
Impurity center in a semiconductor quantum ring in the presence of a radial electric field

Boris S. Monozon,1,* Mikhail V. Ivanov,2,† and Peter Schmelcher2,3,‡

1Physics Department, Marine Technical University, 3 Lotsmanskaya Street, 190008 St. Petersburg, Russia
2Theoretische Chemie, Institut für Physikalische Chemie, Universität Heidelberg, INF 229, 69120 Heidelberg, Germany

3Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany
(Received 12 March 2004; revised manuscript received 17 September 2004; published 23 November 2004)

The problem of an impurity electron in a quantum ring(QR) in the presence of a radially directed strong
external electric field is investigated in detail. Both an analytical and a numerical approach to the problem are
developed. The analytical investigation focuses on the regime of a strong wire-electric field compared to the
electric field due to the impurity. An adiabatic and quasiclassical approximation is employed. The explicit
dependences of the binding energy of the impurity electron on the electric field strength, parameters of the QR,
and position of the impurity within the QR are obtained. Numerical calculations of the binding energy based on
a finite-difference method in two and three dimensions are performed for arbitrary strengths of the electric
field. It is shown that the binding energy of the impurity electron exhibits a maximum as a function of the
radial position of the impurity that can be shifted arbitrarily by applying a corresponding wire-electric field.
The maximal binding energy monotonically increases with increasing electric field strength. The inversion
effect of the electric field is found to occur. An increase of the longitudinal displacement of the impurity
typically leads to a decrease of the binding energy. Results for both low- and high-quantum rings are derived
and discussed. Suggestions for an experimentally accessible setup associated with the GaAs/GaAlAs QR are
provided.
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I. INTRODUCTION

During the last decade electronic and optical properties of
low-dimensional semiconductor structures have been studied
extensively both experimentally and theoretically. Along
with long-known systems like quantum wells, quantum
wires, quantum dots, and superlattices, the novel confined
structures called quantum rings(QR’s) attract much atten-
tion. The QR can be viewed as a cylindrical quantum dot
consisting of an axially symmetric cavity. The unique topol-
ogy of the QR leads to remarkable quantum phenomena. In
the presence of an axially directed magnetic field persistent
current and oscillations of the electron energy as a function
of the magnetic flux(Aharonov-Bohm effect) were found to
occur.1

It is common knowledge that impurities and/or excitons
modify considerably the electronic, optical, and kinetic prop-
erties of low-dimensional structures such as QR’s. Also these
properties are strongly affected by external magnetic and
electric fields. Today, an extensive literature is available
which traces the effects of a magnetic field on free carriers,
excitons, and impurity states in the QR(see, for example,
Lin and Guo2 and Monozon and Schmelcher3 and references
therein). At the same time the influence of an electric field on
the electronic properties of a QR has attracted much less
attention. The energy levels of free electrons and the oscilla-
tor strengths of the interband optical transitions as a function
of the radii of the QR and strength of the in-plane electric
field were investigated in Ref. 4. Barticevicet al.5 studied
theoretically the effect of the in-plane electric field on the
Aharonov-Bohm oscillations and the optical absorption in
the QR in the absence of impurities and excitons. The effects
of the eccentricity and an in-plane electric field on the elec-
tronic and optical properties of elliptical QR’s have been

considered in Ref. 6. Recently the influence of the in-plane
electric field on the persistent current in the QR coupled to a
quantum wire was studied.7 In contrast to Refs. 4–7 the ef-
fect of the impurity center on the electronic states in the QR
subject to an axially directed magnetic and radially directed
electric fields was taken into account in Ref. 3. The influence
of the radial electric field on the electron was assumed to be
much weaker than that of the impurity center, magnetic field,
and confinement. However, the influence of a strong electric
field on the impurity states in the QR is certainly of interest.
The reason for this is that a strong electric field induces a
considerable polarization of the spatial distribution of the
carriers.4,6 Note that this may be used in order to modulate
effectively the intensity of photocurrents and emission of
light from optoelectronic devices based on QR structures.
The analogous effect relating to quantum wells was reported
by Mendezet al.8 Since the problem of the impurity electron
in the QR in the presence of a strong electric field is not
addressed in detail in the literature, we investigate this prob-
lem here. In the case where the electric field is parallel to the
symmetry axis of the QR the ring topology is preserved but
there is no significant effect on the radial states of the QR.
For a strong in-plane electric field the ring topology is bro-
ken, leading to the disappearance of the unique ring proper-
ties. It is therefore most advantageous to apply a radially
directed electric field created by a wire whose position coin-
cides with the symmetry axis of the QR. In this case the
electric field is directed radially and a strong influence on the
radial motion is foreseen and, equally important, the topol-
ogy of the QR is preserved.

In the present investigation of an impurity center in a
semiconductor quantum ring in the presence of a radially
directed electric field a twofold approach is pursued. First we
will perform studies to obtain analytical(approximate) solu-
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tions of the stationary Schrödinger equation in certain pa-
rameter regimes. This elucidates in particular the behavior
and properties of the impurity binding for these regimes.
Second, we perform a complementary numerical investiga-
tion that covers all possible cases(position of impurity,
strength of the electric field, radii and height of the QR).
Finally, exemplarily, a comparison of analytical and compu-
tational results is provided.

In detail we proceed as follows. Section II contains a
general description of the setup—i.e., the quantum ring, the
impurity, and the electric field configuration. Section III is
devoted to the analytical investigation providing the method,
the results, and their discussion. Section IV begins with an
outline of our computational method followed by a compre-
hensive discussion of our numerical results. Section V pro-
vides a(naturally limited) comparison of the analytical and
numerical results. Section VI contains the conclusions.

II. QUANTUM RING, IMPURITY, AND FIELD
CONFIGURATION

We consider a QR formed by the revolution of a rectangle
around thez axis. The plane of the rectangle contains thez
axis. The QR is bounded by potential barriers of infinite
height at the planesz= ±d/2 and impenetrable cylindrical
surfaces at internalr=a and externalr=b radii. The chosen
model corresponds to a hard-wall confinement potential. Al-
ternatively, Chakraborty and Pietiläinen9 proposed a para-
bolic ring confinement potential determined by the radius of
the ring r̄ and by the effective frequencyV. This potential
has been very effectively used in studies of QR’s.10–13 A
comparison of the above-mentioned potential models is pro-
vided in Ref. 11.

The position of the impurity centerr0 is determined by the
cylindrical coordinatesaør0øb,w0=0, and −d/2øz0ø
+d/2. Additionally a radially directed electric field is pro-
vided by the field of a charged wire with linear effective
charge densityl whose position coincides with thez axis.
Furthermore, we take the conduction band to be parabolic,
non degenerate, and separated from the valence band by a
wide energy gap.

In the effective mass approximation the equation describ-
ing the impurity electron possessing the effective massm at a
position rsr ,w ,zd subject to the axially symmetric and radi-
ally directed electric field has the form

H−
"2

2m
S1

r

]

] r
r

]

] r
+

1

r2

]2

] w2 +
]2

] z2D +
el

2p«0«
ln

r

a

−
e2

4p«0«fr2 − 2rr0cosw + r0
2 + sz− z0d2g1/2JCsr,w,zd

= E Csr,w,zd, s1d

where« is the dielectric constant.
By solving this equation subject to the boundary condi-

tions

Csr,w,zd = 0 for r = a, r = b, z= ± d/2, s2d

the total energyE and the wave functionC can be found in
principle.

III. ANALYTICAL METHOD AND RESULTS

A. Adiabatic approach

We assume that the effects of the lateral(within the x−y
plane) confinement and of the electric field on the(bound)
electron are taken to be much stronger than the influence of
the Coulomb field of the impurity center. Under this condi-
tion the motion of the electron parallel to thez axis is adia-
batically slower than the motion in thex−y plane and the
cylindrical variablesr , w, and z can be adiabatically sepa-
rated. In the adiabatic approximation the wave functionC
can be written in the form

Csr,w,zd = QN,msr,wdfN,mszd, s3d

where the function

QN,msr,wd =
expsimwd

Î2p
RN,msrd s4d

describes the lateral motion of the electron of energyE'N,m
determined by the radial confinement and the electric field.
RN,msrd is theNth radial state function(N=1, 2,…) possess-
ing angular quantum numberm=0, ±1, ±2,… . It vanishes at
r=a and r=b [see Eq.(2)]. The function fN,mszd describes
the longitudinal motion parallel to thez axis and satisfies the
equation

−
"2

2m

d2

dz2 f sN,mdszd + VN,mszdf sN,mdszd = WsN,mdf sN,mdszd, s5d

with the boundary conditions

f sN,mds±d/2d = 0 s6d

and with the adiabatic potential

VN,mszd = −
e2

4p«0«
E dr

2p

uRN,msrdu2

fr2 − 2rr0cosw + r0
2 + sz− z0d2g1/2.

s7d

The binding energyEb=Es0d−E of the impurity is defined
as usual by the difference between the energy of the free
electron in the QR,Es0d=E'N,m+"2p2l2/2 m d2, l =1, 2,…,
and the energy of the impurity electron,E=E'N,m+WsN,md,
which yields

Eb =
"2p2l2

2 m d2 − WsN,md, l = 1,2,…, s8d

where the energy of the longitudinal stateWsN,md is obtained
by solving Eq.(5).

B. Quasiclassical lateral states of the confined electron in the
presence of an electric field

Let us first consider only the electron in the quantum ring;
i.e., we omit the Coulomb term and the kinetic energy in the
z direction in Eq.(1). Substituting

RN,msrd = r−1/2expsx/2duN,msxd, s9d

where
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r = r2expx, r2 = a exps− x1d, x1 = −
k2

s
,

k2 =
2mE'N,m

"2 , s=
2mel

"22p«0«
, s10d

we obtain the equation for the functionuN,msxd:

uN,m9 sxd − fm2 + sr2
2x exps2xdguN,msxd = 0. s11d

The boundary conditions(2) becomeusx1d=usx2d=0 and
x2= lnsb/ad+x1. Further we consider the cylindrically sym-
metric radial state only and the correspondingm=0 label will
be dropped in the following.

Since Eq.(11) does not allow for an exact analytical so-
lution for arbitrary magnitudes of the electric field,~s, a
quasiclassical approach will be used. This method was de-
veloped originally for a free electron in an unbound medium
in the presence of a radial electric field in Ref. 14. In case of
a positively charged wiress.0d attracting the electron to the
internal surface of the QR the wave functionuNsxd is given
by the equation

uNsxd = S4s

p
D1/4

Q−1/2sxdcosFFsxd −
p

4
G , s12d

whereQsxd=r2s
1/2s−xd1/2expsxd and where

Fsxd =E
x1

x

Qstddt. s13d

The parametersk and r2 are determined by the Bohr-
Sommerfield quantization rule

E
x1

0

Qstddt = psN + 1/2d, N = 0,1,2,… . s14d

The limits of the integration in Eq.(14) x=x1 and x=0
correspond to the near and far turning pointsr=a and r
=r2. Note that the distancer2 determines the region of the
localization of the electron density. Under the condition
−x1@1 the integration in Eq.(14) can be performed explic-
itly, thereby providing the expressions for the energy of the
lateral motionE'N (Ref. 14) and the radius of theNth radial
stater2N,

E'N =
"2s

2m
lnSr2N

a
D, r2N = S4p

s
D1/2

sN + 1/2d, s15d

as well as the functionFsxd, Eq. (13), for x1øxø0,

Fsxd = psN + 1/2dS1 −FFsÎ− xd −
2

p1/2
Î− xexpxGD ,

s16d

whereFstd is the probability integral.15 Equations(15) and
(16) are valid under the conditions

a

r2N
! 1, lnSr2N

a
D @ 1. s17d

For the narrow QR satisfying the conditions

sb − ad ! a,b,
sb − ad3s

2p2sN + 1d2a
! 1,

the Bohr-Sommerfeld quantization rule

E
x1

x2

Qstddt = psN + 1d, N = 0,1,2,…,

leads to the energy of the lateral motion:

E'N =
"2p2sN + 1d2

2msb − ad2 +
elsb − ad
4p«0« a

. s18d

This result coincides completely with that obtained in
Ref. 3 where the Schrödinger equation was solved by means
of perturbation theory. The energyE'N, Eq. (18), is the size-
quantized energy level in the two-dimensional(2D) quantum
well of width sb−ad perturbed by the homogeneous electric
field with the effective strengthls4p«0« ad−1.

For the negatively charged wiresl,0d repulsion of the
electron towards the external cylindrical surface of the QR
leads to the Bohr-Sommerfeld rule

E
0

x2

uQstdudt = psN + 1/2d, N = 0,1,2,…,

which yields for the lateral energyE'N the result

E'N = −
"2

2m
usulnSb

a
D +

"2

2m
F3psN + 1/2dusu

2b
G2/3

. s19d

This result is valid under the condition

2p2sN + 1/2d2

usub2 ! 1.

It follows from above that the energyE'N, Eq.(19), is the
sum of the lowest potential energy of the electron positioned
at r=b in the presence of the radial electric field and a per-
turbatively acting QR confinement.

Next we consider the positively charged wiresl.0d and
relatively wide QR for which the lateral energyE'N is given
by Eq. (15). In parallel with this we assume that the condi-
tion

r2N ! a0, s20d

where a0=4p«0« "2m−1e−2 is the Bohr impurity radius,
holds. This means that the effect of the electric field on the
electron considerably exceeds the influence of the impurity
center, so that the energy of the lateral motionE'N of the
impurity electron is determined by the right-hand side of Eq.
(15).

C. Binding energy of the impurity electron

1. 2D impurity states

Under the condition

d ! a0, s21d

the states of the impurity electron have 2D character. In this
case the total energyE can be written in the form
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E = E'N + DEN, s22d

where E'N is given by Eq.(15) and whereDEN is deter-
mined by the matrix element of the Coulomb term on the
left-hand side of Eq.(1) in which we neglect the dependence
on the coordinatez. The matrix element is calculated with
respect to the functions(9), (12), and(16) with the result

DEN = − 4ERyS a0

r2N
DF 1

p
lnSr2N

a
DG1/2F1 −

lnsr0/ad
2 lnsr2N/adG ,

s23d

where ERy="2/2m a0
2 is the impurity Rydberg constant.

Equation(23) is valid under the conditions(17), (20), and
(21) anda!r0!r2N. The energyE, Eq. (22), is obtained by
shifting the energy of the lateral motion of the free electron
in the QR E'N, Eq. (15), by the amountDEN, Eq. (23),
towards lower values of the energy. The binding energyEb
=E'N−E whereE is given by Eq.(22) becomesEb=−DEN
whereDEN is defined by Eq.(23).

2. 3D impurity states

For the relatively high QR satisfying the conditions

r2N ! d,a0, s24d

the motion of the electron parallel to thez axis described by
Eq. (5) should be taken into account. The analysis of Eqs.
(5)–(7) is based upon the Hasegawa-Howard method devel-
oped originally in Ref. 16 and was worked out in further
detail in Ref. 17. The details of the application of this
method to the problem of the impurity in the QR without
field and in the presence of a strong magnetic field can be
found in Ref. 3. It allows us to restrict ourselves to the tran-
scendental equation for the quantum number determining the
energy of the ground state of the longitudinal motionW.

(a) High QR sd.a0d. The equation for the quantum
numbern,1 determining the energyW=−ERy/n2 has the
form

2C + cs1 − nd +
1

2n
+ lnS r2N

a0n
D − Dsr0d −

1

2
fG1sz0d + G2sz0dg

= 0, s25d

whereC is the Euler constants.0.577d and wherecsxd is
the psi-function, the logarithmic derivative of the gamma
function Gsxd. The dependences of the energyW on the
radial and longitudinal positions of the impurity center are
given by the functions

Dsr0d = HFsy0
1/2ds1/2 −y0d + y0 − sy0/pd1/2exps− y0d at r0 ø r2N,

y0 at r0 ù r2N,
J s26d

wherey0=−lnsr0/r2Nd and

G1,2= Gs− ndS d

a0n
D2nHexpF d

a0n
S1 7

2z0

d
DG − 1J−1

,

s27d

respectively. Equations27d is valid under the condition

S d

a0n
D2n

4 sinhS 2z0

a0n
DFexpS d

a0n
D − 2 coshS 2z0

a0n
DG−1

! 1.

s28d

Note that Eq.(28) does not significantly limit the dis-
placement of the impurityz0 from the symmetric plane of the
QR sz=0d. For the QR of heightd.2a0 subject to the radial
electric field providing the relationshipr2N.0.4a0 and for
the impurity being positioned close to the midplanesz0=0d
and the internal surfacesr0.a,y0@1d, Eq. (25) yields for
the quantum numbern.0.5. Even though the impurity is
shifted by a considerable distancez0=d/4 the term on the
left-hand side of Eq.(28) is about 0.3. In principle Eq.(25)
can be solved numerically for arbitrary values of the height
of the QR d.a0 and the impurity positionr0,d/2−uz0u
@r2N. However, the explicit dependences of the energyW
on the above-mentioned parameters can be found for the lim-

iting cases of small displacementsz0 from the symmetric
plane of the QRs2z0/d!1d, for aør0!r2N and a maximum
sr0.b@r2Nd shift r0 of the impurity from the symmetric
axis r=0.

For small displacements 2z0/a0n!1 the dependence of
the quantum numbernsz0d,1 and the energyW of the
ground state as a function of the displacementz0 can be
found explicitly from Eq.(25) with the result

Wsz0,r0d = −
ERy

n1
2 F1 − 2Gs1 − n1dS 2z0

a0n1
D2S d

a0n1
D2n1

3expS−
d

a0n1
DG , s29d

wheren1 is the solution to Eq.s25d for z0=0 and for any radii
r0.

The effect of the radial displacementr0 is described by
the functionDsr0d, Eq. (26). For r=r2N we haveD=0 and
with decreasing(increasing) r0 the functionDsr0d increases
(decreases) towards the internal(external) boundary of the
QR. We obtain, from Eq.(26),

Dsr0d =H 1
2 for sr0 − ad ! a,
r2N−r0

r2N
for ur0 − r2Nu ! r2N.J s30d
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For small radial displacements fromr0=r2N for which
4nD!1 [see below Eq.(30)], Eq.(25) gives the approximate
expression for the quantum numbern and then for the energy
of the ground stateW:

Wsz0,Dd = −
ERy

n2
2 F1 +

4n2

1 + 2n2
Dsr0dG , s31d

wheren2 is the solution to Eq.s25d for Dsr2Nd=0 and any
positionsz0.

In the logarithmic approximation fr2N/a0

!1,ulnsr2N/a0du@1g the quantum numbern can be calcu-
lated from Eq.(25) explicitly:

1

n
= 2H− lnSr2N

a0
D + Dsr0d +

1

2
fG1sz0d + G2sz0dgJ . s32d

It follows from Eq. (8) that the binding energyEb of the
impurity electron in the high QR can be written in the form

Eb = ERyFSpa0

d
D2

+
1

n2G , s33d

where the quantum numbern can be found from Eq.s25d to
give particularly in the above-mentioned logarithmic ap-
proximation the expressions32d. It enables us to investigate
qualitatively the dependence of the binding energyEb on the
internal radiusa and heightd of the QR, the strength of the
electric fields, and the position of the impurity centerz0,r0.
We emphasize that the logarithmic approximation is used
only for a qualitative analysis.

sbd Low QR sd,a0d. For positive energiesW
=ERy/s2 in Eq. s5d using the procedure presented in detail
in Ref. 3 we obtain the transcendental equation for the
quantum numbers:

w̃ssd + lnSr2N

a0s
D − Dsy0d + 1 −

1

2
fG̃1sz0d + G̃2sz0dg = 0.

s34d

In Eq. (34) the following notations are employed:

w̃ssd =
G̃ssd
2i
H 1

GsisdF ip

2
+ 2C − 1 +cs1 + isd −

1

2is
G − c . c.J ,

1

G̃ssd
=

1

2i
F 1

Gsisd
−

1

Gs− isdG ,

G̃1,2sz0d = G̃ssd
ReWis,1/2st1,2d
Im Mis,1/2st1,2d

, t1,2=
2

ia0s
Sd

2
7 z0D .

Equation(34) can be solved explicitly fors!1 to give for
the energy of the ground stateW:

W=
"2p2

2md2 + DW, s35d

where

DW= − 2ERySa0

d
DH− 4FC − Dsr0d + lnSpr2N

d
DGcos2Spz0

d
D

+ lnFp2S1 −
4z0

2

d2 DGJ . s36d

Equations(35) and (36) are valid under the conditions
(24) and d!pa0. The energyW, Eq. (35), is the size-
quantized ground energy level of the electron in the quantum
well of width d shifted towards lower energies by an amount
of DW, Eq. (36), associated with the impurity field. Substi-
tuting the energyW, Eq. (35), into the right-hand side of Eq.
(8) taken forl =1 we obtain for the binding energyEb of the
impurity electron in the low QR the resultEb=−DW, where
DW is given by Eq.(36).

D. Discussion of the analytical results

1. 2D impurity states

The binding energyEb of the 2D states has the formEb
=−DEN where the correction to the lateral energy caused by
the impurity attraction is given by Eq.(23). It is clear from
Eq. (23) that the binding energy decreases with an increase
of the internal radius of the QR,a. Also the binding energy
decreases with increasing the radial displacementr0 of the
impurity center from the internal surface of the QR in the
region a!r0!r2N. Since the strong electric field concen-
trates the electron density close to the internal surfacer.a,
the greater the distancer0−a between this surface and the
impurity center is, the less the impurity attraction—i.e. the
less the binding energy. For the impurity positioned in the
region a!r0!r2N the binding energy increases with in-
creasing electric field strength~s. The increasing electric
field shifts the electron density distributed betweenr.a and
r.r2N towards the impurity center positioned atr0!r2N.
This leads to an increase in binding energy.

2. 3D impurity states, high QR

The binding energyEb of the 3D states in the high QR
sd.a0d is provided by Eq.(33). The corresponding quantum
numbern can be found in principle from Eq.(25). In the
logarithmic approximation the quantum numbern is deter-
mined by Eq.(32). Since the contribution of the second term
on the right-hand side of Eq.(33) is exponentially small
compared to the size-quantized energys,1/d2d [see Eq.
(29)], the binding energy decreases with an increase of the
height of the QR,d.a0. Clearly from Eqs.(32) and(33) we
see that the binding energy increases with increasing the
electric field. The greater the electric field is, the less the
effective radius of the lateral motionreff,r2N and the
greater the depth of the one-dimensional potentialVN,0, Eq.
(7), governing the longitudinal motion between the bottom
and top of the QR. This leads to an increase with respect to
the binding energyEb. Expressions(8) and (29) show that
the impurity being positioned at the midplanez=0 produces
the greatest binding energy. The shift of the impurity center
z0 from the midplanez=0 causes a decrease of the binding
energyEb. Narrowing the QR or increasing the electric field
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strength increases the energy shiftDEbsz0d associated with
the displacement of the impurity from the planez0=0 in both
cases.

The radial shift of the impurity centerr0 from the some
intermediate positionr0m towards the internalr=a and ex-
ternalr=b surfaces produces similar effects as those induced
by the displacementz0 from the midplanez=0. It follows
from Eqs.(26), (30), (32), and(33) that for QR’s possessing
an external radiusb comparable to the impurity Bohr radius
a0 the binding energyEbsr0d at r0=a approximates that of
r0=b both being determined by the quantum numbern
.f−2 lnsr2N/a0dg−1. Since the parameterDsr0d, Eq. (30),
and quantum numbern−1, Eq. (32), both increase with the
displacement of the positionr0 from the external surface
r0=b towards the internal oner0=a, we expect that the bind-
ing energyEbsr0d reaches a maximum at a certain radial
position r0m. The shift of the binding energy induced by a
radial displacementr0 possesses a maximum for the impurity
positioned at the planez0=0 and decreases with increasing
displacement from this plane.

It follows from the above that the corrections to the bind-
ing energy induced by the displacements from, say, the circle
r0.r2N,z0=0 to the regionaør0,r2N, uz0u.0 can cancel
each other.

3. 3D impurity states, low QR

It is clear that the binding energyEb=−DW, Eq. (36),
increases with a decrease of the heightd,a0 of the QR and
with increasing strength of the electric field strength. For
small displacements 2z0/d!1 from the midplanez0=0 we
obtain, from Eq.(36),

Ebsz0d = Eb1s0d + 2ERySa0

d
DS2z0

d
D2H− 1 +p2FC − Dsr0d

+ lnSpr2N

d
DGJ , s37d

where

Eb1s0d = − 8ERySa0

d
DFC − Dsr0d + lnSp1/2r2N

d
DG

is the binding energy of the impurity positioned at the mid-
planez0=0 and any radial distancesr0. The shift of the im-
purity from the pointz0 leads to a decrease with respect to
the binding energy. With increasing electric field strength we
observe an increase of the shift of the binding energy caused
by the displacementz0.

The dependence of the binding energy on the radial posi-
tion r0 can be derived from Eq.(36):

EbsDd = Eb2s0d + 8ERySa0

d
DDsr0dcos2Spz0

d
D , s38d

where

Eb2s0d = 2ERySa0

d
DH− 4FC + lnSpr2N

d
DGcos2Spz0

d
D

+ ln p2S1 −
4z0

2

d2 DJ
is the binding energy of the impurity positioned at the point
r0=r2N for which Dsr2Nd=0 and at any planez0. The binding
energyEb, Eq. (38), decreases if the impurity center moves
from the certain positionr0m towards the radial boundaries
of the QR. The shift of the binding energy associated with
the parameterDsr0d reaches a maximum for the impurity
center positioned at the planez0=0 and decreases with in-
creasing displacement from this plane. For a low QR the
corrections to the binding energy induced by the radialsr0d
and verticalsz0d displacements can be chosen such that they
cancel each other; i.e., in this case there is no resulting
change of the energy for specific shifts from the circler0
.r2N,z0=0 to the regionaør0,r2N, uz0u.0. Thus the de-
pendences of the impurity binding energyEb on the strength
of the electric field, the height of the QR,d, and the position
of the impurity within the QR,r0,z0, are qualitatively the
same both for high and low QR’s.

IV. NUMERICAL APPROACH

A. Computational method

Our numerical approach to solve Eq.(1) is a finite-
difference method, described in detail in Refs. 18–20 for
two-dimensional systems and in Refs. 21 and 22 for three-
dimensional systems. We have solved Eq.(1) in cylindrical
coordinatessr ,f ,zd in a regionV,

a ø r ø b,

0 ø f ø p,

− d/2 ø zø d/2, s39d

respecting the boundary conditions(2)—i.e., with C=0 on
the boundaries in coordinatesr and z and with condition
]C /]fuf=0,p=0 for f. Our computational procedure consists
of the following main steps. The nodes of the spatial mesh
are chosen in the domainV, and the values of the wave
function at the nodes represent solutions of the initial differ-
ential equation(1). Since the domainV is bounded with
respect to all three coordinates, we can use uniform meshes.
The nodes of these meshes have coordinatesri =a+sb−adsi
−1/2d /Nr ,f j =ps j −1/2d /Nf, and zk=−d/2+dsk
−1/2d /Nz, i =1,… ,Nr , j =1,… ,Nf, and k=1,… ,Nz. After
replacing the derivatives by their finite-difference approxi-
mations Eq.(1) takes the form of a system of linear equa-
tions for C values at the nodes and approximate values of
energy can be found as eigenvalues of the corresponding
Hermitian matrix. The final values for the energy are pro-
vided by using the Richardson extrapolation technique for
the corresponding results emerging from a series of geo-
metrically similar meshes with different number of nodes—
i.e., eigenvalues obtained for meshes withNr=KNr0,Nf
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=KNf0, and Nz=KNz0, where K=1, 2,… . Using this ap-
proach we achieve a major increase of the numerical preci-
sion and, in particular, we obtain together with each numeri-
cal value a reliable estimate of its precision. Typical numbers
of mesh nodes used in the present calculations were of order
403—i.e., 40 nodes in each direction for the thickest(corre-
sponding to maximal values ofK) meshes. An important fac-
tor affecting the choice of valuesKNr0,KNf0, and KNz0 is
the position of the Coulomb center, which does not coincide
with the origin of the coordinate system. A geometrical simi-
larity of meshes with differentK can be achieved only when
this center has coordinatesfa+sb−adi /Nr0,p j /Nf0,−d/2
+dk/Nz0g. This circumstance affects the choice of coordi-
nates of the Coulomb center and sometimes required calcu-
lations on meshes containing more nodes than absolutely
needed for obtaining a satisfactory numerical precision.
Along with solutions of Eq.(1) in its general 3D form we
have solved the corresponding equation in two dimensions
employing the coordinatessr ,fdsz=z0d. This allows us to
obtain the binding energy of the electron in the limitd→0.
The numerical solution has no additional specific features
compared to the 3D one.

B. Numerical results and discussion

We present here detailed results on the binding energy of
the electron for two fixed geometries of the quantum ring,
referred to in the following as(A) and (B) corresponding to
realistic experimental parameters(see below). Some addi-
tional results on the dependences of this energy on the ge-
ometry of the quantum ring are also presented. Parameters of
the quantum ring(A) are GaAs is the ring material, GaAlAs
is the barrier material,a=5 nm,b=20 nm, andd=15 nm.
For the quantum ring(B), a=10 nm,b=40 nm, and d
=3 nm with InAs as the ring material and GaAs as the bar-
rier material. In order to simplify the comparison of the re-
sults for rings made of different materials we transform the
values of parameters into effective atomic units(e.a.u.). Us-
ing parameterse=12.56 andm=0.067m0 for GaAs ande
=14.5 andm=0.023m0 for InAs we obtaina=0.5,b=2, and
d=1.5 for ring (A) and a=0.3,b=1.2, andd=0.09 for (B).
The case(A) means a ring with its height being comparable
with the other dimensions, whereas case(B) is a low ring
with d!a,b.

In the following we will particularly consider the binding
energyEb of the electron as a function of various parameters.
The binding energy is the difference between the total energy
of the electron obtained in our numerical calculations and the
energyE0 of the electron in the same quantum ring without
the impurity center. The latter energy consists of two terms

E0 = Ei0 + E'0, s40d

whereEi0 and E'0 are the energies of the motion in thez
direction and of the lateral motion in the planesf ,rd, respec-
tively. An exact analytical expression for the first of them is
given in Eq.(8) and for the ground state looks for effective
atomic units asEi0=p2/2d2. The second term does not de-
pend ond and can be easily calculated numerically for each
set of parameterssa,b,ld by solving a two-dimensional ver-

sion of Eq.(1) for very large values ofr0. In Fig. 1 we show
E'0sld for several geometries. They includeE'0sld for QR’s
(A) and (B) as well as two dependences for a small inner
radiusa=0.125e.a.u. and different b. For large positivel
these functions are near to linear ones owing to the concen-
tration of the electron density in a small vicinity of the inner
boundary of the quantum ring. In result the curves fora
=0.125e.a.u. and different b coincide for this range ofl.
The slope of the curves for positivel is determined bya and
increases with a decrease of this value. For large negativel
the functionsE'0sld also have a linear form with slopes
depending on botha andb.

In Fig. 2 we presentEb as a function of the position
sz0,r0d of the impurity center for quantum ring(A). The
binding energy shows a significant dependence onr0 andl
for z0!d/2 whereas forz0 being close to ±d/2 the depen-
dence onr0 is much less pronounced. The dependence ofEb
on r0 and l for z0=0 is presented in Fig. 3. It should be
noted that the effect of the radial electric field on the binding
energy is much less compared to its effect on the total en-
ergy. For example, the maximal value of the difference
Ebsl=10d−Ebsl=0d (for r0=0.875) is 0.495 e.a.u., whereas

FIG. 1. Energy of the lateral motion a free electron in a quantum
ring as a function of the chargel of the central wire. Effective
atomic units are used.

FIG. 2. Binding energyEb as a function of the position of the
impurity center for quantum ring(A) l=4.3 of the central wire.
Effective atomic units are used.
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the corresponding difference forE0 (or E'0) is 14.81 e.a.u.
However, the relative change ofEb due to the external field
is of the order of 100%.

For l=0 the binding energy presented in Fig. 2 achieves
its maximum(at r0m) close to the middle point of the radial
cross section of the quantum ring. This is due to the fact that
the energy of the ground state of a hydrogenlike system in-
creases when the system approach a impenetrable potential
wall. In the case of a flat infinite wall the ground state of a
hydrogen atom with the nucleus lying on the boundary of the
wall is similar to the state 2p0 of the free hydrogen atom and
has energy −0.125 a.u. instead of −0.5 a.u. for the ground
state of the free atom. SinceE0 does not depend on the
position of the impurity center, approaching the boundaries
of the quantum ring equally affects the value of the total
energy and the value of the binding energyEb. On the other
hand, positive values ofE0 for spatially confined systems
sl=0d increase the binding energy compared to a free impu-
rity center. As a result the impurity electron in the quantum
ring is more tightly bound for all the parameter values pre-
sented in Fig. 3 compared to the case of an impurity center in
a bulk. However, the total energies of the electron are higher
compared to the case of a bulk.

The asymmetry of the curve forl=0 and in particular a
higher binding energy atr0=a compared tor0=b are due to
the curvature of the boundaries of the quantum ring. In the
case of the innerr0=a boundary its curvature provides more
space for the motion of the electron compared to a corre-
sponding flat wall. As a result the motion of the electron is
less confined and its energy is lower than for the case of a
flat wall and is closer to the values for the case where the
center is far from the boundaries. The opposite curvature of
the outerr0=b boundary of the quantum ring leads to the
opposite effect consisting of a decrease of the binding energy
for the impurity center near to this boundary.

For both positive and negativel the maxima of the en-
ergy curvesEbsr0d exceed that corresponding tol=0. This
effect is fully analogous to the quadratic Stark effect, which

leads to a decrease of the ground-state energy level and to an
increase of the binding energy of the hydrogenlike impurity
electron in the presence of external electric field. The shifts
of the positions of the maximums to the left-hand side for
l.0 and to the right-hand side forl,0 are explained by
the increase of the binding energy for smaller distancesr0 in
the case of an attractive positively charged wire or for larger
distances in the case of a negatively charged wire.

Figure 3(curves corresponding tol= ±4.3) demonstrates
that in the impurity QR the inversion effect of the electric
field occurs. The binding energyEbsld changes as the direc-
tion of the electric fieldl changess+l→−ld. An analogous
effect relating to a quantum well structure was studied in
Ref. 23. In contrast to the quantum well in which the inver-
sion shift of the binding energyDEb=Ebs+ld−Ebs−ld van-
ishes for the impurity center positioned at the midplanesz0

=0d, the inversion shift in the QR is absent for a certain
sr0=1.15d cylindrical surface.

In Fig. 4 we compare the binding energiesEbsr0d for
quantum ring(A) for z0=0,z0=d/2 and for a 2D quantum
ring with the same values ofa and b. We observe a much
weaker dependence of the binding energy forz0=d/2 on the
radial position of the impurity center compared to the case
z0=0. On the other hand, the curve forz0=0 is much lower
in energy and demonstrates a weaker dependence onr0 com-
pared to the 2D curve. The large difference between 2D and
3D binding energies is due to the large value ofd for quan-
tum ring(A) and strong confinement provided by the 2D QR.
The predominant part of the curveEb for the two-
dimensional impurity is aboveEb=2. The latter is the bind-
ing energy for a two-dimensional impurity without external
confinement for the motion inr direction—i.e., a bulk im-
purity. The above-mentioned difference reflects the increase
of the binding energy due to the confinement in the radialr
direction.

The opposite case of a low quantum ring is shown in Fig.
5 where the corresponding energy curves analogous to those
of Fig. 4 are presented for quantum ring(B). For l=0 the
behavior is qualitatively very similar to the one observed in

FIG. 3. Binding energyEb as a function of the radial position of
the impurity centerr0 for quantum ring(A) for z0=0 for several
different values of the linear charge densityl of the central wire.
Effective atomic units are used.

FIG. 4. Binding energyEb as a function of the radial position of
the impurity centerr0 for quantum ring(A) for l=0 and for differ-
ent displacementsz0=0,z0=d/2 and the corresponding 2D quantum
ring sd=0d. Effective atomic units are used.
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Fig. 4 with the exception that both 3D energy curves are
much closer to the 2D curve than for quantum ring(A).
Figure 5 contains also an energy curve for a nonzero radial
electric field, corresponding tol=10. One can see that the
radial electric field has a minor effect for the low QR(B)
compared to the high QR(A). This is due to the quantita-
tively reduced effect of an external electric field on 2D hy-
drogenlike systems compared to 3D ones(see Refs. 24 and
25 and references therein).

The presence of maxima for the energy functionsEbsr0d
and the shifts of these maxima with changing radial electric
field strength determine the form of these functionsEbsld
presented in Fig. 6. For the impurity being centered in thez
direction sz0=0d we present five curves for different posi-
tions r0 in the radial direction. Let us discuss some major
properties of these curves. It is straightforward to understand
the behavior of the two curves forr0=1 andr0=1.25 corre-
sponding to the impurity center positioned near to the middle
of the QR in the radial direction. These curves have maxima
in the vicinity of l=0. This means that the presence of a

strong radial electric field(independent of its direction) de-
creases the binding energy of the electron to the impurity
center for these values ofr0. This decrease of the binding
energy originates from a decrease of the electronic density
near the impurity center, because the radial electric field ei-
ther attracts the electronic density to the inner boundary of
the ring or repels it towards the outer boundary. The curves
Ebsld for the two opposite cases when the impurity center is
situated directly on the innerr0=0.5 or on the outerr0=2
boundary of the QR possess no maxima. They show an in-
crease of the binding energy when the radial electric field
attracts the electronic density to the impurity center and a
decrease ofEb when it repels the electronic density to the
opposite boundary. If the boundaries were flat and infinite in
thez direction the limiting values of the binding energy both
for r0=0.5 andl→ +` and for r0=2 and l→−` would
correspond to the ground state of a two-dimensional hydro-
gen atomEb=2 (the mutual action of the electric field and
the impenetrable potential wall would provide a confinement
of the electron in the plane). In the QR the outer boundary
provides less space for the motion of the electron in the
corresponding limit in comparison with the inner boundary.
As a result we may expect that the limiting value ofEb for
r0=0.5,l→ +` should be larger thanEb for r0=2,l→−`.
This is in agreement with the behavior of the corresponding
curves in Fig. 6. For the two opposite limitsr0=0.5,l→
−` and r0=2,l→ +` Ebsld becomes asymptotically flat.
This is due to the fact that when practically all the electronic
density is concentrated at the opposite boundary its small
redistribution in strong fields does not affect(due to different
but largel values) the interaction with the impurity center.
The energy of this interaction depends on the average dis-
tance between the electron and impurity center. Due to the
confinement of the electron on the inner or outer surface of
the quantum ring, the latter problem acquires some similarity
with the electrostatic problem of a charge near a conducting
surface. The potential of the interaction of a charge with its
image in a convex surface is smaller than the interaction of
the charge with a mirror charge in a flat or a concave surface
(compare with Ref. 26). These reasons explain the result
Ebsr0=0.5,l→−`d.Ebsr0=2,l→ +`d.

As an example ofEbsld for an impurity center located at
a small distance from one of the boundaries we show in Fig.
6 a curve forr0=0.75 andz0=0. In agreement with the pic-
ture presented above it has a maximum in a region of posi-
tive l. The binding energy in the vicinity of this maximum is
higher than that for maxima of the corresponding curves for
r0=1 andr0=1.25 because the radial electric field can con-
centrate a larger electronic density at smallerr. Finally we
present alsoEbsld for r0=1 andz0=0.75—i.e., for the impu-
rity being located on the top boundary of the QR. The be-
havior of this curve is similar to curves forz0=0, but both
the absolute values ofEb and their alterations are smaller.
Note that in the QR the radial electric field may cause the
impurity electron to be more stable while in the bulk material
the electric field leads to the ionization of the impurity cen-
ter.

The obtained results allow us to estimate the values to be
expected in an experiment. It follows from Fig. 6 that the

FIG. 5. Quantum ring(B): same as Fig. 4 and a 3D curve for
l=10,z0=0. Effective atomic units are used.

FIG. 6. Binding energyEb as a function of the central wire
chargel for the different impurity positionsr0,z0 in quantum ring
(A). Effective atomic units are used.
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positive shift of the binding energyDEbsld of the impurity
positioned atz0=0 andr0=7.5 nm in the QR(A) caused by a
positive electric fieldl of a charged wire having the linear
electron density ne=53106 cm−1 amounts to DEb
.4.5 meV. The relative change is thereforeDEbsld /Ebs0d
=0.28. In this electric field a decrease of the binding energy
DEb.−11.6 meV(about 52%) occurs if we shift the impu-
rity center from the symmetric planer0=10 nm,z0=0 to the
boundary planer0=10 nm,z0=7.5 nm. When the impurity
center moves in the symmetric planesz0=0d of the QR(A)
(see Fig. 3) subject to the positive electric fieldl=4.3 deter-
mined by the linear electron densityne=4.3Ã106 cm−1 from
the internal boundaryr0=5 nm to the positionr0=10 nm the
binding energyEb increases by an amountDEb.8.1 meV.
This is about 58% of the binding energyEbsr0d at r0=a. In
this field the inversion shift of the binding energyDEbsld
=Ebs−ld−Ebs+ld for the case z0=0,r0=15 nm is DEb

.7.5 meV. The inversion shift vanishes atr0=11.5 nm. The
estimates of the expected values for the InAs/GaAs QR can
be made accordingly using the parameters of the InAs mate-
rial, providing values of the same order of magnitude as
those for the GaAs QR. Thus the obtained effects induced by
the radial electric field in the impurity QR are detectable in
an experiment.

Concerning the currently available experimental data to
our knowledge most of them are related to the persistent
current occurring in the QR threaded by the magnetic field
(see Ref. 6 and references therein). The effect of an electric
field is studied theoretically4–6 for the case of a uniform elec-
tric field directed parallel to the plane of the QR. One of the
reasons(concerning both theory and experiment) to choose
this configuration is that the electric field has been treated as
a tool acting on the electron states, causing in particular the
breaking of the axially symmetric potential of the QR and
mixing the states with different angular quantum numbers.
No additional serious experimental refinements specifically
associated with the QR’s are required. However, the radially
directed electric field considered in our paper is capable on
the one hand of conserving the axial symmetry of the QR
potential and on the other hand of modifying strongly the
impurity states in the QR. Let us briefly address the question
of the experimental realization of the additional electric field.
A Si wire covered by the exact-position-monitored charge
being embedded in the inner region of the QR offers a source
of the radial electric field. Particularly these wires of about
10 nm diameter are employed in the silicon-based charge-
coupled devices.27 An alternative approach would be as fol-
lows. The inner region of the QR is doped by the shallow
impurity centers. Being activated these centers become
charged and this region can be treated as the source of the
radial electric field for the QR. We believe that our results
could stimulate experiments that contribute to the physics of
QR’s and their optical-electronic applications.

V. COMPARISON OF NUMERICAL AND ANALYTICAL
RESULTS

We present in this section an exemplary comparison of
our numerical and analytical results. Figure 7 shows numeri-

cally calculated energies for a free electron in three different
two-dimensional quantum rings. These energies are given as
functions of the logarithm of the positive charge density on
the central wire. For a QR with smalla=0.125 and very
large b=12.5 the numerical curve forEsld presented on a
double-logarithmic scale is not very different from a straight
line. The formula(15) provides a good approximation for
this curve for not too large values ofl. The discrepancy at
large l is due to small values ofr2Nsr2N,ad given by Eq.
(15). A major improvement of the analytical estimation could
be achieved by replacing the formula forr2N by

r2N = S4p

s
D1/2

sN + 1/2d + a. s41d

The numerically calculated curve fora=0.125 andb=2
coincides with that fora=0.125 andb=12.5 for large values
of l. As l→0 the value ofE converges to a finite limit,
determined by the energy of an electron in a finite 2D quan-
tum ring. This energy increases when the ring becomes nar-
rower as can be seen when comparing the curves fora
=0.125 andb=2 and fora=0.5 andb=2. For largel the
latter curve shows also approximately a linear behavior but is
lower in energy than the curves fora=0.125. This shift is
properly described by Eq.(15), but the relatively small value
b=2 does not allow one to obtain estimations for the energy
of the free electron fora=0.5 andb=2 by Eq.(15). For this
set of parameters we present in Fig. 7 also the energy given
by Eq. (18). One can see that even for such a broad QR this
formula gives quite a reasonable approximation to the en-
ergy. For sb−ad!a,b this formula is in very good agree-
ment with the numerical data.

In Fig. 8 analytical estimates given by Eq.(23) for the
binding energy of an electron in two-dimensional quantum
rings in the presence of an impurity are compared with the
corresponding numerical results. Equation(23) includesr2N
values given by Eq.(15) and this circumstance restricts the
applicability of it for strong fields. Conditionr2N!a0, or
r2N!1 in effective atomic units, restricts the applicability of

FIG. 7. Energy of a free electron in three different two-
dimensional quantum rings as a function of the positive charge of
the central wirel. Numerical results and analytical estimations are
shown. Effective atomic units are used.
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Eq. (23) to weak fields. Within these conditions the agree-
ment of the estimates and numerical results is good. This is
visible for the curvesr0=0.25, which fulfill the conditions
for the validity of Eq.(23) in an improved manner compared
to the caser0=0.375.

VI. SUMMARY AND CONCLUSION

We have studied analytically and numerically the problem
of an impurity electron in a QR in the presence of a radially
directed external electric field. The twofold character of our
investigation illuminates the physical behavior and proper-
ties of our impurity-quantum ring system in a complemen-
tary way. The basis of the analytical approach is an adiabatic
quasiclassical approximation, while a finite-difference
method in two and three dimensions was used to perform the
numerical calculations. For our analytical studies the exter-
nal electric field is taken to be much stronger than the elec-

tric field due to the interaction with the impurity. The depen-
dences of the binding energy of the impurity electron on the
strength of the external electric field, the parameters of the
QR, and the position of the impurity center within the QR
are derived explicitly.

We have shown that if the height of the QR increases
and/or the impurity center displaces from the midcirclesz0

Þ0d for any radius of the QR towards the boundary planes
z0= ±d/2 of the QR, the binding energy decreases. The bind-
ing energy reaches a maximum for the impurity positioned at
the midplanez0=0 of the QR. For a fixedz0 and without the
radial electric field the binding energy has its maximum
close to the middle point of the radial cross section of the
quantum ring. The radial electric field shifts the position of
the maximum towards the center of the ring in case of a
positive charge of the central wirel and in the opposite
direction for a negative charge. This results in a relatively
complicated dependenceEbsld, which is very different for
different distances of the impurity from the center of the QR.
The maximum value of the binding energy increases with
increasing electric field strength. The amplitudes of the men-
tioned dependences decrease while shifting the impurity to-
wards to the boundary planes of the QR. The inversion
effect—i.e., the change of the binding energy when the di-
rection of the electric field is changed to the opposite one—is
realized in the impurity QR. Estimates of the binding ener-
gies for realistic strengths of the external electric field and
the parameters of GaAs and InAs quantum rings are pro-
vided.

We have demonstrated that a strong radial electric field
and ring confinement provide considerable polarization phe-
nomena of the impurity states. Strong dependences of the
binding energy of the impurity electron should lead to sig-
nificant changes of transport processes and optical properties
of the QR’s. The great sensivity of the impurity QR’s to the
radial electric field is useful for its applications in field-effect
transistor structures, electro-optical modulators, and switch-
ing devices.
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