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Abstract

Semiconductor and metal–semiconductor nanostructures are shown to exhibit electrodynamical resonances analogous to the Fröhlich resonance
for metal nanoparticles in a dielectric host. If the transition frequency of an optical transition in the nanostructure core coincides with one of the
resonance frequencies of the nanostructure, the strength of the optical transition is dramatically enhanced by up to 4–6 orders of magnitude. The
resonance frequencies are determined by dielectric permittivities of materials of host and nanostructure, and by sizes of the nanostructure. That
enables to tune the resonance frequencies to desired values in an extremely wide spectral range—from ultraviolet to terahertz, engineering thus
optical properties of high-efficiency nanostructured optical materials for numerous applications.
© 2006 Elsevier B.V. All rights reserved.
1. Introduction

The rate of radiative spontaneous decay, Γ0, of a dipole tran-
sition of frequency ω and dipole momentum d in a point-like
emitter, such an atom or a molecule, embedded into a dielectric
host of permittivity εhost is described by well-known expres-
sion [1] (speed of light c = 1):

(1.1)Γ0 = 4

3
ω3d2√εhost.

However, in the case of colloidal semiconductor nanocrystals
experiments show an essential depression of the decay com-
pared to the value given in the above equation. To explain this
depression, Wehrenberg, Wang, and Guyot-Sionnest [2] noted
that Eq. (1.1), derived for point-like emitters, does not take into
account the local field effect, or the screening of the radiation
field inside a nanocrystal of finite size. In a spherical nanocrys-
tal of permittivity εNC embedded into a dielectric host of per-
mittivity εhost, the internal electric field (inside the nanocrystal)
Eint is weaker in comparison with a uniform external field Eext
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in the host [1]:

(1.2)Eint = 3

2 + εNC/εhost
Eext.

Therefore, the expression (1.1) should be replaced by:

(1.3)Γ = 4

3
ω3d2|S|2√εhost ≡ Γ0|S|2,

where Γ0 is the decay rate for a point-like emitter (1.1), and

(1.4)S = 3

2 + εNC/εhost

is the screening factor. The estimates of radiative lifetime done
with Eqs. (1.3) and (1.4) for PbSe and CdSe colloidal nanocrys-
tals [2] show a good agrement with experimental data. Despite
the radiation field is obviously strongly nonuniform, accurate
computations [3] of the decay rate based on the Maxwell equa-
tions and conventional boundary condition for the radiation
field on the nanocrystal–host interface just reproduce Eqs. (1.3)
and (1.4). While for core–shell nanocrystals, the developed ap-
proach [3] results in the following expressions for the decay rate
of an optical transition localized in the core:

(1.5)Γ = 4
ω3d2|W |2√εhost = Γ0|W |2,
3
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where the screening factor W was found to be:

(1.6)

W = 9(
2 + εcore

εshell

)(
2 + εshell

εhost

) + 2
(
1 − εcore

εshell

)(
1 − εshell

εhost

)(
R

R+�

)3
.

Here, εcore, εshell and εhost are permittivities of the core, shell
and host, while R and � are respectively the radius of the core
and the thickness of the shell. In the case of uniform external
field, the above expression was derived in Ref. [1] for the par-
ticular case εcore = εhost = 1.

2. Bare nanocrystals

2.1. Fröhlich resonance

If the nanocrystal permittivity is greater than the host per-
mittivity, εNC > εhost, the factor S describes the depression
of the decay due to screening of the radiation field inside the
nanocrystal. Fröhlich was the first to note [4,5] that for a metal
nanocrystal with the complex frequency-dependent dielectric
function

(2.1)εNC(ω) = Re εNC(ω) + i Im εNC(ω)

the system metal nanocrystal plus dielectric host exhibits a res-
onance at the frequency ω = Ω when the real part of the de-
nominator in the expression (1.4) vanishes:

(2.2)Re εNC(Ω) = −2εhost.

At the resonance frequency, the screening factor is found to be:

(2.3)S(Ω) = 3i

2

Re εNC(Ω)

Im εNC(Ω)
.

If Re εNC(Ω) � Im εNC(Ω), the above expression results in a
huge resonance enhancement of the radiation field inside metal
nanocrystals.

In our case of semiconductor nanocrystals, the real part of
the dielectric function (2.1) is negative in the vicinity of the
transverse–longitudinal splitting, i.e. in the frequency range be-
tween the transverse, ΩT , and longitudinal, ΩL, frequencies of
an optical phonon, ΩT < ω < ΩL. In this frequency range, the
dielectric function is well modeled by the expression:

(2.4)εNC(ω) = ε∞
ω2 − Ω2

L + iωγ

ω2 − Ω2
T + iωγ

,

where ε∞ is the high-frequency permittivity (at ω � ΩL), and
γ is the relaxation parameter. Separating the real and imaginary
parts of the dielectric function:

Re εNC(ω) = ε∞
(ω2 − Ω2

L)(ω2 − Ω2
T ) + (γω)2

(ω2 − Ω2
T )2 + (γω)2

(2.5)� ε∞
ω2 − Ω2

L

ω2 − Ω2
T

,

(2.6)

Im εNC(ω) = ε∞
γω(Ω2

L − Ω2
T )

(ω2 − Ω2
T )2 + (γω)2

� ε∞
γω(Ω2

L − Ω2
T )

(ω2 − Ω2
T )2

,

we find from Eq. (2.2) the following equation for the Fröhlich
resonance frequency Ω :

(2.7)ε∞
Ω2 − Ω2

L

Ω2 − Ω2
T

= −2εhost.

In the second approximate equities in Eqs. (2.5) and (2.6), we
took into account that, as a rule, the relaxation parameter γ is
much smaller than ΩT and ΩL, while the frequency ω is suffi-
ciently far from both ΩT and ΩL.

If the frequency of an optical transition in the nanocrystal
ΩTR equals to the resonance frequency Ω , ΩTR = Ω , the radia-
tive decay rate of the transition is enhanced by the gain factor
G(Ω):

(2.8)Γ (Ω) = Γ0G(Ω),

where

(2.9)G(Ω) = ∣∣S(Ω)
∣∣2 =

∣∣∣∣3i

2

Re εNC(Ω)

Im εNC(Ω)

∣∣∣∣
2

.

Frequencies of optical vibrations in different semiconductor
materials range from approximately 10 microns to submillime-
ters. For example, in silicon carbide (SiC) ΩT = 23.8 THz and
ΩL = 29.1 THz, while in lead selenide (PbSe), ΩT = 1.96 THz
and ΩL = 6.14 THz [6]. That obviously enables to design high-
efficiency optical media operating from mid-IR to terahertz-
frequency ranges.

2.2. SiC nanocrystals

As an example, we estimate the resonance enhancement
of an intraband optical transition in silicon carbide (SiC)
nanocrystals. The dielectric function of SiC is well modeled by
the expressions (2.4)–(2.6) with ε∞ = 6.52, ΩT = 793.9 cm−1

(and the wavelength ΛT = 12.6 µm), ΩL = 970.1 cm−1 (ΛL =
10.3 µm), and γ = 4.763 cm−1 [7]. Note that the relaxation
parameter γ is much less than the optical phonon frequencies,
γ /ΩT � 0.006 and γ /ΩL � 0.005.

The solution of the resonance condition (2.7) results in:

(2.10)

Ω = ΩL

[
1 + 2(εhost/ε0)

1 + 2(εhost/ε∞)

]1/2

= ΩT

[
ε0 + 2εhost

ε∞ + 2εhost

]1/2

,

where

ε0 = ε∞
(

ΩL

ΩT

)2

= 9.73

is the static permittivity of SiC.
Here and hereafter, in all our numerical estimates we accept

the refractive index of a host matrix nhost = 1.5 (and hence,
the host permittivity εhost = n2

host = 2.25), because this value
is typical for many solvents, glasses, and polymers. Then the
resonance frequency is estimated to be:

(2.11)Ω � 0.93ΩL � 902 cm−1
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and corresponding resonance wavelength Λ � 11 µm. Using
Eqs. (2.3), (2.5), (2.6), and (2.10) we easily find:

(2.12)S(Ω) = −i
3εhost(ε0 − ε∞)

(ε∞ + 2εhost)(ε0 + 2εhost)

Ω

γ

that is estimated to be:

(2.13)
∣∣S(Ω)

∣∣ � 0.1
Ω

γ
� 19

and hence, the gain factor G(Ω) = |S(Ω)|2 � 3.6 × 102.
Note also, that nonradiative decay of the resonance transition

should be depressed, because the transition frequency is less
than the frequency of longitudinal optical phonon, ΩTR < ΩL.

3. Core–shell nanocrystals

For optical transitions localized in the core of core–shell
nanocrystals, the screening factor is given by Eq. (1.6). If in
this expression, the real part of the complex dielectric function
of the shell

(3.1)εshell(ω) = Re εshell(ω) + i Im εshell(ω)

is negative, Re εshell(ω) < 0, the real part of the denominator in
the expression (1.6) vanishes at two resonance frequencies.

To avoid simple but more tedious computations, we restrict
our further analysis to the case of a relatively thick shell of the
thickness � � R. Is such core–shell nanocrystals, the geometry
factor σ = [R/(R + �)]3 is much less than 1. Therefore, com-
puting zeroes of the real part of the denominator in Eq. (1.6),
we can omit the term proportional to σ . Then, the resonance
frequencies are determined by the equations:

(3.2)Re εshell(Ω1) � −2εhost,

(3.3)Re εshell(Ω2) � −1

2
εcore,

where we also omitted a contribution of small term [Im εshell]2.
Note that at εcore = 4εhost we deal with the degenerate case
when Ω1 = Ω2.

At the resonance frequencies, the magnitudes of the function
W(ω) are found to be:

W(Ω1;σ)

� i

Im εshell(Ω1)

(3.4)

× 18ε2
host

(εcore − 4εhost) + 2(εcore + 5εhost)σ + 2i Im εshell(Ω1)
,

W(Ω2;σ)

� i

2 Im εshell(Ω2)

(3.5)

× 9εcoreεhost

−(εcore − 4εhost) + 2(2εcore + εhost)σ + 2i Im εshell(Ω2)
,

where we keep the terms proportional to σ and [Im εshell]2,
because they become essential, if εcore is sufficiently close to
4εhost.
In core–shell nanocrystals we still have one free parameter—
the geometry factor σ . An appropriate choice of the geometry
factor enables to increase one of the magnitudes: W(Ω1;σ) or
W(Ω2;σ). If εcore < 4εhost, then at σ = σ1, where

(3.6)σ1 = 4εhost − εcore

2(εcore + 5εhost)
,

we find:

(3.7)W(Ω1;σ1) =
[

3

2

Re εshell(Ω1)

Im εshell(Ω1)

]2

.

That results in the gain factor:

(3.8)G(Ω1;σ1) = [
W(Ω1)

]2 =
[

3

2

Re εshell(Ω1)

Im εshell(Ω1)

]4

.

The expression in the square brackets in the above formula is
nothing but the screening factor at the Fröhlich resonance fre-
quency, and hence, the gain factor in core–shell nanocrystals
is equal to the square of the Fröhlich gain factor, Gcore–shell =
[GFröhlich]2.

For nanocrystals with the CdSe core of permittivity εcore =
6.2 in a host matrix of permittivity εhost = 2.25, the required
geometry factor σ1 = 0.08 � 1, and we find � � 1.3R.

If εcore > 4εhost, then at σ = σ2, where

(3.9)σ2 = εcore − 4εhost

2(2εcore + εhost)
,

we derive analogous expressions for the magnitude W(Ω2;σ2):

(3.10)W(Ω2;σ2) = −3

2

Re εshell(Ω2)

Im εshell(Ω2)

3εhost

Im εshell(Ω2)

and the gain factor:

(3.11)G(Ω2;σ2) =
[

3

2

Re εshell(Ω2)

Im εshell(Ω2)

]2[ 3εhost

Im εshell(Ω2)

]2

.

For nanocrystals with PbSe core of permittivity εcore = 22.9
in a host matrix of permittivity εhost = 2.25, the required geom-
etry factor σ2 = 0.14, and we find � � R.

Thus, core–shell nanocrystals exhibit a huge enhancement
of an optical transition localized in the core provided that the
geometry factor is chosen to maximize the gain factor either
at the frequency Ω1 or at the frequency Ω2. An appropriate
choice of materials, including host material, and sizes of core–
shell nanocrystals enables to develop extremely efficient optical
media operating in an extremely wide spectral range—from ul-
traviolet to terahertz.

3.1. Semiconductor shell

To show a high efficiency of core–shell nanostructures we
estimate parameters the gain factor in core–shell nanocrystals
with the shell made of SiC, focusing on the resonance frequency
Ω1 that is controlled by host permittivity only. As in the case
of bare SiC nanocrystals, for core–nanocrystals in a host of per-
mittivity εhost = 2.25, the resonance frequency Ω1 � 902 cm−1

(Λ1 = 11 µm). The core of the structure can be made of any
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semiconductor material1 enabling to provide an intraband opti-
cal transition with the transition frequency ΩTR = Ω1. How-
ever, the permittivities of core and host control the required
geometry factor σ1. For CdSe core of radius R the shell thick-
ness � = 1.3R.

In the case of bare nanocrystals the Fröhlich gain factor is
given by Eq. (2.9), and was estimated to be GFröhlich � 3.6 ×
102. Therefore, for core–shell nanocrystals with the SiC shell,
we immediately find

(3.12)Gcore–shell(Ω1;σ1) = [GFröhlich]2 = 1.3 × 105.

Thus, semiconductor core–shell nanocrystals exhibit a huge en-
hancement of optical transitions lying in the spectral range from
10 microns to submillimeters. To discuss an electrodynamical
enhancement of optical transition in the ultraviolet, visible and
near-IR ranges, we need obviously to consider nanostructures
with metal shells. The first example of such a nanostructure
with the cobalt (Co) core and CdSe shell have been recently
fabricated [8].

3.2. Metal shell

Let us consider first the case of shell made of metal, e.g. an
alkali metal, whose dielectric function is well described by the
Drüde formula:

(3.13)εshell(ω) = 1 − ω2
p

ω(ω + i/τ )
,

where ωp and τ are respectively the plasma frequency and re-
laxation time. The real and imaginary parts of the dielectric
function are then given by:

(3.14)Re εshell(ω) = 1 − ω2
pτ 2

ω2τ 2 + 1
� 1 − ω2

p

ω2
,

(3.15)Im εshell(ω) = ω2
pτ

ω(ω2τ 2 + 1)
� 1

ωpτ

(
ωp

ω

)3

.

Here, in the second approximate equities, we took into account
that in alkali metals ωpτ � 1 ranging from 79 for lithium (Li)
to 285 for sodium (Na) [9], and the frequency range of our in-
terest is not very far from the plasma frequency, i.e. ωτ is also
much greater than 1.

Then, Eqs. (3.2) and (3.3) result in the following expressions
for the resonance frequencies:

(3.16)Ω1 = ωp

(1 + 2εhost)1/2
,

(3.17)Ω2 = ωp

(1 + εcore/2)1/2
.

Since the plasma frequency in alkali metals ranges from 2.8
eV for cesium (Cs) to 6.2 eV for lithium (Li), the resonance
frequency Ω1 for nanostructures with alkali shell in a host of
permittivity εhost = 2.25, Ω1 = ωp/

√
5, ranges in the interval

1 We assume here that both core and shell semiconductor materials are chosen
to provide also the localization of the considered optical transition in the core
of the nanostructure.
1.2–2.6 eV, covering thus the wavelength range from approxi-
mately 470 nm to 1 micron. Since the resonance frequency Ω1
does not depend on the core permittivity core, one can employ
any semiconductor, in which the frequency of one of the optical
transitions can be tuned by the core size to Ω1. While estimates
of the resonance frequency Ω2 require to specify semiconduc-
tor material of the core.

Nevertheless, as well in the case of semiconductor shell, the
choice of the geometry factor depends on the core permittiv-
ity. For the CdSe core of radius R, the required thickness of the
shell was already estimated to be � = 1.3R. Then, the magni-
tude of the function W(ω) at ω = Ω1 is found to be:

(3.18)W(Ω1;σ1) =
[

3εhost

(1 + 2εhost)3/2
(ωpτ)

]2

.

At εhost = 2.25, we then get W(Ω1;σ1) � [0.5ωpτ ]2. At a typ-
ical for alkali metals value ωpτ ∼ 100, we find W(Ω1;σ1) ∼
2.5 × 103, that results in the giant gain factor G(Ω1;σ1) =
[W(Ω1;σ1)]2 ∼ 6 × 106.

In many metals, the dielectric function is not described by
the Drüde formula in the visible and near-IR spectral ranges.
Therefore, we need to use experimental data to engineer core–
shell nanostructures with enhanced optical transitions. Let us
consider, for example, a nanostructure with the silver (Ag)
shell. The frequency Ω1 is found from the condition (3.2). As
it follows from the experimental data for silver [10], the real
part of the dielectric function of the silver shell, Re εshell(ω),
reaches the magnitude −2εhost = −4.5 at the frequency ω =
Ω1 � 3 eV. While the imaginary part of the silver dielectric
function is found to be Im εshell(Ω1) � 0.2 [10]. At an appro-
priate choice of the core and shell sizes, we get for the gain
factor:

(3.19)

G(Ω1;σ1) =
[

3

2

Re εshell(Ω1)

Im εshell(Ω1)

]4

�
[

3

2

4.5

0.2

]4

� 1.2 × 106.

4. Nanostructures with two shells

To prevent a direct electrical core–shell contact, it could be
necessary to fabricate an intermediate shell between the core
and metal (or even semiconductor) shell. Moreover, a suffi-
ciently thick intermediate shell enables to essentially depress
a radiationless energy transfer from the core to a metal shell
with excitation of surface plasmons that undergo Landau damp-
ing [11].

An intermediate shell can be made of either semiconductor
or even dielectric material like silica (SiO2) [12]. If the thick-
ness of the intermediate shell is much less than the core radius,
it does not contribute essentially to electrodynamical properties
of the structure, which are still described by the screening factor
W (1.6), and all of the above-derived results are thus valid.

A sufficiently thick intermediate shell essentially modifies
Eq. (1.6). Now, the expression for the screening factor [3] con-
tains, as it must be expected, three ratios of permittivities:
εcore/εint.shell, εint.shell/εshell, and εshell/εhost. If the real part of
the dielectric function of the shell is negative, the resonance fre-
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quencies are found from the conditions:

(4.1)Re εshell(Ω1) � −2εhost,

(4.2)Re εshell(Ω2) � −1

2
εint.shell.

They are completely analogous to the conditions (3.2) and (3.3)
for core–shell nanocrystals, but both of the resonance frequen-
cies are independent of the core permittivity, because the res-
onance frequency Ω2 is determined by the permittivity of the
intermediate shell. That provides us an additional flexibility in
engineering nanostructured optical media with desired proper-
ties.

Although we discussed here only optical transitions local-
ized in the core of core–shell nanostructures, the developed
approach enables to consider optical transitions localized in one
of the shells of the nanostructure or even extended over core and
shell, as it occurs in ZnSe/CdSe nanostructures [13,14].
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