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Impurity center in a semiconductor quantum ring in the presence of a radial electric field
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The problem of an impurity electron in a quantum rif@R) in the presence of a radially directed strong
external electric field is investigated in detail. Both an analytical and a numerical approach to the problem are
developed. The analytical investigation focuses on the regime of a strong wire-electric field compared to the
electric field due to the impurity. An adiabatic and quasiclassical approximation is employed. The explicit
dependences of the binding energy of the impurity electron on the electric field strength, parameters of the QR,
and position of the impurity within the QR are obtained. Numerical calculations of the binding energy based on
a finite-difference method in two and three dimensions are performed for arbitrary strengths of the electric
field. It is shown that the binding energy of the impurity electron exhibits a maximum as a function of the
radial position of the impurity that can be shifted arbitrarily by applying a corresponding wire-electric field.
The maximal binding energy monotonically increases with increasing electric field strength. The inversion
effect of the electric field is found to occur. An increase of the longitudinal displacement of the impurity
typically leads to a decrease of the binding energy. Results for both low- and high-quantum rings are derived
and discussed. Suggestions for an experimentally accessible setup associated with the GaAs/GaAlAs QR are
provided.
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I. INTRODUCTION considered in Ref. 6. Recently the influence of the in-plane

During the last decade electronic and optical properties oflectric field on the persistent current in the QR coupled to a

low-dimensional semiconductor structures have been studieg!antum wire was studiedin contrast to Refs. 4-7 the ef-
extensively both experimentally and theoretically. Along ect of the impurity center on the electronic states in the QR

with long-known systems like quantum wells quantumsubject to an axially directed magnetic and radially directed

wires, quantum dots, and superlattices, the novel confineale‘:tric fields was taken into account in Ref. 3. The influence
structures called qua;ntum fINGQR'S) attract much atten- ©f the radial electric field on the electron was assumed to be

tion. The QR can be viewed as a cylindrical quantum dolmUCh we'aker than that of the impurity center, magnetic ﬁeld.’
consisting of an axially symmetric cavity. The unique topol- and confinement. However, the influence of a strong electric

ogy of the QR leads to remarkable quantum phenomena. :field on the impurity states in the QR is certainly of interest.

the presence of an axially directed maanetic field persiste he reason for this is that a strong electric field induces a
P y 9 P onsiderable polarization of the spatial distribution of the

current and ogcillations of the electron energy as a f“nCtior&arriers‘.‘vﬁ Note that this may be used in order to modulate
of thelmagnetlc fluxAharonov-Bohm effegtwere found 10 efectively the intensity of photocurrents and emission of
occur. _ N _ light from optoelectronic devices based on QR structures.
It is common knowledge that impurities and/or excitonsThe analogous effect relating to quantum wells was reported
modify considerably the electronic, optical, and kinetic prop-py Mendezet al8 Since the problem of the impurity electron
erties of low-dimensional structures such as QR’s. Also thesg, the QR in the presence of a strong electric field is not
properties are strongly affected by external magnetic an@ddressed in detail in the literature, we investigate this prob-
electric fields. Today, an extensive literature is availabldem here. In the case where the electric field is parallel to the
which traces the effects of a magnetic field on free carrierssymmetry axis of the QR the ring topology is preserved but
excitons, and impurity states in the QRee, for example, there is no significant effect on the radial states of the QR.
Lin and Gud and Monozon and SchmelcRend references For a strong in-plane electric field the ring topology is bro-
therein. At the same time the influence of an electric field onken, leading to the disappearance of the unique ring proper-
the electronic properties of a QR has attracted much lesses. It is therefore most advantageous to apply a radially
attention. The energy levels of free electrons and the oscilladirected electric field created by a wire whose position coin-
tor strengths of the interband optical transitions as a functiorides with the symmetry axis of the QR. In this case the
of the radii of the QR and strength of the in-plane electricelectric field is directed radially and a strong influence on the
field were investigated in Ref. 4. Barticevat al® studied radial motion is foreseen and, equally important, the topol-
theoretically the effect of the in-plane electric field on theogy of the QR is preserved.
Aharonov-Bohm oscillations and the optical absorption in In the present investigation of an impurity center in a
the QR in the absence of impurities and excitons. The effectsemiconductor quantum ring in the presence of a radially
of the eccentricity and an in-plane electric field on the elecdirected electric field a twofold approach is pursued. First we
tronic and optical properties of elliptical QR’s have beenwill perform studies to obtain analyticépproximatg solu-
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tions of the stationary Schrodinger equation in certain pa- 1. ANALYTICAL METHOD AND RESULTS
rameter regimes. This elucidates in particular the behavior
and properties of the impurity binding for these regimes.
Second, we perform a complementary numerical investiga- We assume that the effects of the lateraithin the x—y

tion that covers all possible caséposition of impurity, plang confinement and of the electric field on ttigound
strength of the electric field, radii and height of the QR electron are taken to be much stronger than the influence of
Finally, exemplarily, a comparison of analytical and compu-the Coulomb field of the impurity center. Under this condi-
tational results is provided. tion the motion of the electron parallel to tkeaxis is adia-

In detail we proceed as follows. Section Il contains abatically slower than the motion in the-y plane and the
general description of the setup—i.e., the quantum ring, théylindrical variablesp, ¢, andz can be adiabatically sepa-
impurity, and the electric field configuration. Section IlI is rated. In the adiabatic approximation the wave functibn
devoted to the analytical investigation providing the methodcan be written in the form
the results, and their discussion. Section IV begins with an _ N.m
outline of our computational method followed by a compre- V(p.¢.2) = Onmlp, @) T7(2), (3)
hensive discussion of our numerical results. Section V prowhere the function
vides a(naturally limited comparison of the analytical and exp(imo)
numerical results. Section VI contains the conclusions. Onm(p @) = XF?('_@D Rum(p) 4)

A. Adiabatic approach

II. QUANTUM RING, IMPURITY, AND FIELD

CONFIGURATION describes the lateral motion of the electron of endegy|
determined by the radial confinement and the electric field.
®Rum(p) is theNth radial state functioiN=1, 2,..) possess-
ing angular quantum number=0,+1,+2, .. . It vanishes at
p=a and p=Db [see Eq.(2)]. The functionfN™(z) describes

We consider a QR formed by the revolution of a rectang|
around thez axis. The plane of the rectangle contains the
axis. The QR is bounded by potential barriers of infinite
height at the planeg=+d/2 and impenetrable cylindrical . . . "
surfaces at internai=a and externap=b radii. The chosen the Iongltudlnal motion parallel to theaxis and satisfies the

. - equation
model corresponds to a hard-wall confinement potential. Al-
ternatively, Chakraborty and Pietilairfeproposed a para- #h2 d?
bolic ring confinement potential determined by the radius of ~ ~ zd—zzf(N’m)(Z) + V(2 fNM(2) = WNMERM(Z) - (5)
the ringp and by the effective frequend. This potential
has been very effectively used in studies of QR'$2A  with the boundary conditions
comparison of the above-mentioned potential models is pro- N _
vided in Ref. 11. FE(di2)=0 6)

The position of the impurity centeg is determined by the  and with the adiabatic potential

cylindrical coordinatesa<py<b,¢,=0, and €d/2<zy<

+d/2. Additionally a radially directed electric field is pro- @)=~ e dp [Rum(p)?
vided by the field of a charged wire with linear effective ~N™ Amege ) 2m[p? - 2ppocose + pi + (z - z9)?H?
charge density\ whose position coincides with theaxis. )

Furthermore, we take the conduction band to be parabolic,

non degenerate, and separated from the valence band by aThe binding energ¥,=E®-E of the impurity is defined

wide energy gap. as usual by the difference between the energy of the free
In the effective mass approximation the equation describelectron in the QREQ=E  \ ,+/272%/2 p d?, 1=1, 2, ..,

ing the impurity electron possessing the effective massa  and the energy of the impurity electroB=E | y ,+WN™,

positionr(p, ¢,2z) subject to the axially symmetric and radi- which yields

ally directed electric field has the form

— nea1? wWNm) —
{ ﬁ2<1(9 J +1 072 . 52>+ en lnp Eb_zludz_ B |—1,2,..., (8)
o\ TP T T 2 o

2 dp 9 d 0z 2 a N . .

pAPIP P Pro® Teoe where the energy of the longitudinal stadN'™ is obtained

e by solving Eq.(5).
- 2 2 291/2 ‘I’(P,QD,Z)
Ameqe[p” = 2ppoCOSE + py + (2= 29)°]
=E V(p,¢,2), 1) B. Quasiclassical lateral states of the confined electron in the

wheree is the dielectric constant. presence of an electric field

By solving this equation subject to the boundary condi- Let us first consider only the electron in the quantum ring;
tions i.e., we omit the Coulomb term and the kinetic energy in the

z direction in Eq.(1). Substituting

V(p,p,20=0forp=a, p=b, z=z=d/?2, (2
Rum(p) = p™2%exp(x/2)uy m(¥), 9

the total energye and the wave functiod’ can be found in
principle. where
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G (b-a)’s
= poeXPX, zaexp(—Xy), X =-—, b-a)<ab, ——— <1,
P=p2EXPX,  pp =X, % == (b-a) 22N+ Dla
o 2UE  2uen 0 the Bohr-Sommerfeld quantization rule
I h22mege’

X2
f Qtdt==(N+1), N=0,1,2,..,
we obtain the equation for the functiog ,(x): X

UR (%) = [P + Sp5X exp(2X) Juy m(X) = 0. (11)

The boundary conditiong§2) becomeu(x;)=u(x,)=0 and
X,=In(b/a)+x,. Further we consider the cylindrically sym-
metric radial state only and the correspondingO label will
be dropped in the following.

Since Eq.(11) does not allow for an exact analytical so-
lution for arbitrary magnitudes of the electric fields, a

leads to the energy of the lateral motion:

_#2mAN+1)2  en(b-a)
N 2u(b-a)?  4mege a’

This result coincides completely with that obtained in
Ref. 3 where the Schrddinger equation was solved by means
of perturbation theory. The ener&y, , EQ.(18), is the size-
quantized energy level in the two-dimensiof2D) quantum

_ X > U&5ell of width (b—a) perturbed by the homogeneous electric
veloped originally for a free electron in an unbound med'umpeld with the effective strength(4meqe )™

e et . Fo e negaliely charged Wi <0 epulion f th
P Y 9 9 electron towards the external cylindrical surface of the QR

internal surfgce of the QR the wave functiog(x) is given leads to the Bohr-Sommerfeld rule
by the equation

1/4
woo=( %) Q'“Z(X)COS{F(X) - ﬂ . @

where Q(x) = p,s*2(-x)%exp(x) and where

(18

f i Q(t)|dt=m(N+1/2), N=0,1,2,..,
0

which yields for the lateral enerdy \ the result

x £ oo B (D), A2 3TN LR 2B
F(X):J Q(t)dt. (13) lN——2M|s|n . +2M | (19
X1
This result is valid under the condition

The parameter& and p, are determined by the Bohr-

Sommerfield quantization rule 272N + 1/2)?

<1.
|slb?

0
f Q)dt==(N+1/2, N=0,1,2,... (14 .

X1 It follows from above that the enerdy, , Eq.(19), is the
sum of the lowest potential energy of the electron positioned
at p=b in the presence of the radial electric field and a per-
turbatively acting QR confinement.

Next we consider the positively charged wipe>0) and

relatively wide QR for which the lateral ener@y,  is given
by Eq.(15). In parallel with this we assume that the condi-

The limits of the integration in Eqg14) x=x; and x=0
correspond to the near and far turning poiptsa and p
=p,. Note that the distancp, determines the region of the
localization of the electron density. Under the condition
-X1>1 the integration in Eq(14) can be performed explic-
itly, thereby providing the expressions for the energy of th

lateral motionE | \ (Ref. 14 and the radius of thaith radial on
statepon;, pon < Ag, (20)
7%s ( pon 47\ where ay=4mege #2u e ? is the Bohr impurity radius,
Ein= 2_"‘(? o PnT TS (N+1/2), (19 hods. This means that the effect of the electric field on the

electron considerably exceeds the influence of the impurity
center, so that the energy of the lateral motten, of the
impurity electron is determined by the right-hand side of Eq.

as well as the functiofr(x), Eq. (13), for x; <x<0,

F(x) = (N + 1/2)(1 - {@(\’——x) - Wil,zwrxexpxb ,

(16)

where ®(t) is the probability integral® Equations(15) and

(16) are valid under the conditions

a
= <1, |n<@) >1. (17)
P2N a

For the narrow QR satisfying the conditions

(195.
C. Binding energy of the impurity electron

1. 2D impurity states
Under the condition

d < ay, (21

the states of the impurity electron have 2D character. In this

case the total energy can be written in the form
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E:ELN"'AEN, (22) p2N<d,a0, (24)

the motion of the electron parallel to tleaxis described by
Eqg. (5) should be taken into account. The analysis of Egs.
(5)—«7) is based upon the Hasegawa-Howard method devel-

where E |\ is given by Eq.(15) and whereAEy is deter-
mined by the matrix element of the Coulomb term on the

left-hand S'de. of Eqel) in Wh'c.h we negle(_:t the dependence oped originally in Ref. 16 and was worked out in further
on the coordinate _The matrix element IS calculated with detail in Ref. 17. The details of the application of this
respect to the function®), (12), and(16) with the result method to the problem of the impurity in the QR without
12 field and in the presence of a strong magnetic field can be
AEy = - 4 (i){lm(@ﬂ {1 __In(po/a) ] found in Ref. 3. It allows us to restrict ourselves to the tran-
Npan/ L7\ a 2 In(py/a) | scendental equation for the quantum number determining the
(23) energy of the ground state of the longitudinal motidh
(a) High QR (d>ap). The equation for the quantum
where ERy:ﬁz/ZM a(z) is the impurity Rydberg constant. numbern<1 determining the energW:—ERy/n2 has the
Equation(23) is valid under the conditiongl7), (20), and ~ form
(21) anda< pg<<pyn. The energyE, Eq.(22), is obtained by 1 Pon 1
shifting the energy of the lateral motion of the free electron2C + ¢(1-n) + ot |ﬂ(—n = A(po) = E[Gl(zo) +Ga(2)]
in the QRE \, Eq. (15), by the amountAEy, Eq. (23), %
towards lower values of the energy. The binding endggy =0, (25)
;vﬁépe_AEEW?se(rjee%r:z dgg;%gég)q'(zz) becomes,=-AEy  \hereC is the Euler constant=0.577 and wherey(x) is
N ' the psi-function, the logarithmic derivative of the gamma
2. 3D impurity states fungtion I'x). The _dependg_nces of thg eneWon the
radial and longitudinal positions of the impurity center are
For the relatively high QR satisfying the conditions given by the functions

Alpg) = {‘I’(yélz)(llz ~Yo) + Yo — (yo/ M %exp(- yo) atpo= pon, (26)

Yo at po = pon;,

whereyy=-In(pg/ psy) and iting cases of small displacements from the symmetric
4\ q 5 1 plane of the QR2z,/d< 1), for a< py<< p,y @and a maximum
Gy,=T(- n)(—) {exp{—(l - _20” _ 1} , (po=b>pyy) shift py of the impurity from the symmetric
’ agn agn d
(27) For small displacementszgagn<1 the dependence of
the quantum numben(z) <1 and the energyV of the
respectively. Equatiof27) is valid under the condition ground state as a function of the displacemepttan be

axis p=0.
d\> (22 d 27,\ ] found explicitly from Eq.(25) with the result
— ] 4sinnh — ]| exp — | -2 cosh — <1. d

n n n n Er 275 \? 2m
& R R o W(ZOyPO):__zy 1-20(L-n)| — | | —
(28) Ny GoNy/ \ 8oy
Note that EQ.(28) does not significantly limit the dis- ><exp<— i)} (29)
placement of the impurity, from the symmetric plane of the aghy/ |
QR (z=0). For the QR of heighti = 2a, subject to the radial wheren, is the solution to Eq(25) for z;=0 and for any radii

electric field providing the relationship,y=0.4a, and for
the impurity being positioned close to the midplaizg=0)
and the internal surfacgy=a,y,>1), Eq. (25) yields for
the quantum numben=0.5. Even though the impurity is
shifted by a considerable distanzg=d/4 the term on the
left-hand side of Eq(28) is about 0.3. In principle Eq25)
can be solved numerically for arbitrary values of the heigh

Po-
The effect of the radial displacemepg is described by

the functionA(py), Eq. (26). For p=p,y we haveA=0 and
with decreasingdincreasing p, the functionA(pg) increases
(decreasestowards the internajexternaj boundary of the
tQR. We obtain, from Eq(26),

of the QR d>a, and the impurity positionpy,d/2—|z| z for (pp—a) <a,
> p,n. However, the explicit dependences of the enengy Alpo) = paro ¢ (30)
on the above-mentioned parameters can be found for the lim- om 107 [P0~ ponl < pan:
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For small radial displacements fropy=p,y for which ag mp 72
4nA <1 [see below Eq30)], Eq.(25) gives the approximate  AW=~2Egy| " "] =4/ C~ Apg) +1In d2N cos a4
expression for the quantum numbeand then for the energy

of the ground stat&V: 4
g +|n[ﬂ2<1—d—zf>”. (36)
_ Er 4an,
W(zo,4) = = 722[1 + 1+ ZnZA(pO)}’ (31) Equations(35) and (36) are valid under the conditions
2 (24) and d<may. The energyW, Eq. (35), is the size-
wheren, is the solution to Eq(25) for A(p,)=0 and any quantized ground energy level of the electron in the quantum
positionsz,. well of width d shifted towards lower energies by an amount

In the |Ogarithmic approximation [pZN/aO of AW, Eq (36), associated with the Impurlty field. Substi-
<1,|In(pyn/ag)|>1] the quantum numben can be calcu- tuting the energyV, Eq.(39), into the right-hand side of Eq.
lated from Eq.(25) explicitly: (8) taken forl=1 we obtain for the binding enerds, of the

impurity electron in the low QR the resut,=—AW, where
1 1 AW is given by Eq.(36).
o 2{‘ In(%:) +A(pg) + E[Gl(zo) + Gz(zo)]}- (32

It follows from Eq. (8) that the binding energf, of the D. Discussion of the analytical results
impurity electron in the high QR can be written in the form 1. 2D impurity states

may)\2 1 The binding energyg, of the 2D states has the fori,
Ep = Egry ryRrat (33 =-AEy where the correction to the lateral energy caused by
the impurity attraction is given by E@23). It is clear from

where the quantum numbercan be found from Eq25) to ~ Ed. (23) that the binding energy decreases with an increase
give particularly in the above-mentioned logarithmic ap-©f the internal radius of the QR Also the binding energy
proximation the expressiof82). It enables us to investigate decreases with increasing the radial displacemgrif the
qua"tative|y the dependence of the b|nd|ng en@}on the Impurlty center from the internal surface of the QR in the
internal radiusa and heightd of the QR, the strength of the ®gion a<py<<py. Since the strong electric field concen-
electric fields, and the position of the impurity centay,p,. ~ trates the electron density close to the internal surfee@,
We emphasize that the logarithmic approximation is usedhe greater the distanqgg—a between this surface and the
only for a qualitative analysis. impurity center is, the less the impurity attraction—i.e. the
(b) Low QR (d<ay). For positive energiesw less the binding energy. For the impurity positioned in the
=Eg,/ in Eq. (5) using the procedure presented in detail 910N @<po<pyy the binding energy increases with in-

in Ref. 3 we obtain the transcendental equation for theréasing electric field strengths. The increasing electric
guantum numbes: field shifts the electron density distributed betweena and

p=pon towards the impurity center positioned gg<< poy-

_ 1r~ ~ This leads to an increase in binding energy.
o(s) + In(%) ~Alyo) +1- 5[61(20) +Gylz0)] =0.

(34)

In Eq. (34) the following notations are employed:

2. 3D impurity states, high QR

The binding energyg, of the 3D states in the high QR
(d>ay) is provided by Eq(33). The corresponding quantum
~ ) numbern can be found in principle from Eq25). In the
B(9) = @{L['ﬂ +2C-1+y(1+is) - i} -c. c.}, logarithmic approximation the quantum numbeis deter-
2i | I'(is)] 2 2i mined by Eq(32). Since the contribution of the second term
on the right-hand side of Eq33) is exponentially small
1 1] 1 1 compared to the size-quantized energyl/d?) [see Eq.
{@ - m} (29)], the binding energy decreases with an increase of the
height of the QRd> a,. Clearly from Eqgs(32) and(33) we
see that the binding energy increases with increasing the
ReWi 1/o(71 ») 2 (d_ electric field. The greater the electric field is, the less the
m T2 (5 ) effective radius of the lateral motiope;~ poy and the
is, 11271, greater the depth of the one-dimensional potenfjgh, Eq.
Equation(34) can be solved explicitly fos< 1 to give for  (7), governing the longitudinal motion between the bottom
the energy of the ground stal®: and top of the QR. This leads to an increase with respect to
the binding energyE,. Expressiong8) and (29) show that

Fe 2

Gy Az0) =T(9) o

W= h? AW (35) the impurity being positioned at the midplarne0 produces
- 2ud? ' the greatest binding energy. The shift of the impurity center
7, from the midplanez=0 causes a decrease of the binding
where energyE,. Narrowing the QR or increasing the electric field
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strength increases the energy shiff,(z;) associated with a Py 72y
the displacement of the impurity from the plazye0 in both Ep(0) = 2Egy| =2 |1 - 4| C+In| —2 | |cog a4

cases.
The radial shift of the impurity centes, from the some 2 4%
intermediate positiompg,, towards the interngb=a and ex- *In 1 e
ternalp=b surfaces produces similar effects as those induced o ) ) N )
by the displacement, from the midplanez=0. It follows IS the bmdmg' energy of the impurity positioned at 'the_ point
from Egs.(26), (30), (32), and(33) that for QR’s possessing Po=Pzn for which A(p,y)=0 and at any plang,. The binding
an external radius comparable to the impurity Bohr radius €nergyEy, Eq. (38), decreases if the impurity center moves
a, the binding energyE,(po) at pp=a approximates that of from the certain positiom,,, towards the radial boundaries
po=b both being determined by the quantum numiver of the QR. The shift of the binding_energy associ_ated With
~[-2 In(pon/ap) ] Since the parametek(py), Eq. (30), the paramg?em(po) reaches a maximum for the |m_pur_|ty
and quantum number?, Eq. (32), both increase with the Ccenter pos!tloned at the plarzgz_o and decreases with in-
displacement of the positiop, from the external surface Creasing displacement from this plane. For a low QR the
po=b towards the internal ong,=a, we expect that the bind- corrections to the binding energy induced by the ragjig)
ing energyE,(py) reaches a maximum at a certain radial@nd vertical(zy) displacements can be chosen such that they
position pgy. The shift of the binding energy induced by a cancel each other; i.e., in this case there is no resulting
radial displacemem, possesses a maximum for the impurity change of the energy for specific shifts from the cirple
positioned at the plang,=0 and decreases with increasing = Pan,2=0 to the regiora< py < p,y, |2/ >0. Thus the de-
displacement from this plane. pendences of the impurity binding enerBy on the strength
It follows from the above that the corrections to the bind-Of the electric field, the height of the Q®, and the position
ing energy induced by the displacements from, say, the circléf the impurity within the QR,po,2,, are qualitatively the
Po= pan.,Zo=0 to the regiora< py< pon.|2o|>0 can cancel Same both for high and low QR'’s.
each other.

IV. NUMERICAL APPROACH

3. 3D impurity states, low QR )
A. Computational method

It is clear that the binding energl,=-AW, Eq. (36), o : . .
. . - ur numerical approach to solve E@l) is a finite-
INCreases W'.th a decrease of the heujkgao.of the QR and difference method, described in detail in Refs. 18—-20 for
with increasing strength of the electric field strength. For,

Il disol tsz2ld<1 f h idpl 0 two-dimensional systems and in Refs. 21 and 22 for three-
small displacemen szl rom the midplan&o=t We  4imensional systems. We have solved EQ.in cylindrical
obtain, from Eq.(36),

coordinategp, ¢,2) in a region{},

27.\2 asp=<Dh,
Eb(zo>:Eb1<0>+2ERy(%°)(Fz°) {— 1+772{C_A(P0) .
Os¢<m,
+|n(M)”, (37)
d —di2<z<d/?2, (39)

respecting the boundary conditio(®—i.e., with =0 on
the boundaries in coordinatgs and z and with condition
o o (S';If/h(9¢|f¢=”oﬂ,:0 for ¢. Our comr;]utatiogal prfochedure colnsistsh
__ 2] _ T PN of the following main steps. The nodes of the spatial mes
Bo1(0) = 8ERV< ){C A(p0)+ln( d )} are chosen in the domaift, and the values of the wave
function at the nodes represent solutions of the initial differ-
is the binding energy of the impurity positioned at the mid-€ntial equation(1). Since the domair) is bounded with
planez,=0 and any radial distancgs. The shift of the im- respect to all three coordinates, we can use uniform m_eshes.
purity from the pointz, leads to a decrease with respect to 1€ nodes of these meshes have coordingtea+(b-a)(i
the binding energy. With increasing electric field strength We_llz)/Np’ﬁﬁJ:W(J _1/_2)/N¢' and z,=—d/2+d(k
observe an increase of the shift of the binding energy causedl/2/N,i=1,...,N,,j=1,...,N,, and k=1,...,N,. After
by the displacemert,, replacing the derivatives by their finite-difference approxi-
The dependence of the binding energy on the radial posinations Eq.(1) takes the form of a system of linear equa-
tion po can be derived from Eq36): tions for ¥ values at the nodes and approximate values of
energy can be found as eigenvalues of the corresponding
Hermitian matrix. The final values for the energy are pro-
Ey(A) = Efp(0) +8ERy<@>A(po)co§<W—Z°>, (38) vided by using the Richardson extrapolation technique for
d d the corresponding results emerging from a series of geo-
metrically similar meshes with different number of nodes—
where i.e., eigenvalues obtained for meshes wih=KN,,, N,

where
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=KNo, and N,=KN,, whereK=1, 2,.. . Using this ap- 30 T I T T
proach we achieve a major increase of the numerical preci 17— s
sion and, in particular, we obtain together with each numeri- 20| 2=0.125 b

cal value a reliable estimate of its precision. Typical numbers

of mesh nodes used in the present calculations were of orde
40°—i.e., 40 nodes in each direction for the thickésbrre-
sponding to maximal values &) meshes. An important fac- o
tor affecting the choice of valugsN,o, KNy, and KNy is W
the position of the Coulomb center, which does not coincide
with the origin of the coordinate system. A geometrical simi-
larity of meshes with differenK can be achieved only when ] i
this center has coordinatdg+(b-a)i/N,g, 7j /Ny, —d/2 304 .7
+dk/Ny]. This circumstance affects the choice of coordi- iy
nates of the Coulomb center and sometimes required calcu  -40 ' H— ' .
lations on meshes containing more nodes than absolutel -20 -10 0 10 20
needed for obtaining a satisfactory numerical precision. A

Along with solutions of Eq(1) in its general 3D form we _ _

have solved the corresponding equation in two dimensions FIG. 1. Energy of the lateral motion a free electrpn |naqu§ntum
employing the coordinate&, ¢)(z=z,). This allows us to ring as a.functlon of the charge of the central wire. Effective
obtain the binding energy of the electron in the limdit- 0. atomic units are used.

The numerical solution has no additional specific featureséion of Eq.(1) for very large values of,. In Fig. 1 we show
compared to the 3D one. g. y larg 0 g.

E, o(\) for several geometries. They inclulig o(\) for QR’s
' . . (A) and (B) as well as two dependences for a small inner
B. Numerical results and discussion radiusa=0.125e.a.u. and dferentb. For large positivex

We present here detailed results on the binding energy dhese functions are near to linear ones owing to the concen-
the electron for two fixed geometries of the quantum ring,fration of the electron density in a small vicinity of the inner
referred to in the following agA) and(B) corresponding to  Poundary of the quantum ring. In result the curves gor
realistic experimental parametefsee beloy. Some addi- =0-125€.a.u. and dierentb coincide for this range ok.
tional results on the dependences of this energy on the gd-ne slope of the curves for positiveis determined by and
ometry of the quantum ring are also presented. Parameters Bicreases with a decrease of this value. For large negative
the quantum ringA) are GaAs is the ring material, GaAlAs the functionsE ¢(A) also have a linear form with slopes
is the barrier materiala=5 nm b=20 nm, andd=15 nm.  depending on botla andb. _ N
For the quantum ring(B), a=10 nmp=40 nm, andd In Fig. 2 we presenk, as a function of the position
=3 nm with InAs as the ring material and GaAs as the bar{Z.po) of the impurity center for quantum ringA). The
rier material. In order to simplify the comparison of the re- binding energy shows a significant dependenceoand
sults for rings made of different materials we transform thefor zy<d/2 whereas forz, being close to #/2 the depen-
values of parameters into effective atomic urigsa.u). Us-  dence oy is much less pronounced. The dependence,of
ing parameterse=12.56 andu=0.067n, for GaAs ande 0N po and A for =0 is presented in Fig. 3. It should be
=14.5 andu=0.023n, for InAs we obtaina=0.5b=2, and  hoted that the effect of the radial electric field on the binding
d=1.5 for ring (A) anda=0.3,b=1.2, andd=0.09 for (B). energy is much less compared to its effect on the total en-
The casgA) means a ring with its height being comparable€rgy. For example, the maximal value of the difference
with the other dimensions, whereas caB is a low ring  Ep(A=10-Ey(A=0) (for py=0.879 is 0.495 e.a.u., whereas
with d<a,b.

In the following we will particularly consider the binding
energyE, of the electron as a function of various parameters.
The binding energy is the difference between the total energy 151
of the electron obtained in our numerical calculations and the _
energyE, of the electron in the same quantum ring without W
the impurity center. The latter energy consists of two terms

Eo=Ejo+E.o (40)

..... a=0.125b=12.5

2.07

AN v
E L . e
0.5 A e e e

whereE, and E | ; are the energies of the motion in tlze
direction and of the lateral motion in the plafg, p), respec-
tively. An exact analytical expression for the first of them is
given in Eq.(8) and for the ground state looks for effective
atomic units asjp=?/2d% The second term does not de-  FIG. 2. Binding energyE, as a function of the position of the
pend ond and can be easily calculated numerically for eachimpurity center for quantum ringA) A=4.3 of the central wire.
set of parameter&,b,\) by solving a two-dimensional ver- Effective atomic units are used.
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FIG. 4. Binding energ¥, as a function of the radial position of
FIG. 3. Binding energy, as a function of the radial position of the impurity centepy for quantum ring/A) for A=0 and for differ-
the impurity center, for quantum ring(A) for z,=0 for several €Nt displacemenz=0,2=d/2 and the corresponding 2D quantum

different values of the linear charge densityof the central wire.  "Ng (d=0). Effective atomic units are used.

Effective atomic units are used. leads to a decrease of the ground-state energy level and to an

the corresponding difference fé, (or E, o) is 14.81 e.a.u. increase of the binding energy of the hydrogenlike impurity
However, the relative change &, due to the external field electron in the presence of _external electric field. Th_e shifts
is of the order of 100%. of the positions of the maximums to the left-hand side for
For A\=0 the binding energy presented in Fig. 2 achieves:>0 and to the right-hand side for<0 are explained by
its maximum(at po) close to the middle point of the radial the increase of the binding energy for smaller distangea
cross section of the quantum ring. This is due to the fact thalhe case of an attractive positively charged wire or for larger
the energy of the ground state of a hydrogenlike system indistances in the case of a negatively charged wire.
creases when the system approach a impenetrable potential Figure 3(curves corresponding to=+4.3) demonstrates
wall. In the case of a flat infinite wall the ground state of athat in the impurity QR the inversion effect of the electric
hydrogen atom with the nucleus lying on the boundary of thdield occurs. The binding enerds,(\) changes as the direc-
wall is similar to the state(® of the free hydrogen atom and tion of the electric field. changeg+\ —-\). An analogous
has energy —-0.125 a.u. instead of —-0.5 a.u. for the grounéffect relating to a quantum well structure was studied in
state of the free atom. Sindg, does not depend on the Ref. 23. In contrast to the quantum well in which the inver-
position of the impurity center, approaching the boundariesion shift of the binding energgE,=Ey(+\)—Ep(-\) van-
of the quantum ring equally affects the value of the totalishes for the impurity center positioned at the midplang
energy and the value of the binding enefgy On the other =0), the inversion shift in the QR is absent for a certain
hand, positive values o, for spatially confined systems (py,=1.195 cylindrical surface.
(A=0) increase the binding energy compared to a free impu- In Fig. 4 we compare the binding energi&sg(p,) for
rity center. As a result the impurity electron in the quantumquantum ring(A) for z,=0,z,=d/2 and for a 2D quantum
ring is more tightly bound for all the parameter values pre-ring with the same values af andb. We observe a much
sented in Fig. 3 compared to the case of an impurity center ilveaker dependence of the binding energyZg¥d/2 on the
a bulk. However, the total energies of the electron are higheradial position of the impurity center compared to the case
compared to the case of a bulk. 7,=0. On the other hand, the curve fgy=0 is much lower
The asymmetry of the curve for=0 and in particular a in energy and demonstrates a weaker dependenpg @m-
higher binding energy gi;=a compared tgpy=b are due to  pared to the 2D curve. The large difference between 2D and
the curvature of the boundaries of the quantum ring. In the3D binding energies is due to the large valueddbr quan-
case of the innepp=a boundary its curvature provides more tum ring(A) and strong confinement provided by the 2D QR.
space for the motion of the electron compared to a correThe predominant part of the curv&, for the two-
sponding flat wall. As a result the motion of the electron isdimensional impurity is abov&,=2. The latter is the bind-
less confined and its energy is lower than for the case of ing energy for a two-dimensional impurity without external
flat wall and is closer to the values for the case where thgonfinement for the motion ip direction—i.e., a bulk im-
center is far from the boundaries. The opposite curvature gburity. The above-mentioned difference reflects the increase
the outerpy,=b boundary of the quantum ring leads to the of the binding energy due to the confinement in the raglial
opposite effect consisting of a decrease of the binding energgirection.
for the impurity center near to this boundary. The opposite case of a low quantum ring is shown in Fig.
For both positive and negative the maxima of the en- 5 where the corresponding energy curves analogous to those
ergy curveskEg(py) exceed that corresponding =0. This  of Fig. 4 are presented for quantum rig). For A\=0 the
effect is fully analogous to the quadratic Stark effect, whichbehavior is qualitatively very similar to the one observed in
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FIG. 5. Quantum ringB): same as Fig. 4 and a 3D curve for
N=10,z,=0. Effective atomic units are used.
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strong radial electric fieldindependent of its directiorde-
creases the binding energy of the electron to the impurity
center for these values @bh. This decrease of the binding
energy originates from a decrease of the electronic density
near the impurity center, because the radial electric field ei-
ther attracts the electronic density to the inner boundary of
the ring or repels it towards the outer boundary. The curves
E,(\) for the two opposite cases when the impurity center is
situated directly on the inngs,=0.5 or on the outepy=2
boundary of the QR possess no maxima. They show an in-
crease of the binding energy when the radial electric field
attracts the electronic density to the impurity center and a
decrease oE, when it repels the electronic density to the
opposite boundary. If the boundaries were flat and infinite in
the z direction the limiting values of the binding energy both
for pp=0.5 and\ — +o and for py=2 and A ——c would
correspond to the ground state of a two-dimensional hydro-
gen atomE,=2 (the mutual action of the electric field and
the impenetrable potential wall would provide a confinement

Fig. 4 with the exception that both 3D energy curves aref the electron in the planeln the QR the outer boundary

much closer to the 2D curve than for quantum ri#hy).

provides less space for the motion of the electron in the

Figure 5 contains also an energy curve for a nonzero radigiorresponding limit in comparison with the inner boundary.

electric field, corresponding th=10. One can see that the
radial electric field has a minor effect for the low QB)
compared to the high QRA). This is due to the quantita-
tively reduced effect of an external electric field on 2D hy-
drogenlike systems compared to 3D ornese Refs. 24 and
25 and references thergin

The presence of maxima for the energy functi@ép,)

As a result we may expect that the limiting value Ef for
po=0.5\— + should be larger thak, for pg=2,\ — —o°.

This is in agreement with the behavior of the corresponding
curves in Fig. 6. For the two opposite limig=0.5\—

- and pp=2,A— +% Ey(\) becomes asymptotically flat.
This is due to the fact that when practically all the electronic
density is concentrated at the opposite boundary its small

and the shifts of these maxima with changing radial electridedistribution in strong fields does not aff¢due to different

field strength determine the form of these functidfg\)
presented in Fig. 6. For the impurity being centered inzhe
direction (zy=0) we present five curves for different posi-
tions pg in the radial direction. Let us discuss some major
properties of these curves. It is straightforward to understan
the behavior of the two curves fpg=1 andpy=1.25 corre-
sponding to the impurity center positioned near to the middl
of the QR in the radial direction. These curves have maxim
in the vicinity of A=0. This means that the presence of a

-100

> o

FIG. 6. Binding energyE, as a function of the central wire
charge\ for the different impurity positiongg, z; in quantum ring
(A). Effective atomic units are used.

20533

but large\ valueg the interaction with the impurity center.

The energy of this interaction depends on the average dis-
tance between the electron and impurity center. Due to the
confinement of the electron on the inner or outer surface of
the quantum ring, the latter problem acquires some similarity
with the electrostatic problem of a charge near a conducting

surface. The potential of the interaction of a charge with its

age in a convex surface is smaller than the interaction of
the charge with a mirror charge in a flat or a concave surface
(compare with Ref. 26 These reasons explain the result
Ep(po=0.5 N — =) > Ey(pg=2,\ — +).

As an example oE,(\) for an impurity center located at
a small distance from one of the boundaries we show in Fig.
6 a curve forpy=0.75 andz,=0. In agreement with the pic-
ture presented above it has a maximum in a region of posi-
tive N. The binding energy in the vicinity of this maximum is
higher than that for maxima of the corresponding curves for
po=1 andpy=1.25 because the radial electric field can con-
centrate a larger electronic density at smafiefFinally we
present alsde,(\) for pp=1 andz,=0.75—i.e., for the impu-
rity being located on the top boundary of the QR. The be-
havior of this curve is similar to curves fap=0, but both
the absolute values df, and their alterations are smaller.
Note that in the QR the radial electric field may cause the
impurity electron to be more stable while in the bulk material
the electric field leads to the ionization of the impurity cen-
ter.

The obtained results allow us to estimate the values to be
expected in an experiment. It follows from Fig. 6 that the
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positive shift of the binding energgE,(\) of the impurity ] w0125 boios B /,’
positioned at,=0 andp,=7.5 nm in the QRA) caused by a 100 of ------ a=0.125 b=2 7
positive electric field\ of a charged wire having the linear 3
electron density n,=5x10° cm™ amounts to AE,

=4.5 meV. The relative change is therefak&,(\)/Ey(0)
=0.28. In this electric field a decrease of the binding energy
AEp=-11.6 meV(about 52% occurs if we shift the impu-
rity center from the symmetric plang=10 nm z,=0 to the
boundary planepy=10 nm z,=7.5 nm. When the impurity
center moves in the symmetric plafg=0) of the QRA)

(see Fig. 3 subject to the positive electric fielkd=4.3 deter-

\
MR TTTY BRI |

mined by the linear electron density=4.3X 10° cm* from 0.1 47" | 3

the internal boundarg,=5 nm to the positiompy=10 nm the e d
binding energyE, increases by an amountE,=8.1 meV. 0.01 0.1 1 10 100
This is about 58% of the binding ener@y(p,) at pg=a. In A

this field the inversion shift of the binding energyE,(\) FIG. 7. Energy of a free electron in three different two-

=E,(-N)—Ep(+\) for the casez;=0,po=15nm is AE,  dimensional quantum rings as a function of the positive charge of
=7.5 meV. The inversion shift vanishes@t=11.5 nm. The the central wirex. Numerical results and analytical estimations are
estimates of the expected values for the InAs/GaAs QR cashown. Effective atomic units are used.

be made accordingly using the parameters of the InAs mate-

rial, providing values of the same order of magnitude asally calculated energies for a free electron in three different
those for the GaAs QR. Thus the obtained effects induced byyo-dimensional quantum rings. These energies are given as
the radial electric field in the impurity QR are detectable infynctions of the logarithm of the positive charge density on
an experiment. the central wire. For a QR with sma#l=0.125 and very
Concerning the currently available experimental da_ta tQarge b=12.5 the numerical curve fdE(\) presented on a
our knowledge most of them are related to the persistengoyple-logarithmic scale is not very different from a straight
current occurring in the QR threaded by the magnetic fieldine, The formula(15) provides a good approximation for
(see Ref. 6 and references thejeifihe effect of an electric  thjs curve for not too large values af The discrepancy at
field is studied theoreticalfy® for the case of a uniform elec- large X is due to small values g, (pon<a) given by Eq.
tric field directed parallel to the plane of the QR. One of the(ls)_ A major improvement of the analytical estimation could

reasongconcerning both theory and experimgtd choose o achieved by replacing the formula foz, by
this configuration is that the electric field has been treated as

a tool acting on the electron states, causing in particular the 47 \Y2
breaking of the axially symmetric potential of the QR and pan= 5 (N+1/2) +a. (41)
mixing the states with different angular quantum numbers.
No additional serious experimental refinements specifically The numerically calculated curve fa=0.125 andb=2
associated with the QR’s are required. However, the radiallgoincides with that foa=0.125 andb=12.5 for large values
directed electric field considered in our paper is capable o®f A. As A—0 the value ofE converges to a finite limit,
the one hand of conserving the axial symmetry of the QRJetermined by the energy of an electron in a finite 2D quan-
potential and on the other hand of modifying strongly thetum ring. This energy increases when the ring becomes nar-
impurity states in the QR. Let us briefly address the questiofiower as can be seen when comparing the curvesafor
of the experimental realization of the additional electric field.=0.125 andb=2 and fora=0.5 andb=2. For large\ the
A Si wire covered by the exact-position-monitored chargelatter curve shows also approximately a linear behavior but is
being embedded in the inner region of the QR offers a sourctower in energy than the curves fa=0.125. This shift is
of the radial electric field. Particularly these wires of aboutproperly described by Eq15), but the relatively small value
10 nm diameter are employed in the silicon-based charged=2 does not allow one to obtain estimations for the energy
coupled deviced’ An alternative approach would be as fol- of the free electron foa=0.5 andb=2 by Eq.(15). For this
lows. The inner region of the QR is doped by the shallowset of parameters we present in Fig. 7 also the energy given
impurity centers. Being activated these centers becomBY Eq.(18). One can see that even for such a broad QR this
charged and this region can be treated as the source of tfiermula gives quite a reasonable approximation to the en-
radial electric field for the QR. We believe that our resultsergy. For(b—a)<a,b this formula is in very good agree-
could stimulate experiments that contribute to the physics oment with the numerical data.
QR'’s and their optical-electronic applications. In Fig. 8 analytical estimates given by E@3) for the
binding energy of an electron in two-dimensional quantum
rings in the presence of an impurity are compared with the
corresponding numerical results. Equati@3) includesp,y
values given by Eq(15) and this circumstance restricts the
We present in this section an exemplary comparison ofipplicability of it for strong fields. Conditiop,y<ag, or
our numerical and analytical results. Figure 7 shows numerip,y<<1 in effective atomic units, restricts the applicability of

V. COMPARISON OF NUMERICAL AND ANALYTICAL
RESULTS
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tric field due to the interaction with the impurity. The depen-

—p=0.375 dences of the binding energy of the impurity electron on the
""" =025 strength of the external electric field, the parameters of the
—— Eq.(23) p,=0.375

QR, and the position of the impurity center within the QR
are derived explicitly.

We have shown that if the height of the QR increases
and/or the impurity center displaces from the midcirtlg
#0) for any radius of the QR towards the boundary planes
zy=+d/2 of the QR, the binding energy decreases. The bind-
ing energy reaches a maximum for the impurity positioned at
the midplanezy=0 of the QR. For a fixed, and without the
radial electric field the binding energy has its maximum
close to the middle point of the radial cross section of the
quantum ring. The radial electric field shifts the position of

the maximum towards the center of the ring in case of a
FIG. 8. Binding energy of an electron to an impurity center in aPOsitive charge of the central wirk and in the opposite
two-dimensional quantum ring as a function of the charge of thedirection for a negative charge. This results in a relatively

central wire. Numerical results and analytical estimates are showromplicated dependendsg,(\), which is very different for
Effective atomic units are used. different distances of the impurity from the center of the QR.
The maximum value of the binding energy increases with

Eq. (23) to weak fields. Within these conditions the agree_increasing electric field strength. The amplitudes of the men-
ment of the estimates and numerical results is good. This i§oned dependences decrease while shifting the impurity to-
visible for the curvesp,=0.25, which fulfill the conditions Wards to the boundary planes of the QR. The inversion

for the validity of Eq.(23) in an improved manner compared €ffect—i.e., the change of the binding energy when the di-
to the caseyy=0.375. rection of the electric field is changed to the opposite one—is

realized in the impurity QR. Estimates of the binding ener-
gies for realistic strengths of the external electric field and
the parameters of GaAs and InAs quantum rings are pro-
We have studied analytically and numerically the problemvided.
of an impurity electron in a QR in the presence of a radially We have demonstrated that a strong radial electric field
directed external electric field. The twofold character of ourand ring confinement provide considerable polarization phe-
investigation illuminates the physical behavior and propernomena of the impurity states. Strong dependences of the
ties of our impurity-quantum ring system in a complemen-binding energy of the impurity electron should lead to sig-
tary way. The basis of the analytical approach is an adiabatinificant changes of transport processes and optical properties
guasiclassical approximation, while a finite-differenceof the QR’s. The great sensivity of the impurity QR’s to the
method in two and three dimensions was used to perform theadial electric field is useful for its applications in field-effect
numerical calculations. For our analytical studies the extertransistor structures, electro-optical modulators, and switch-
nal electric field is taken to be much stronger than the elecing devices.

VI. SUMMARY AND CONCLUSION

*Electronic address: monozon@mail.gmtu.ru ’P. A. Orellana, M. L. Ladron de Guevara, M. Pacheco, and A.
TPermanent address: Institute of Precambrian Geology and Geo- Latge, Phys. Rev. B8, 195321(2003.
chronology, Russian Academy of Sciences, Nab. Makarova 2, St8E. E. Mendez, G. Bastard, L. L. Chang, L. Esaki, H. Morkos, and
Petersburg 199034, Russia. Electronic address: R. Fischer, Phys. Rev. B6, 7101(1982.
mivanov@mil596.spb.edu °T. Chakraborty and L. Pietilainen, Phys. Rev.5B, 8460(1994).
*Electronic address: Peter.Schmelcher@pci.uni-heidelberg.de 10T, Song and S. E. Ulloa, Phys. Rev. &, 125302(2001).
1Y. Aharonov and D. Bohm, Phys. Ret15, 485(1959. 117, Barticevic, M. Pacheco, and A. Latge, Phys. Rev6B 6963
2J. C. Lin and G. Y. Guo, Phys. Rev. B5, 035304(2002. (2000.
3B. S. Monozon and P. Schmelcher, Phys. Rev6B 045203  2V. Chaplik, JETP92, 169 (2007).
(2003. 13A. 0. Govorov, A. V. Kalameitsev, R. Warburton, K. Karrai, and
4J. M. Llorens, C. Trallero-Giner, A. Garcia-Cristobal, and A. S. E. Ulloa, Physica EAmsterdam 13, 297 (2002.
Cantarero, Phys. Rev. B4, 035309(2001). 14F. Gesztesy and L. Pittner, J. Phys.14, 679(1978.
57. Barticevic, G. Fuster, and M. Pacheco, Phys. Rev6H 15Handbook of Mathematical Functionedited by M. Abramowitz
193307(2002. and I. A. StegunDover, New York, 1972
L. A. Lavenere-Wanderley, A. Bruno-Alfonso, and A. Latge, J. *6H. Hasegawa and R. E. Howard, J. Phys. Chem. Scitis173
Phys.: Condens. Mattet4, 259 (2002. (1961.

205336-11



MONOZON, IVANOV, AND SCHMELCHER

17B. S. Monozon and A. G. Zhilich, Sov. Phys. JETR, 1066
(1992).

M. V. Ivanov, Sov. Phys. Semicondl9, 1167 (1985; Zh. \W-
chisl. Mat. Mat. Fiz. 26, 140 (1986); J. Phys. B 27, 4513
(1994).

19M. V. Ivanov, J. Phys. B21, 447(1988.

20M. V. Ivanov and P. Schmelcher, Adv. Quantum Che#d.(2),
361 (2000).

2IM. V. lvanov, Opt. Spektrosk83, 23 (1997).

22\M. V. Ivanov and P. Schmelcher, Phys. Rev. &, 205313

PHYSICAL REVIEW B70, 205336(2004

(2002.

238, S. Monozon and A. N. Shalaginov, Solid State Comm@a8.
167 (1994).

24M. V. lvanov and R. Schinke, J. Phys.: Condens. Maftgr5909
(2003.

25M. V. Ilvanov and R. Schinke, Phys. Rev. &, 165308(2004).

26]. D. JacksonClassical ElectrodynamicgWiley, New York,
1975.

27/, Fujiwara and Y. Takahashi, Natufeondon) 410, 560(2001).

205336-12



