once on || = 1. Hence ¢ takes
only finitely many values more than once on |« | = 1.

Clearly now ¢ € A and the pair ¢, f generates A. Also the pair ¢, f
satisfies hypotheses (a), (b), (c). We may hence use ¢ instead of ¢ in
Theorem 1, and so there is no loss of generality in assuming M finite.

By an algebraic function-element hy at a point b we mean a function
analytic in a deleted neighborhood of b and either single-valued or finitely
multiple-valued there, and having at b either a removable singularity or
a pole or an algebraic branch-point. By a place p lying over b we mean
the pair consisting of the point b and an algebraic function element %, at
b. We refer to &, as the function-element of p. We say p projects on b.

Fix a point », on the unit-circle such that ¢(u,) is not in M. For each »
on the circle, let r, be the oriented arc onto which ¢ maps the arc of the
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circle which leads from u, to » in the positive direction.

By hypotheses (b) and (c) ¢ has a single-valued analytic inverse ¢! in
a neighborhood of ¢(u,). Set fi(1) = f(¢~*()). Then f, also is single-valued
analytic in a neighborhood of ¢(u,) because of (b). Continue the function-
element f;, along all paths such that continuation is possible up to the
end-point b of the path and there yields an algebraic function-element 4.
For each such continuation form the place p = (b, A).

DEFINITION 1.1. & is the totality of the places p obtained in the way
just described.

In the usual manner . may then be given the structure of a Riemann
surface. Next for each point # on the circle let 4, be the (single-valued
analytic) function-element obtained at ¢(u) by analytic continuation of f,
along the path 7,. Set p, equal to the place (¢(u), h,). Note that A,(2) =
F(e7(2).

DEFINITION 1.2. 7 is the set of all places p, with % on the circle.

LEMMA 1.1. 7 is a simple closed curve lying on % and projecting on 7.

PROOF. That 7 lies on . and projects on y follows at once from the
definitions.

Further since the map # — p, is a continuous map taking the unit circle
onto 7, 7 is a closed curve. Finally let u,, u, be distinct points on the
circle. If p, and p,, project on different points, then Du, # Du,. If they
project on the same point 2, then ¢(u,) = ¢(u,) = 2 whence by (a) f(u,)
# f(u.) and so p, and p,, have distinct function-elements, whence again
Du, # Du,. Thus 7 is a simple closed curve.

DEFINITION 1.3. Fix ¢g in A. For each point » on the circle we set
J(p.) = g(u).

We see then that the correspondence u < p, is a homeomorphism of the
circle on 7 inducing a correspondence g <> § between the functions of A
and a certain family of continuous functions on 7.

The objects .#, ¥, § which we have just defined are the ones about
which we shall prove the assertions of Theorem 1. & will be defined in
Section 4.

DEFINITION 1.4. To each function g in A we associate a function g¢*
defined on y — M by g*(2) = g(¢*(2)).

Clearly each g* is continuous on y — M. Also, if « is an arc of y having
an end-point ¢, in M, then lim,., .c. 9*(¢) exists. However, for two arcs
on y with the same end-point in M the corresponding limits for g* may
be different. Finally, it is clear that the correspondence g — ¢g* preserves
addition and multiplication of functions and that for all ¢ in A4, ||g]| =
sup,-x | 9%(2)|. Also if p e 7 and p projects on 2in v — M, then g*(2) =
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§(p).
LEMMA 1.2. There exists a (complex-valued) measure dp on v which is
not null, such that dy is null on M and such that for each g in A

(1.1) [ orwam=o.

PROOF. Since 4 is a proper closed subspace of the space C, it follows
by a well-known property of that space that there exists a non-null meas-
ure do on the circle such that for all gin 4

(1.2) S 9(t)do(t) = 0

the integral being taken over the circle.
We define a new measure do, on the circle by

doy(t) = L (¢(¢) — ¢(t:)-do(?)

where the product is extended over all points ¢, in ¢~'(M). We then have
by (1.2) that

(1.3) Sg@) do(t) = 0

for all g in 4. Also do, is null on ¢~ (M). Finally do, is not identically
null. For else do consists of a finite number of point masses m, at the
points ¢; of ¢~'(M). Then we have for all g in 4

Ei g(tym; = 0.

From hypothesis (a) it then easily follows that all the m, are zero and
s0 do = 0 contrary to the choice of do.

We now change variable in (1.8) by 2 = ¢(¢). Then since do, = 0 on
¢'(M) we get a measure d¢ on y — M such that for all g in 4, (1.1) is
valid. Also since do; # 0 we have dp % 0. Finally we extend du to all of
7 by making it null on M. Hence the Lemma must hold.

COROLLARY. S dp(2)=0,n=0.
Y
Proor. Use (1.1) with g(u) = (¢(u))".

2. The functions ®(W, g)

Denote by Q the complement of y. Then Q has finitely many compo-
nents.
Let now W be a component of Q. Fix g in 4. For z in W we set
>k
2.1) B(W,g,2) = LS g* () dp@)
2 Jv A—2z
Then ®(W, g) is analytic in W. We must now consider the behavior of
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®(W, g) at the boundary points of W.

To this end we consider an open arc a on the boundary of W such that
« contains no point of M. Set t(s) = ¢(¢**) where ¢ is the function intro-
duced in Theorem 1. Then there exist real numbers s,, s, such that «
coincides with the set of points #(s), s, < s < s,. We give a the orientation
from t(s,) to t(s,). Also, by (b), ¢ is analytic in a neighborhood in the com-
plex plane of the interval (s, s,) on the real axis. By (c) #(s) is every-
where =0 ons, <s<s,.

Let dp be a measure on «. For each s, 5, < s < s,, let R(s) = the valpe
of the measure dp on the subarc of a with endpoints #(s;) and #(s). For
each s for which the derivative R'(s) exists we set, where t = #(s),

@.2) p(t) = —i,—l(;)R'@ .

LEMMA 2.1. For a.a. (almost all) pointst, on alim (1/2m3)g dp ()|t — 2)

exists as z approaches t, non-tangentially from the left and the analogous
limit exists from the right. Denote the left-hand limit by A*(t,) and the
right hand limit by A=(t,). Then a.e. (almost everywhere) on «

(2.3) A*(t) — A (t) = P'(to) -

ProOF. Let . be the set of all points s, in (s, s,) such that non-
tangential limits exist both from the upper and from the lower half-plane
as x approaches s, for the function

L S“z dR(s)

271"': 58— & )
For s, in &7 let L*(s,) denote the limit from the upper half-plane and
L~(s,) the limit from the lower half-plane. Then by well-known properties

of Cauchy integrals in the half-planes it follows that a.a. points in (s, s,)
lie is .&” and further that for a.a. points in &

(2.9 L*(s)) — L(s0) = R'(30) -

Fix now s, in % such that (2.4) holds. Choose a neighborhood U of s,
in which the function ¢ is analytic and one-one. For each non-real  in U
and each real s in U set

_ 1 1 1
Uw, 5) = t(s) —tx) t@) s—a
Then there exists some positive é and some constant M such that | Q(z, s) |
<Mif|x —s | <dand |s—s)| < 8. Also as x approaches s, from either
half-plane Q(x, s) approaches a limit Q(s,, s) for each s # s, in (s,, s,) and
this limit is the same for both half-planes. We now have
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S’n dR(s) _ 1 S”o"“ dR(s)
25) s t(s) —t(x) t'(x) Jw-ss—a
) so+8 dR(s)
+ SSB_SQ(x, $)AR(s) + S“_W RO -

. . . . $ +s
Since s, is in &/ hm,_,soS ° adR(s)/(s — ) = Li(s,) exists as x—s, from
89—

the upper half-plane and the analogous limit L;(s,) exist for the lower
half-plane. Hence

. 2 dR(s) _ 1 ,.
(2.62) s S o) —t@)  fe
.ba
so-n-S dR(S)
+ Sso-s O, 8) AEE) + Slls-sobs t(s) — t(s0)

as & — s, from the upper half-plane and

. % dR(s) _ 1 ,_
(2.6b) e S Wt —t@ T
) so+8 dR(s)
+ Sso—s Q(So, 8) dR(S) + Sl's-xni>8 t(s) — t(Sn)

as & — s, from the lower half-plane. Also

1 do@®) _ 1 (= dR(s)
@) 2mi S T omi Ssl t(s) — t(x)

ot —t(x) 2w
by definition of the function R. Hence the limits A*(t,) and A-(¢,) exist,
as asserted in the Lemma. Also, by (2.6a) and (2.6b) and (2.4), A*(t,) —
A(t) = AUt (8)R () = p'(ts), since L*(s)) — L(s0) = (1/279)(Ls (%) —
L;(sy)). Thus all is proved.
LEMMA 2.2. Let W be a component of Q, a an open arc on the boundary
of W which does not meet M and let g be in A. Then

D(W, g,2) =1lim,,, ®(W, g, 2)

exists for a.a. X on «, the limit being non-tangential.

ProOF. This follows at once from the last lemma.

Let W and W’ be two components of Q having a common boundary arc
a (« open and not meeting M). Orient « as above.

LEMMA 2.3. Accordingly as W' lies to the left or to the right of a we
have for every g in A

D(W',g,) =W, 9,2+ g*DX(A) a.e.ona.

or



FUNCTION RINGS AND RIEMANN SURFACES 51

(W', 9,)=DW,g,2) —g*NK'(2) a.e.ona.

PROOF. Let W' lie to the left of a. Set dv(1) = g*(4) du(2). Then for
ZeW ,ze W,

W, 0,2) = oW, g,2) = = | 2O _ L[ &0
27t Jad — 2  2mi Jed—2z
For a.a. 4, on a« we have by Lemma 2.1 that as 2 — 4, and z — 4,, the

right hand side approaches v'(4) = g*(4)¢'(4). We hence get the first for-
mula. If W’ lies to the right of «, we similarly get the other formula.

3. Regular Riemann surfaces

Fix an integer »p = 1. We consider the following system of infinitely
many equations
(3.1) E{;l Fivki == ¢v y Y= 0, 1, 2, AR N

Let F,, -+« F,and k,, --- k, satisfy (3.1). Denote by o,, v=0,1, <+
p, the value of the elementary symmetric polynomial in p variables of
order » when the variables are replaced by F,, --- F,. Further, set D =
II#-: (Fy — F,):. All products of this type which we shall consider are
extended only over pairs (i, j) with ¢ <j. Andsetp,=Y_f,F},»=0,1,

LEMMA 8.1. For h=0,1, «-+, p— 1, we have
3.2) S Ouan(— Doy = (— 1P 0,,, .
The proof consists in induction on p.
Let 4, be the determinant of the system (3.2). Then
(I)o (I)l e (I)p—l

O, D, D,
(3.3) Ay =| °

Doy Ppeee Dyyoy
and if 4, # 0
Dy Do (—1)HD, el Dy,
1 b, ¢2...(_1)n+1c1>p+1...c1>p
3.4 — 1)y, =1 | -
(3.4) (=1, A,

D, CI)p cee (_ 1)1""1([)210_l cee (sz—2

where the terms (— 1)**'®,, , appear in the (p — v)™ column, the columns
being labelled with 0,1, .-+ » — 1. From (8.1) and (8.3) an easy compu-
tation gives
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(3.5) AP=H§’=,7£¢-H£]=1(F4—F])2, 4,=k if p=1.
As a special case of (3.5) with all k, = 1, we get

Po Preee Py

P1 Py Py
(3.6) D=|-

Pp-1Pp *** Pop-s
LEMMA 3.2, Assume D + 0. Set
Po Prove @y ooep,,
P1 Pyeee D e p,

1
3.7 A; = - ’ :011y‘ _1’
(3.7) =5 J p
Pp-1Ppes Pyyoee P2p-2
the terms @, appearing in the ™ column. Then ky=3 o, F! fori=1,
2, cee P,

PROOF. By (8.6) and the formula for solving systems of linear equations
we get

2SN AP =0, vy=0,1, ... p—1,
Hence if I, = Y720 a,F/, then

E%;l Ftvli = Eg;l E‘zj:()1 aJFi’-H = 1};3 ajpjha = ¢v7 v = 0; 1) e D — 1.

Hence l,, 1, - - - 1, satisfy (3.1) for the given F, and »=0,1, ... p—1,
But this system has determinant (D)"* and so has a unique solution.
Hence I, = k;, i=1, --- p which is what was asserted.

LEMMA 8.3. Assume there exists an integer q and numbers F, , 0o B,
ki, -« kysuch that
3.1) SULFPk =0, v=20,1,2, ... .
where the @, are the numbers introduced in (3.1). Let 4, be defined by 3.3)
with p replaced by q. Assume that both 4, and 4, are non-zero.

Then p = q and the pairs (F,, k,) are equal to the pairs (F';, k) in some
order.

PrOOF. Assume p >q. Define kpyy =k, = +++ = k, = 0 and choose
arbitrary values for F,,, F'j,,, -+ F',. Then

SrLoFk;=0,, v=0,1,2, ... .
By (3.5) then A, = 0 since k, = 0. This contradicts the assumption. Hence

p = ¢. Similarly ¢ < pand so ¢ = p. Let now o7, -+ o, be the symmetric
expressions formed from the numbers F';, --- F, in analogy with the
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definition of the »,. Then by Lemma 3.1, the o, and the o, obey the same
system of p linear equations with non-zero determinant. Hence o, = o,
v=1,2, ... p. It follows that the F'; and F'; are the roots of the same p™
order polynomial and so the F;, and the F';, must agree in some order.
From Lemma 3.2 it follows that the k, and the k; agree in the same order.
This was the assertion.

Let W be a simply-connected plane region. Let ¢,, ¢,, «+- ¢,,_; be func-
tions meromorphic in W and let ¢,, be the constant 1. We consider the

equation
(3.8) Y cizyw = 0
for points z in W. Let #, be such a point. By a place over z, defined by

(3.8) we mean a pair (z,, 2) where % is an algebraic function element at
such that

2o cl2)hi(z) = 0
for all points z in some deleted neighborhood of z,. By the Riemann sur-
Sace W over W defined by (3.8) we mean the totality of all places over

points of W defined by (3.8). By a sheet of W we mean a region on W
containing no branch place and such that if p,, p, are distinet places in it,
then they project on distinct points. We call m the number of sheets of

this surface. Let (2, 2) be a place on W Then % can be continued along
every path in W and if 2, is the endpoint of such a path and %, the func-
tlon element obtained at 2, by continuation, then (z,, 1) is again a place

in W However, if (z,, 2,) and (z,, 4,) are two places in W, then 4, and A,
are not necessarily obtainable by continuation from one another. Thus

W may be disconnected as a topological space. We call z a branch-point
o
if for some (2, ) in W, & has a branch-point at z.
[0

Define a function w on W by setting w(p) = h(z,) if p is the place (z,, 4).
We call w the canonical function on W.

The places on W lying over a given point z, z not a branch-point, will
be denoted p,, p,, +++ p,, the dependence on z being understood. For
each z in W consider the numbers w(p;), i =1, -+ m, where w is the
canonical function. Then the functions ¢; appearing in (3.8) when evalu-
ated at z coincide with the elementary symmetric expressions formed
from these m numbers.

Let now W be a bounded component of Q, the complement of y. Re-
call the analytic functions ®(W, g, z) defined in (2.1) and set ®,(z) =
D(W, 1, 2). We now define for each positive integer m a function A,, =
A, (W) on W as follows:



54 , JOHN WERMER

DD - Dui(2)
(3.9) A,(z) = .

By i(2) Du(2) - Py s(2)

Then A,, is a single-valued analytic function on W for each m.

DEFINITION 3.1. Let W be an m-sheeted Riemann surface over W de-
fined by an equation of the form (3.8). Let F'be the canonical function on

W. We say that W is regular if the following holds:

(3.10) A (2) 0

and there exists a meromorphic function % on I’f’ and a homomorphism L
of A into functions meromorphic on I%’ such that

(3.11) Lf=F
and such that forallge 4
(3.12) 2o Lg(p)k(p,) = O(W, g, 2)

for all zin W which are not branch-points, where p,, - - - p,, are the places
on VOV lying over z.
Setting g = f” in (8.12) and writing ®,(2) for (W, f*, 2) we get:
(3.13) 2om F(p)k(p) = ©u(2) , zin W, »v=0.
Assume in what follows that W is a bounded component of Q which
has an m-sheeted regular surface I?V over it, defined by the equation:

(3.14) Sor(— Do (2w =0, ao=1.
We now define, for zin W:
D(z) = II%y-: (F(p)) — F(p,)) if m>1
3.15 '
( ) Diz)=1 if m=1
(3.16) p(2) = 2 F(py) v=0,1, ...

Also write Z(A) and Z(D) for the zero sets of A,, and D, respectively.
LeEMMA 3.4. The following formulas hold:
(3.17) Kp) = Spa()F®)Y, pe W, pprojectsonz,
where
PR) e DyR) e e Pua(?)
1 pr(R)  eee Cf),(z) <o Pul(?)

a,z) = l_)(Qz)

Pm-1(2) =+ + <i>m-1(Z) cor Pam-(2)
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(3.18) Am(z) = Hﬁx k(p,) Hzrfl-l (F(p)— F(pj))z .
For all g in A,

(3.19) Lo(p) = k—(lg) Y b ()F () pe W,

where
po(2) +-- D(W,9,2) <ot Pu-i()
pl(z) e (I)(W’ gfrz) ”’pm(z)

(3.19)  by2) = 525

Pus(?) <+ DOW, 9™, 2) +++ pons(2)
(= 1)"0,(2)
D)D) oo (— 1P DY) e B (2)
(3.20) | 2@BE e (SR e 2
8.2)

D (2)Op(2) -+ (= 1)1 Dy () -+ Py_s(2)

PRrRoOF. Formula (3.17) follows by applying Lemma 3.2 to (3.13). For-
mula (3.18) follows by (3.5) and formula (3.20) by (3.4).

From (3.18) and (3.10) we obtain that D = .

To prove (3.19) we set

G(p) = k—j;) 3 b ()F(pY .

Let z be any point in W with p,, --- p,, the places lying over z in Wc}, such
that D(2) # 0 and such that F' has no pole and £ no zero among the p,.
Then

G(p)k(p) = 255 b,()F (py)’ it=1,:--m
whence direct computation as in Lemma 3.2 gives
it1 G(PE(D)F (p,) = ®(W, 9f, 2)
forv=20,1, --- m — 1. Now the system
S (p) =W, 9,2, v=01---m—1

has a unique solution (x,, --- «,,) since D(z) is the square of its determi-
nant and D(2) # 0. Now {Lg(p,)k(p,)}r., solves the system, because of
(8.12) with g replaced by gf”. Hence
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Lg(p)k(p:) = G(p)k(D:) i=1+-m.

It follows that Lg = G on W, which is just (3.19).

LEMMA 3.5. There exists at most one reqular surface over W.

ProoF. Let %, 94 be two regular surfaces over W. Let F), F, be
their canonical functions and %,, %, the functions on them satisfying
(3.12). Denote by m,, m, the number of sheets of 7%, respectively 7%.
Fix z in W such that F,, k, are analytic at all places p;, of 94 over z and
also F}, k, are analytic at all places ¢; of 7% over 2, A, (2) # 0, A, (2) # 0.

Then by Lemma 3.8 m, = m, and the pairs of numbers (Fy(p,), :«(;))
and (F(&,), k.&,)) agree in some order. Hence the symmetric expressions
ol(z) and ¢(2) are identical for each ». Since this is true for all but a
countable set of points z in W, we get that o, and o are identical. Since
these functions serve to determine the surfaces %4 and %%, it follows
that these surfaces are identical, i.e. consist of the same places. This
was our assertion.

NoTE. Because of the last Lemma, we may speak of “the” regular
Riemann surface over a region W. We do not known however, as yet,
that this regular surface exists for a given region.

LEmMMA 3.6. Let V?’ be the regular surface over W. Then for all g € A,

Lg is everywhere analytic on I?Vand | Lg(p) | < |l gll for all p. In particular
| F(p)| < || £l for all p.

Proor. Let S denote the set of points on W where F has a pole or D
or k& has a zero. Fix p not in S. Then for every g in 4, Lg is analytic at
p, by (3.19). Hence the map

g — Lg(p)

is a multiplicative linear functional on A. But such a functional on a
Banach algebra is known to be bounded and have bound 1. Hence | Lg(p) |
<|lgll. But S is a discrete set. Hence Lg is analytic everywhere and
o
bounded by ||g ]l on W.
Let W be a bounded component of Q. Assume that the regular Riemann

surface Vc[” over W exists and has m sheets. Let a be a boundary arc of
W. For each 1 in a denote by 4,(1) the non-tangential limit of +,(2) as z
approaches A from within W, if this limit exists, and let +,(2) be unde-
fined otherwise. Similarly define p,(1), D(2), A,.(2) as corresponding limits.

LEMMA 3.7. There exists a subset & of « such that a — & has measure
0 and such that for 1 in & the quantities (1), (1), (1) exist for all v
and A, (1) and D(2) exist and are different from 0.

PrOOF. From Lemma 2.2 we get that on a subset «, of @ with « — «,
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of measure 0, @,(2) exists for all ». Hence A,(2) exists on this set. Now
A, # 0, whence by Privaloff’s result in [1],2 A,.(1) # 0 on a subset az\of a,
with @ — @, of measure 0. By (8.20) o,(2) exists for 2 in @, and all v». Now
for each p, p, is a polynomial in the o, and so p,(1) exists for 1 in «,.
Similarly D(2) exists for 1in «,. Finally D = 0 by (3.18) since A, # 0.
Hence by Privaloff’s result again, D(2) # 0 on a subset @ of a, witha — «
of measure 0. By its construction a has the properties asserted in the
Lemma.

LEMMA 3.8. Let @ be the set of the preceding Lemma and let 2 be any
point in &. Then there exists a curvilinear triangle S(A) contained in W
with one vertex at A such that the following is true: over the interior of

S(%) lie m distinct sheets of ﬁ’ We call them §i(z), 1=1,2, -« m. For
]

each z in S(A) let py(2) be the unique place in S;() lying over z. Then as z
approaches A remaining within S(2) the limits of F(p;(2)) and k(p,(2)) ewist
for each 1.

PROOF. Since 1is in @ the limit D(2) exists and # 0. We may hence
choose two arcs in W which meet at A making non-zero angles with « and
a third arc in W joining their endpoints such that in the curvilinear tri-
angle S(2) so formed D is everywhere analytic and # 0. It follows that

o
there lie m distinct sheets of W over S(2), as asserted, and we call these
o]
S;i(A),t1=1, - m.
Fix i, 1 <4 < m. Then for each z in S(1) let p;(2) be the unique place
[e]
in Si(2) lying over z. The number F{(p,(2)) is then a root of the equation

2 5o (— o f@w’ = 0.

Since 1 € @ we have that for each v lim o,(2) exists for z approaching 2
non-tangentially and hence for z approaching A from within S(2). It fol-
lows that lim F(p,(2)) also exists for z approaching 1 and remaining within
S(2). Also since D(2) # 0, we get from (3.17) that lim %(p,(z)) exists. This
was our assertion.

We are now able to make the following definitions.
DEFINITION 3.2. For each Aina and each i, 1 <i<m

Fi(3) = lim,_,, F(py(2))
ki(2) = lim,_, k(py(2)) .
DEFINITION 8.8. For all 1 in a, F,.,(1) = f*(A) where the right-hand

2 The result is the following: an analytic function whose non-tangential boundary values
exist and are zero on a set of positive measure on a boundary arc is identically zero. We

shall make frequent use of this fact (without explicitly referring to [1]) in the rest of the
argument.
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term was defined in Definition 1.4.

Let now W and «a and «a be as above and let W’ be a bounded compo-
nent of O having « as a boundary arc. Set ®;, = ®(W’, /) and set A, =
A (W'). By Lemma 2.3 we have either for all 1in

D(W', 17, )= D(W, f*, ) + Fru(DX(2)
if W' lies to the left of «, and otherwise for all 2in @
(I)(W/’ fy; z) = CI)( W’ fv’ z) - wa-o-l(z)//(l) .

We set k,,..(2) = ¢'(2) if the first occurs and %,,+,(2) = — #/(2) if the second
occurs. One of the following three cases occurs:

Case (i): Apy, # 0.

Case (ii): A,.;,=0and A,, = 0.

Case (iii): Aj,,, = 0 and A, Z 0.

LEMMA 3.9. In every case we have for all 2 in «

(3.21) S Ak = (W7, 2,0, v=20,1,2, ...
PRrooOF. Since I?V is regular we have by (3.13) that

(3.22) Sor F(p)k(p) = (W, [, 2), v=20,1,2, ...

Fix 2in @ and let z approach 2 within S(2). Then

(3.23) "y Fy()k(2) = (W, £, 2), v=20,1,2, ...

We then obtain (3.21) from (3.23).
DEFINITION 38.4. &, = {A]|2 € & and k,,..(1) = 0}
&, = {2]|4 € «, such that there exists N,, with1 < N,,
= m with Fiy () = Fp.i(2)}.
For 2in «,, N,, N,, --- N,,_, is the subset of the integers from 1 to m
which remains after N,, has been removed.
LEMMA 3.10. Assume case (i) or (iii) occurs. Then @ = a,ua, up to a
set of measure 0. If 11s in &, then for all v

(3.24a) 2 Bk (2) = @A)
and if A is in a,, then for all v
(8.24b) 215 Fy (0ky () + Fy (DN, (2) + Kmai(2)) = ©Y2)
Proor. By (3.21) and (8.5), we have for A in «
Anai(A) = JTT ku2) TT02 (Fu(2) — F2) .
Also by (3.23) and (3.5) we have
Am(z) = [Tt k(2) H;',L,1=1 (Fi(l) - FJ(A))Z .
By hypothesis A,,,, = 0. From the last two equations we get for 1 in «
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0= km+1(z) Hﬁl (Ft(z) - Fm+1(l))2‘Am(A) .
Now A,, # 0. Hence a.e. on &

(3.25) Epmsi(A) « T (F(2) — Frpei(Q)) =0,

It follows that @ = @&, u @, except for a set of measure 0.

Fix 2in «,. Then (3.21) gives (8.24a). Next fix 4 in «,. Then (3.21)
gives (3.24b). This proves the Lemma.

Set ®;(1) = lim ®)(z) as z — 1 non-tangentially from within W’. Then
®)(2) exists a.e. on a.

LEMMA 3.11. In case (i) set m’ = m + 1. In case (ii) set m' = m —1. In
case (iii) set m’ = m. Then in all cases we can find for a.a. A in & a subset
Ty, by, *+* i (depending on 2) of the integers from 1 tom + 1 and numbers
1(R), +«« 1. (R) such that

(3.26) v i (DL(2) = ©(2) , v=0,1,2,..-.
and in addition A,, = 0. When m’ = 0, we take the left side in (3.26) equal

to 0.
PROOF. Assume case (ii) or case (iii) occurs. Then by (3.24a) and (3.5)

(8.27a) An(2) = TTm: El2) T8 (F(D) — F ()
for 2in «,, and by (8.24b) and (3.5) we get for 1in «,,
(8:27b)  ALQA) = (kx (2 + Fmad ) TI7 Ko (A) TLFeses (Fw () — Fy (D)

Assume now case (ii) occurs. We claim that then «, has measure 0 and
kNm +k,..,=0 a.e. on a&. For by definition of case (ii) A;, = 0 whence
An(2) = 0 everywhere on «. Also A,, # 0 whence A,(2) # 0 a.e. ona. We
get from (3.27a) and the fact that A,,(2) # 0 a.e. on «, that A},(2) # 0 a.e.
in a,. Hence «, has measure 0 as claimed. Next we get from (3.27b)
that kNm +k,..=0a.e.in «a, and so a.e. in «, as claimed.

The assertions just proved together with Lemma 3.10 yield

(3.28) Y Fo (ke ()= 1),  v=0,1,2,---ae.ona.

We may then set m’ =m — 1 and set ¢, = N,, where the N, are the
numbers introduced in Definition 3.4, and take 7,(2) = ky j(/l), ij=1,2, ...
m — 1, to obtain (8.26), for case (ii). By (8.26) and (3.5) we finally get

An(D) = II5 kzj(l) . H:«'fs—-h (Fzr(l) - Fts(/l))2

whence A;,_,(1) = 0 implies A,,() = 0. But A,, # 0 a.e. on @. Hence A},_,

# 0. The full assertion of Lemma 3.11 is thus proved for case (ii).
Assume now that case (iii) occurs. We set m’ = m. Then A, # 0 by

definition of case (iii). It remains to prove (3.26). Fix 2 in «,. Then
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(3.24a) gives (3.26) with an obvious choice of the 7, and the [,(2). Fix next
2in «,. Set then ¢,=N,,j=1,2, ---mand [,(1) = kij(l), i=12, .-
m — 1and [,,(2) = ky_(2) + kpn+:(4). Then (3.24b) gives (3.26). This proves
our Lemma for case (iii).

At last assume case (i) occurs. Set m’ = m + 1. Then (3.21) gives
(3.26) with obvious choice of i, and {,(2). Also A, # 0 by definition of
case (i). Hence Lemma 3.11 is established in every case.

For what follows we assume m’ + 0.

We shall now define an m’-sheeted Riemann surface V?/" over W’ which
we shall prove to be the regular surface over W’. We first define funec-
tions o, v =1, 2, -+ m’, meromorphic on W’, by the formula:

(= 1)"ol2)

D) Pi(z) e (— VD) - P y(2)
329) 1 |- . ~

T AL(z) . .
D ((2) P (2) =+ 0 (— 1)V D 1(2) o+ Do —o(2)

Since A, # 0 by Lemma 38.11, the o are well-defined meromorphic fune-
tions on W,

DEFINITION 3.5. We denote by V?” the Riemann surface over W’ de-
fined by

(3.30) W — o (RW™ 4 oo +(— 1)™orn(2)=0.
Let F” denote the canonical function on I?V' and define D’ and p, in terms
of F” in analogy with the earlier definitions of D and p,. Then D’ # 0, as
we can show using Lemma 3.11. Then set
poz)  eer DYR) e e Pi(?)
1 piR)  eee DUR)  cer pwl(2)
3.31 a2 = ——| ° ,
( ) J(z) Dl( z) .
P -1(R) =+ * D (2) ** + Prm-a(2)
j:()yl’ ""m,—l,
where the ®(z) appear in the j* column® Further set
(3.32) K (p) = Yi a2 F (pY for pin W',
where p projects on z.
For 1 in a we define limits o(2), D'(2), p,(1) analogously to the quanti-

ties (1), D(2), p(4). By an argument like that of Lemma 3.7 we con-
clude that there exists a subset a’ of « such that « — a@’ has measure 0
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and such that o(2), ®y(2), py(4) exist for 1 in a’, v = 0, and such that D'(2)

and A,.(2) exist and are different from 0. For 1in &’ we introduce as in

Lemma 3.8 a curvilinear triangle S'(2) lying in W’ with vertex at 2 over

[e] [e]

which lie m’ distinct sheets of W7, Sj(2) fori=1, 2, --- m/. In terms of
o

these Si(1) we then define F'j(1) and k(1) in analogy with Definition 3.2.

LEMMA 3.12. Fix 2 in o’ n « such that (3.26) holds at 2. Let i, and 1,(2),

i=1,2, .-, m/, be the numbers appearing in Lemma 3.11. Then there

exists a permutation « of the integers 1, 2, -+ -, m’ such that, setting Fij(x)
= E\(%)

(3.33)  Fy2) = Eup(D), KfD) = lLn(), F=1,2, e m .

PRrROOF. Denote by 7, the elementary symmetric polynomial of order v
in the numbers E\(2), --- E,.(2). Applying (3.4) to (3.26) we get

D) e (=MD e D)
7 1 :
—1yv-v vz —_ =
D™l = 0 .
D (2) + o0 (= 1)V Doy 4(R) =+ Do (2)
Taking now limits as z — 4 in (3.29) we get that ¢;(1) =7,(2),»v=1,2, «--
m’'. Hence there exists a permutation = of the integers 1, 2, - -- m’ such
that F;(2) = E,)(A), 1 =1, 2, --- m’. By (3.32) we get for zin W, z not
a branch-point, where each p; projects on z,

?::1 Fv(pz)ykl(pi) = (D;(Z) ’ V= 0, 1: ceem’ —1.

Hence taking limits we get for our given 2

ST FAYE(RD) = DY), v=0,1,---m' —1.
Also, by (3.26) we have
. EQYL) = X0 Fi()leo(D) = &) , V20,
Hence by the uniqueness of the solution of the system
L FQA)e, = D), v=0,1,.--m' —1

we deduce that £/(2) = 1,,»(2), 1 =1, 2, --- m’. Hence we get (3.33).
Let L be the homomorphism introduced in Definition 3.1. Fix ¢ in A.

For each 1 in a define Soi(/l), p:(2) as in Lemma 3.8. By (3.19)
Lo(p(@) = L T b,F Q) , i=1,-m,
k(p.())

where each b, is a polynomial in the p, and the functions ®(W, f*g, 2),
0 <v <m — 1, divided by D(z). Then b,(2) = lim,_, b,(2) exists a.e. in «a,
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j=0,.--m—1. Also Fy(2) and k,(2) exist for all 1in @. Finally J]™.k.(2)
# 0 a.e. in a, since A,, = 0, whence k,(2) # 0 a.e. on «a for each ¢. Hence
Lgi(x) = limz—»)\ Lg(pi(z)) ’ = 1: 2’ ceem,
exists for a.e. 1in «, (the exceptional set of measure zero however de-
pending on g). Also set Lg,,..(2) = ¢*(1), 1 € a.
o
For each g in A4, set for p e W’:
G0) = 1 TEs HEF (oY
K'(p)
where &) is defined by obvious analogy with (8.19"). For 1 in «, define
Gi(%), i =1, --- m/, in analogy with the above definition of Lg,(1). Then
Gi(2) exists a.e. on a. Write now G for Lg and G,(2) for Lg,(2).
LEMMA 3.13. Let 7 be the permutation of Lemma 3.12 and set o(j) =
beps, J=1, -+, m'. Then
(3.34) G = G2, j=1,---m', ae.ona.
Let L’ be the map: g — G'. Then L’ is a homomorphism and satisfies (3.11)
[e] o
and (3.12) relative to W' and W’ is the regular surface over W'.
ProoF. Applying (3.12) to f*g and taking limits, we get
1 G(OFY(DE(A) = (W, g, ), v=0,ae lina.
Hence we get
(3.35) T GUOF (D) = (W, frg,4), vy=0, aa.lina.

We now claim that in the notation of Definition 3.4 Gy, (2) = Gpui(d)
for a.a. 2in a,. By hypothesis f and ¢ generate A. Hence for each e > 0
there exists a polynomial P such that

(3.36) | P(e(w), f(u)) —g@) || < e .

Fix p in I?V projecting on 2z with 2z not in Z(A) U Z(D). By Lemma 3.6,
|Li(p) | < ||2||. Now, as is easy to verify, L(¢)(p) =z and L(f)(p) =
F(p). Hence L(P(¢, f))(p) = P(z, F(p)) and so

| P(z, F(p)) — G(p) | < e .
Hence
|PQ, Fy (1)) — Gy (D)1 <e, if2e a and Gy () exists.
Also
| P(a, Fy (D) = Guu(D | <e, if 1 € a, and GNm(l) exists.
because of (3.36) and the fact that Fy () = Fru(2).
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It follows that | Gy (1) — Gp+i(2) | < 2¢ for every ¢ > 0, whence Gy (1)
= G,+.(2) a.e. on a, as asserted. From this and (3.35) we obtain
(3.37) i Gij(l)th(l)l,(Z) =d(W,9f% ), aa.lina,v=0,
arguing as in the proof of Lemma 3.11.

Arguing as in the proof of the second part of (3.33) we may now de-
duce (3.34) from (3.37). From (3.34), together with the fact that a func-

. . o . . .

tion H meromorphic on W’ is determined by its non-tangential boundary
values Hy(2) for 2 in a and that L is a homomorphism, we get that L’ is

. . . . o
a homomorphism from A into the functions meromorphic on W’.
For each v = 0, set now

B,(2) = 2 7 G'()F" (p)E (D) -
Then for a.a. 1in a,
B,(2) = 3 7 GUAF(A)K(2) -
But by (3.33) and (3.34) this gives

B,() = E;n-,-l GG(J)(l)Fg(J)(A)Zﬂ(J)
= S G WFDLQ) = S(W, g, 2)
for a.a. A in «, by (3.37). It follows that B,(2) = ®(W’, g.f*, 2), which is

just (8.12) for L’ and W’ when we put v = 0.
Finally, (L' f)/2) = (Lf)snH(2) a.e. on a by (3.34). But Lf = F and
F.»,(}) = F;(2) by (3.33). Hence L'f and F” have identical boundary
[e]
values a.e. on a, and so (3.11) follows for W’. By Lemma 3.11 4, # 0.

Hence Vf” is regular by definition, and our Lemma is proved.

LEMMA 3.14. The following statement holds for a.a. Ainaand all v = 0:
if case (i) occurs, py(2) = ) + Fi(2); if case (ii) occurs, p,(2) = pu(2) +
F2.(Q); if case (iii) occurs, py(2) = p3(4).

PRrOOF. The assertion follows directly from (3.33).

In the preceding we assumed m’ # 0.

LEMMA 3.15. If m’ = 0, then the defining equation of W is

w—of(2)=0
where o, is analytic at each point of a and o, = f* on a.

ProOF. By Lemma 3.11, m' = 0 only if m = 1 and case (ii) occurs. In
the proof of Lemma 3.11 we show that if case (ii) occurs, Fiy (2) = Fp4.(2)
a.e. on «a. Since m =1, o,(2) = F(p) where p is the unique place on ﬁ’
lying above z. Then o, is a single-valued bounded analytic function on W

having F,..(1) = £*(2) as boundary value a.e. on a. It follows that o,
provides an analytic continuation of f* to all of W. Thus Lemma 3.15 is
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proved.

4. Proof of Theorem 1

LEMMA 4.1. There exists a bounded component W, of Q having an open
arc a, on its boundary («, not meeting M) with ¢ # 0 a.e. on o, such
that, setting k(QQ) = p¢'(2) if W, is to the left of a, and k(2) = — p/(2) other-
wise, we have for all g in A
4.1) g*k()) = ©(W,, g, ) a.e. on o .

Proor. Let Q, be the unbounded component of Q. Fori=1, 2, ---, let
Q, be the union of all components of Q which have boundary ares in com-
mon with Q,_, and are not containedin Q, U Q, U ++- U Q,_,. For some N,
Qy is non-empty and Q, is empty for j > N. Now if g € A,

*
(4.2) SMQ:(), zeQ,
¥ A—z
by Lemma 1.2. Further ®(W, 1, z) # 0 for some W, for else d¢ is orthog-
onal to all rational functions with poles in Q, whence dg = 0 which is
false. We can hence find a smallest p such that Q, contains a component
W with ®(W, 1) # 0. Fix sucha Win Q,, calling it W,. Because of (4.2),
p = 1. Let a, be a boundary are not meeting M which W, has in common
with a component W’ of Q,_,. By Lemma 2.3,

(4.3) D)= [D(W,,1,0) — (W', 1,2)] a.e.on q .

But ®(W’, 1) = 0 and ®(W,, 1, 1) + 0 a.e. Hence £/'(1) + 0 a.e. on «.
Next, ®(Q,, 9) =0, by (4.2). Fix ¢ < p. If ®(W, g) = 0 for all compo-

nents of Q,_;, then the same is true for all components of Q,. For let W,

be such a one and let W,_; be a component of Q,_, sharing a boundary arc
«a with it. Then a.e. on «,

| &(We,9,2) — O(Wer, g, )= D) 1g*D)] .
Also
ch(Wq’ 1» A) - (I)(Wq-l, 1’ A) | = l/‘l(z)l .

But since ¢ < p, the left hand side here is 0. Hence also ®(W,, g, ) =
d(W,_., 9, 4)a.e.on a, whence ®(W,, g) = 0. It follows that &(W, g) =0
for all components W of Q,_;, and in particular for W’.

Hence, if W, lies to the left of «,,

D(Wy, 9, 2) = g* (D' (D) a.e. on a,

and similarly if W, lies to the right of «, with ¢ replaced by — ¢'. (4.1)
is thus established.
The objects &, 7, § below were defined in Section 1.
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LEMMA 4.2. The regular Riemann surgace W(/)'O over W, exists and 18 a
one-sheeted region on the Riemann surface . WO’(, has a boundary arc &,
which is a subarc of . For every g in A a certain function G, ewists on
ﬁ’o which is everywhere analytic there and assumes § as continuous bound-
ary values on &,. Hence the map: g — G, is & homomorphism on A.

ProoF. By (4.1) with g = 1 we get, setting ®,(z) = ®(W,, 1, 2),

EQQ) = ®(W,, 1, ) = P(2) a.e.on q, .

Since ¢’ + 0 on a set of positive measure on «,, ®, # 0. By (4.1) we then
get forall gin A

(4.4) g*() = 5’%9 a.e. on a.

For z in W, set
G*(z) = O (W, 9,2) .
Dy(2)

Let F'* denote G* when g = f. Then G* is analytic on W, except for pos-
sible poles at the zeros of @, and has g*(1) as boundary-value a.e. on «,.
Fix ¢ in W, with ®,(a) # 0. Then the map: g — G*(a) is easily seen to be
a multiplicative linear functional on A. But such a functional on a Banach
algebra is always bounded and has bound 1. Hence |G*(a)| =< ||g||. This
holds for all but a discrete set of points in W,. Hence G* is bounded in
W, for every g. From (4.4) we may then deduce that G* takes g* as
continuous boundary value on «,. Further,

(4.5) D(2)G*(z) = ®(W,, g9,7) , zin W, .
Let &, be the arc on 7 lying above «,, so that &, consists of all places
(4, f*) with 1 in @,. F’* provides a single-valued analytic continuation of
]
f* from a, to W,. Let W, be the totality of places (2, F'*) for zin W,.
o
Then W, is a one-sheeted region on .7, lying over W, and having q, as a
boundary arc.
o
Let F, be the canonical function on W,. Then Fy(p) = F'*(z) for p over
2. Set now ky(p) = ®y(2) and G,(p) = G*(2) for each g in A. Since G* = g*
ona,, Go= § on &,. It follows that the map L,: ¢ — G, is a homomorphism
on A. Further, by (4.5)
ky(p)Go(p) = ®(W,, 9, 2) , zin W,
for all g and so (3.12) holds. Also L,f = F,, whence (3.11) holds. Finally

4(W,) = ®, % 0. Thus (3.10) holds and so W, is the regular Riemann sur-
face over W,. Thus Lemma 4.2 is proved.
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Let W be a bounded component of Q such that the regular surface IC’)V
over W exists, and let W’ be an arbitrary component of Q which shares
a boundary arc « with W, where a does not meet M.

Let B: 2=2(t), a <t < b, be an arc in the plane such that for some ¢,
a <b,

2t)eW,ast<c
2(c) e a

2t)e W, e<t<b.
Furthermore, let

St (— i@t = 0
be the equation defining I’%’ Then:
(]

LEMMA 4.3. Let §, be a place in W over z(a) and let its function element
be h,. Then h, may be continued analytically, except for possible finite
order branch-points, along B for a < t < ¢, giving rise for each t to a place
q(t) over 2(t).

Let 2 be any point on a. Then the functions o, appearing in the equation

o
of W are analytic at A.
[

If §(e) ¢ 7, then W is bounded and the regular surface W' over W' ex-
ists and the function element of §(c) may be continued analytically except
for possible finite order branch-points along 8 for ¢ < t < b, giving rise at

o
each t, c < t < b, to a place §(t) over z(t) with §(t) € W'.
o
ProoF. Since ¢, € W, h, is certainly continuable along g fora <t <e¢
o
and the resulting place ¢(¢) is again in W. Let m’ be defined as in Lemma
3.11.

If m’ =0, Lemma 3.15 yields that ¢(c) exists and lies in 7, and that o,
is analytic everywhere on «. We may hence assume m’ > 0.

Suppose W’ is not bounded, i.e. W = Q,. Now ®(Q,, g,2) =0 in Q,.

o
We may deduce from this, arguing as in Lemma 4.2, that W is one-
sheeted, i.e. m = 1, and that m’ = 0, contrary to assumption. Hence W’
is bounded.
o
By Lemma 3.13, the regular surface W’ over W’ exists. Applying Lem-
o o

ma 3.6 to W', we get |F'(p)| < ||f]|| for all p € W’. Hence each p; is
bounded analytic on W’. Similarly each p, is bounded analytic on W.

We now consider separately cases (i), (ii), (iii), introduced in Section
3. Assume case (i) occurs. By Lemma 3.14 we have

(4.6) oA = p2) + Frad) aa lina, v=0.
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Now F,,., = f* is by hypothesis analytic on «. Thus the left and the
right hand terms in (4.6) are bounded analytic functions on opposite sides
of «@ and agree a.e. on «. Hence they analytically continue each other
across .

Now 2(c) € . Choose a neighborhood U of z(c) in which F,., is ana-
lytic. Then p; is analytically extendable to U for every ». For each 7, o is
a polynomial in the o}, whence also o is analytic in U for each j. Simi-
larly each o, is analytic in U.

For each zin U N W set x,(2) equal to the elementary symmetric poly-
nomial of 5 order in the quantities F(p,), -+, F(Dn), Fn+(2), where the
p; lie over 2. From (4.6) we obtain that x,(1) = &)(2) a.e. on « for each
j=<m+ 1. Hence ¥, = o;in U N W. The equation

4.7) 2o (= Diopara(@w* =0
has coefficients analytic in U and agreeing in W N U with the y,. Hence
o

the places defined by (4.7) over a point in W N U are the places on W
lying over the point together with the place over the point whose func-
tion element is F,,,,.

For some positive d, 2(t) € W N U for ¢ — 6 < t < c. Fixsuchat. Since

o
g(t) € W, ¢(t) is one of the places defined by (4.7). But over W’ the equa-
o
tion (4.6) exactly defines the surface W’. It follows that ¢(¢'), forec — 6 <
t' < e, can be continued along 3 for ¢ — 6 < t < b, and that the resulting
o

place g(t) e W forc <t <b.

Assume next case (ii) occurs. Then m' = m — 1 and by Lemma 3.14,
(4.8) p(2) = py2) + Frai(2) aa.dlina, v=0
replaces (4.6). Choosing a neighborhood U of z(c) as before, we now get

that o, is analytic in U and agrees in W’ N U with the symmetric func-
tion formed from F'(p,), «++, F'(On-,) and F,..(z). Hence the equation

which defines Vcl)/' over W:
(4.9) 2 o (= 1oy i(z)w' = 0

now defines at each z in W N U the places of I’%” over z together with

the place whose function-element is F,.,. Now for ¢ <e¢, §(t') e I’%’
Hence §(¢) exists and is one of the places defined by (4.9) also forec < t <
¢ + 9, for a suitable 6 > 0. Assume now §(c) € ¥. Then for ¢ < t < ¢ + 9,
the function element of {(t) # F,+., for else we should have §(c) € 7.
Hence for such ¢ ¢(t) e VOV’, whenece §(t') exists and lies in V(l)” for all ¢
withe < t' < 0.

Assume at last that case (ili) occurs. Then o,(1) = o(2) a.e. on «,
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whence there exists a single m-sheeted surface over W U W’ U « contain-
ing W(} and Vf”, whence again §(¢) exists for ¢ < £ < b and lies in V?” for
c<t<h.

The above reasoning shows also that in each case the o, are analytic at
each boundary point 1 in «, since z(c) could be any 1. Lemma 4.8 is thus
completely established.

DEFINITION 4.1. Let V(l)’(, be the regular one-sheeted surface constructed
in Lemma 4.2. Let p, be some fixed point in WO’O. Then we call &7 the
component of the complement of ¥ on % which contains p,.

LEMMA 4.4. Let p* belong to 2 and project on z* with z* in Q. Then
2* lies in a bounded component W* of Q such that the reqular surface I?V*
over W* exists and p* belongs to I’%f* Further, the canonical function F*
on I’?f* s everywhere analytic on Vc[)/'* and satisfies | F*(p) | < || £ 1] for all
p.

PROOF. Since .7 is a region on .%# which p contains p, and p*, we can
find a curve ,80 lying in &2 with equation: p = p(¢), 0 < ¢ <1 such that
p(0) = p, and p(1) = p*. Let B be the projection of ﬁo on the plane, i.e.
the curve with equation: z = 2(¢), 0 < ¢t < 1, where 2(t) is the projection
of p(t). It is easily seen that we can choose f? so as to satisfy the follow-
ing requirements:

B is piece-wise analytic, does not meet M, meets 7 in only finitely many
points and is nowhere tangent to 7.

We can then find numbers ¢, t{,=0<# < --+- <t,=1, and compo-
nents W, of Q such that

Aqt)e Wy, tH<t<t
Z(t)eWi, ti<t<tt+1y ’£=1,2,---,s—1,

where for each 7, W, and W,,, are distinct regions with a common bound-
ary arc «, such that «, does not meet M.

We assert: For each ¢ W, is bounded and the regular surface Vlofi over
W, exists and p(t) € Vf’z for ¢, < t < t;.,.

We shall prove this assertion by induction on ¢, for all ¢ < s — 1. Since
W* = W,_,, this will establish the assertion for W*., By Lemma 4.2 and
the choice of p, the assertion holds for ¢ = 0. Assume it holds for ¢ = n,
n < s — 1. Write W for W, and W’ for W,,, and « for «,. The hypothe-
ses of Lemma 4.3 are then satisfied by W, W’ and «, and the arc on
corresponding to parameter values ¢ < ¢ < b, with ¢, < a < t,., and ¢,.,,

< b < ty4, and with ¢ =¢,,,. Since p(c) € 7, because {; C &, we get by
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Lemma 4.3 that W’ is bounded and the regular surface ch/" over W’ ex-

ists and p(t) € WO” for ¢ < t < b, and hence for ¢t,,, < t < t,.,. The asser-
tion thus holds for W= W,.,. This completes the proof by induction,
and so the assertion holds for W*. By Lemma 3.6 F'* is bounded and
analytic on I%’*. This finishes the proof of Lemma 4.4.

LEMMA 4.5. Let p* belong to & and project on z* where z* lies in a

[
component W* of Q. Then the regular surface W* over W* exists, by
Lemma 4.4. Let its defining equation be

70 (— Diops_i(2)w' =0 .

There exists a region C” containing W* as well as the boundary of W* such
that each of the functions of s single-valued analytic in all of &

Proor. By Lemma 3.6, F'* is bounded analytic everywhere on Vci’*
whence each oF is bounded analytic on W*. By Lemma 4.3 the o} are
analytic at each boundary point of W* which is not in M. We need only
consider then the case of a boundary point ¢ lying in M.

Let Coi, 1=1,2,---8, be the places in 7 lying over ¢. Each fi has a
neighborhood f/i on % which consists of one sheet and is such that 7
meets Iof, in a single simple arc. Choose a neighborhood V of ¢ which is
contained in the projection of each T(}i and which is such that if z lies in
V N 7, then no place on 7 outside of I(}l U I(}z U---u I(}s projects on z.

We claim there exists a neighborhood V’ of ¢ with the following prop-
erty: If 2/ is a point in V"N W* and if F,, .., F,. are the function-
elements of the places on V?’* lying above 2/, then each F), gives rise by
analytic continuation in V' — ¢ to a k;-valued analytic function, 1 <k, <
m*, without branch-points in V" — ¢.

For let (b, 2) be a place on V%’* lying over a point b in V' N W* and
having the function element ~2. Assume first that there exists some path
B, in V leading to a point 2 on y such that % is continuable along 3, to 2
yielding there a place p, which belongs to 7. By choice of V this implies
that p, € I(},cfor some k < s. Hence, by continuing backward along £, and
using the fact that I?',c is a single sheet we get that (b, %) e Ic},c It fol-

lows from this that there exists a single-valued analytic continuation of
htoall V.

Assume now that no such path §, exists. Let 3 be any piece-wise ana-
Iytic path in V — ¢ starting at b, which meets y only finitely often and is
nowhere tangent to y. By assumption, none of the places obtained by
continuation of 4 at a point on S lie on 7. Hence by Lemma 4.3 it is pos-
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sible to continue 4 along all of # with no singularities worse than finite

order branch-points, and such that whenever a point z of 8 lies in a

bounded component W of Q, the resulting place (z, 2,) belongs to the
o

regular surface W over W. Since by Lemma 4.4 the canonical function

on Wc} is then bounded by || f||, we also have |,(2) | < || F||. All the dif-
ferent function-elements obtained in this way at the initial point b give
rise to places over b on W(;'*, and so there are at most m* of them. Hence
h gives rise by continuation to a k-valued bounded analytic function in
V —¢, with k < m*. It follows that some deleted neighborhood of ¢ is
entirely free of branch-points of %.

Let p,, - -+, D be all the places on I?V* over b and A,, ---, h,« the cor-
responding function elements. For each ¢ we can then find a deleted
neighborhood U, of ¢ such that continuation of 4, within V results only
in regular elements at the points of U, and at most m* different elements
at any one point. The above made assertions concerning ¥’ then hold if
wetake VV=UNU, N+ NU,x.

Fix 2/ in V' N W*, let p; be the places on Vf}* above 2’ and let F'; be
their function-elements. By the preceding the only function-elements ob-
tained at 2’ by arbitrary continuations within V' — ¢ of some F'; are itself
or some other F;. It follows that the o are single-valued analytic within
V' — €. Also each of is bounded in V' — ¢ and hence regular at ¢.

The existence of a region ¢ satisfying the assertions of the Lemma is
thus established.

Let now ¢ € & and project on zlying in a bounded component W of Q.
By Lemma 4.4 the regular surface Wc} over W exists and ¢ e V[(} Let the

defining equation for I?V be
(4.10) 270 (— Doy i(2)w' = 0 .

Then by Lemma 4.5 all the o, are analytic on the closure of W.

For each W as described above we set: (Vi)f)c is the set of all places de-
fined by (4.10) over the closure of W.

Clearly (V?’)c is a compact set of places.

LEMMA 4.6. Every place in <7 belongs to (W), for some W. Further,
if w is the function on F assigning to each place (b, h) the value h(b), then
w 18 analytic everywhere on .

ProOOF. Fix pin & and let z be its projection. Then there exists a

bounded component W of Q having z in its closure. Let Ij' be any neigh-
borhood of p on <7 and let U be its projection. Then U is a neighborhood
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“of z. We can hence ﬁnd p, in I} Whose projection z, lies in W. By the
above then W and (W)c eXlSt and p, e W Thus every neighborhood of
p meets W and so p lies in (W)c .

Further, the function w coincides on W N &2 with the canonical funec-
tion F on Vf’ Since the coefficients in (4.10) are analytic on the closure
of W, it follows that F is analytic on all of (T’f’)c and so in particular at
p. Hence also w is analytic at p. Thus w is analytic everywhere on <.

PROOF OF THEOREM 1. Let Wy, ---, W, be the totality of components
of Q such that some place on & projects into W;,. By Lemma 4.6

T (W)U (W)U -+ U (W), .

Also each (V?’i)c is compact. Hence &2 has compact closure in % and so
7 J7 is compact.

Let now g be in A. By hypothesis f and ¢ generate A. Hence we can
find a sequence P, of polynomials with P,(¢, f) converging to ¢ uniformly
on the unit circle. Let z denote the analytic function on .%# which maps
every place on its projection, and let w be the function on .# introduced in

the last Lemma. Observe that on 7w coincides with f. With § defined in
Definition 1.8, we then have that P,(z, w) converges to § uniformly on 7.
But now w is analytic on &7 by Lemma 4.6 and so each P,(z, w) is ana-
Iytic on &2 U7, and hence by the maximum principle for <7, which fol-
lows from the compactness of &7 U7, Pa(2, w) must also converge uni-

formly on & and to a limit function C:‘J analytic on &7 and continuous on
[*]
Z U7f. Also G agrees with g on 7.
Finally § is related to g by a homeomorphism « <> p, as required in the
statement of Theorem 1. The theorem is thus proved.
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