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In a seemingly abrupt change in the conversation, 
Professor Feynman turns to the theoretical chemist 
and says, “Some guy comes up to you and says, ‘What 
odds will you give me that the 10 billionth digit of u is 
7?’ What do you say to him?” Innocently the chemist 
replies, “Let’s see, u is a transcendental number, right? 
I think somebody proved that transcendental numbers 
have random digits in their decimal representation. 
There must be 9 to 1 odds, or is it 10 to l? I’m never 
good at these things.” “Not so fast, young man!” ... Feynman cautions, arching his eyebrows. “That 
bas- - - - might have calculated it! ... By the way, I once 
had a statistical argument to prove Fermat’s last 
theorem ....” 

The yearnings for complexity and for simplicity are 
important psychological factors in science. Chemistry 
is no exception! There is great pleasure in under- 
standing the intricate ways in which many different 
elementary phenomena come together in the complex 
world of chemical transformations. There is also 
pleasure in appreciating how simple systems can be 
exactly analyzed and controlled. Snatching simplicity 
from complexity is perhaps the most satisfying activity. 
This is best illustrated in chemical physics by such 
developments as chemical thermodynamics itself, tran- 
sition state theory, nonequilibrium linear response 
theory, and the universal descriptions of phase tran- 
sition phenomena. Statistical ideas are a t  the heart of 
all these areas and are thus not strange to chemists. 
Nevertheless, as the encounter with Feynman illus- 
trated, the true meaning of “randomness” can be tricky. 
In this account, I venture to describe some of those 
riskier applications of randomness to complex situations 
in chemical physics. The main notion is that some 
phenomena occurring in a specific complex system are 
typical of those that occur in most systems chosen 
randomly out of an ensemble of possible systems. If 
this is so, the study of systems with random Hamil- 
tonians can tell us what to expect for particular systems 
just as probabilistic arguments may help in number 
theory.’ 

Enormous advances have been made in the last 
decades in the theory of random systems arising in 
condensed matter physics. These studies have taught 
us how generic random systems differ in behavior from 
the simple homogeneous systems first studied by 
physicists. Entirely new phenomena occur in these 
systems, and very different ways of thinking must be 
applied to the typical random system than to simple 

Peter G. Wdynes, a native mldwesterner, recelved his A.B. from Indlana 
Universlty In 1971 end hb Ph.D. in chemlcal physlcs from Harvard In 1976. He 
has been on the faculty of the University of IIHnok slnce 1980. Hb research 
in theoretical chembtry centers on the condens& phase. One of his major 
enthuslams currently b the protein folding probbm. 

homogeneous systems. The most striking phenomena 
in random media are Anderson localization2” and the 
spin glass transition.2b In Anderson localization, a 
particle moving quantum mechanically in a random 
system, for example, an electron hopping between 
impurities in a doped semiconductor, may remain 
trapped solely due to destructive phase interference 
effects, even though escape is classically allowed. In 
spin glass phase transitions, which occur in dilute 
magnetic alloys, such as Cul-xMnx, magnetic spins on 
the impurity atoms may become frozen into complex 
patterns which cannot be described by a single-order 
parameter like the average magnetization. Instead the 
behavior of the impurity spins depends on the time 
course of the thermal treatment of the system, proving 
that there is a wide diversity of possible states into 
which the system can freeze. Spin glasses thus represent 
a radical departure from ordinary phase transitions and 
even require modifications to the usual approach of 
thermodynamics where a few parameters specify the 
state of a system. Since these phenomena occurring in 
a random system are typical of many complex systems, 
it immediately becomes attractive to see how these ideas 
can be applied to some of the outstanding problems of 
physical chemistry. 

The problem of energy flow in isolated molecules 
resembles the Anderson localization problem. Even 
though many states of a molecule may be nearly 
isoenergetic, transitions freely occur between the states 
in some circumstances while, in others, the molecule 
remains largely in whatever quantum state it starta in, 
despite the availability of other  state^.^ The behavior 
of liquids in their high viscosity regime resembles the 
problem of spin glass phase transitions. Very long time 
scale relaxations occur in viscous liquids, and at  the 
highest viscosities, the properties of the system depend 
on its precise history of preparation, admitting no simple 
thermodynamic de~cription.~ In these problems, the 
Hamiltonian for the chemical system is something 
definite. Benzene presumably has a unique vibrational 
Hamiltonian, even if spectroscopists argue over it. 
Liquid glycerol has a unique potential energy function, 
even if different ones are provided by molecular software 
vendors. But in both cases, the relevant parts of phase 
space or configuration space are richly complex. Thus 
we might seek guidance from studying the behavior of 
random systems where quantum states have statistically 
defined connections to each other or where the con- 
figurational energy landscape is described statistically. 
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There are many features of biomolecular dynamics that 
have been described via analogies with systems in- 
volving statistically defined potential energy  surface^.^ 
It is no surprise that biomolecular problems can be 
approached in this statistical way, since proteins with 
very different sequences (such as the class of lysozymes 
which thus constitute a statistical ensemble) can have 
very nearly the same physicochemical behavior. The 
use of statistical ideas in biomolecular reactions and 
protein folding has already been reviewed; thus this 
Account will focus on the applications of the random 
system physics to nonbiological problems. 

Random Models of Energy Flow in Molecules 

Some of the longest standing questions in physical 
chemistry are, to what extent and at  what rate does 
energy flow within a molecule?6 The validity of 
transition state theory and its microcanonical analog, 
RRKM theory, depends on having sufficiently rapid 
energy flow so that statistical estimates of the prob- 
ability of escape are valid.’ In recent years, the problem 
has gained renewed importance because lasers can excite 
specific parta of amolecule directly. Within the classical 
approximation, a great deal of progress has been made. 
This is both because classical mechanics allows detailed 
computer calculations of the motions of a molecule and 
because of insights from the mathematical theory of 
chaos in low-dimensional systems.* Nevertheless, mol- 
ecules are described by quantum mechanics and not 
classical mechanics. It has been a challenge to translate 
the study of classically chaotic systems into the quantum 
regime. Indeed, the phrase “quantum chaos” can elicit 
extraordinarily strong, complex and negative reactions 
in peopleeg While direct quantum mechanical calcu- 
lations on dynamics in very small systems are now 
becoming possible, only the most heroic numerical 
efforts have yielded resulb on quantum energy flow in 
molecules as simple as benzene.I0 The difficulty is that 
the concept of irreversibility is only sensible in the limit 
of a high total density of states. A few-state quantum 
system reversibly oscillates back and forth. A high 
density of states, making effective irreversibility pos- 
sible, can be achieved in two ways: in the classical limit 
(Planck’s constant, h,  small or, equivalently, large 
quantum numbers) or for large molecules at modest 
excitation with the actual value of h. This is why the 
strict computational approach is strained for describing 
this problem. When there is a high density of states, 
a statistical approach might be helpful. Wigner was 
the first to appreciate this.” In describing the states 
of highly excited nuclei, he realized that ab initio 
approaches would not bear fruit for a long time to come. 
For nuclei, the underlying interactions were also 
uncertain. Even if they were known, it would be 
daunting to calculate exactly the 10 000th energy level 
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of a heavy nucleus. Thus Wigner suggested that the 
properties of the spectrum of highly excited nuclei might 
be imitated by a random Hamiltonian in which all states 
were roughly equally coupled to each other. It is 
surprising that such an unstructured model has inter- 
esting consequences, but it does. For example, the 
avoidance of degeneracy due to level repulsion leads to 
a characteristic hole in the distribution of level spacings. 
Also the statistics of nuclear transition rates are well 
described by these models.12 We have come to under- 
stand that Wigner’s insight was still deeper. A variety 
of routes suggest that the random matrix behavior for 
many quantities is generic for systems that are chaotic 
in the classical limit. These studies indicate that the 
randomness has its origins in deep properties of number 
theory.l3 

How can one use random matrix models to describe 
energy flow? The global models of Wigner are inad- 
equate because all states are equally coupled together, 
but detailed studies of small molecules, experimentally, 
and classical calculations suggest that there are specific 
couplings that are most important for energy flow. 
Chirikov pointed out that a major mechanism of energy 
flow classically is the overlap of Fermi resonance regions 
in the phase space.14 

A single Fermi resonance occurs when a few oscillators 
have their frequencies tuned such that their nonlinear 
coupling reinforces itself through many periods. The 
most familiar example is that of a child swinging. Only 
when she pumps her legs (first oscillator) in harmony 
with the period of the swing (second oscillator) is there 
a significant transfer of energy. In principle, strong 
enough children could entirely invert themselves on a 
playground swing! To get chaotic motion, one needs 
several combinations of oscillations in Fermi resonance. 
(Imagine a classroom of children on swings holding 
hands. Or better, take into account other modes of 
motion of the single-child system!) This corresponds 
with Chirikov’s overlap criterion. Simple Fermi res- 
onances are familiar in molecular systems. The infrared 
spectrum of C02 provides a classic example. Several 
workers have recognized, therefore, the importance of 
overlapping quantum Fermi resonances for getting 
energy flow in bigger molecules.l5 Both the classical 
resonance condition and the energy conservation cri- 
terion limit the ways energy can flow. Only a few quanta 
can be exchanged between different modes at  a time. 
See Figure 1. 

To reach an understanding of the general issues of 
intramolecular vibrational relaxation (IVR), David 
Logan and I analyzed the problem of energy flow in a 
many-dimensional system of quantum nonlinear os- 
cillators with random frequencies involved in Fermi 
resonance.16 This system should be representative of 
a whole class of models in which there is a “local” 
character to energy transport, that is, in which only 
regions of phase space that are close to each other 
directly communicate. 
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Figure 1. (a) This figure shows a cut through quantum number 
space. The axes are labeled by the number of quantum excitations 
in modes 1,2, and 3. Motion occurs easily on the energy shell, 
shown as a sphere. In the two cross-hatched regions a resonance 
between modes 1 and 2 occurs (i.e., their frequencies match 
approximately 201 = wp) or a resonance between 2 and 3 occurs. 
Through the overlap the system can wander from one resonance 
region to the other. By a continuing chain of resonance overlaps, 
excitation can be transferred to other modes not illustrated in 
this figure. Classically the path would resemble a random walk. 
(b) Another representation of the multidimensional set of 
resonances is the familiar tier diagram of radiationless transition 
theory, shown here for a four-oscillator system. Only some of 
the possible flow paths are illustrated by the squiggly lines. 

The Logan/Wolynes (LW) model is characterized by 
a distribution of Fermi resonant coupling parameters 
with a typical value, V, and a local density of states, 
plm, which gives the probability of finding Fermi 
resonance within a certain energy range. In a high- 
dimensional system the local density of states can be 
very different from the total density of states, which 
must be large for irreversibility. A local random matrix 
model of energy flow like the LW model resembles 
models of quantum transport in disordered solids. The 
Fermi resonant coupling is analogous to the tunneling 
matrix element for an electron between sites, and the 
local density of states in the molecule is analogous to 
the probability of finding a neighboring resonant site 
in the solid. The main distinction between the models 
is that the energy states in the LW model will be 
correlated, while in electron transport in disordered 
systems, this correlation can be ignored. The analogy 
allows mathematical techniques from Anderson local- 
ization theory to be used. Even more important, that 
theory has been experimentally confirmed, leading to 
confidence in many of the qualitative results. 

The first thing we see from the analogy is that there 
should be a reasonably well defined transition from 
weak energy flow involving only nearby states to a global 

N 

1 Y 
Figure 2. The IVR rate, k m ,  is plotted against the coupling 
Y(2?r/3) = ( V P ~ , ) ~  as the solid line. The dashed line is the golden 
rule result for k m ,  both according to scale on the left. The 
number of states accessible from a given one is indicated as a 
dotted line, with scale on the right. 

energy flow in which most states of the molecule 
eventually communicate. This is the analog of the 
localization transition first found by Anderson. The 
criterion for this transition is that Y = (2?r/3)( V P ~ , ) ~  z 
1. (The facbr 2r /3  depends on the detailed distribution 
of the matrix elements.) If Y < 1, quantum dynamics 
will cause transitions only to nearby quantum levels, 
but if Y > 1, all the states can eventually be reached 
from others. Criteria for energy flow like this have been 
derived many times in chemical physics.17 This cri- 
terion is in harmony with Marcus's notion of multiple 
avoided crossings leading to quantum chaos.18 While 
there are low-dimensional exceptions to that view, our 
analogy suggests that it is typically correct for high- 
dimensional systems. 

The analogy makes clear that there is stereotypical 
behavior near the transition which should be rather 
sharp. Much above the transition, the golden rule 
expression for the intramolecular energy flow will be 
reasonably adequate; near the transition the rate will 
be strongly suppressed. One expects a power law 
behavior for the intramolecular vibrational relaxation 
(IVR) rate near the transition. The LW analysis gives 
the result lzm - (Y - 1)1/2 near the transition as 
illustrated in Figure 2. 

On the localized side of the transition, the number 
of states, N ,  that can be accessed, starting from a given 
one, shows a critical behavior, N - (Y - l)-l, also in 
Figure 2. These scaling laws suggest simple ways of 
analyzing detailed experimental and computational 
studies of specific systems. 

The analogy with Anderson localization anticipates 
some interesting effects on intramolecular vibrational 
energy flow in a molecule in contact with a fluctuating 
environment. Anderson localization is a phase coher- 

(17) Kay, K. G. J. Chem. Phys. 1980, 72,5955. Nordholm, K. S. J.; 
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ence phenomenon. It should never be confused with 
trapping caused by rearrangements of a disordered 
medium such as occurs with the polaron or the solvated 
electron. Because it is a phase coherence effect, the 
transition is smeared by the dephasing influence of an 
external environment. A very interesting nonmono- 
tonic behavior of the IVR rate with external dephasing 
can occur, If the isolated molecule is in the localized 
regime, the IVR rate increases with dephasing, whereas 
if it is strongly delocalized, IVR decreases for small 
amounts of dephasing. Near the transition a non- 
monotonic behavior in which the rate first increases 
with dephasing and then decreases should be seen, 

The analogy with Anderson localization is rich, and 
much remains to be explored. One feature is the 
observation in quantum transport of mesoscopic fluc- 
tuations.18 The nonlocal character of the quantum 
phase coherence causes the conductivity of a disordered 
material to fluctuate more than one might naively 
expect. Analogously, IVR rates should fluctuate a great 
deal around their typical value. This suggests a new 
route to mode specificity in reactions analogous to the 
fluctuations in rate constants studied by Miller and 
Moore for small  molecule^.^^ If one is lucky, a few of 
the many states that might exist in a large molecule 
will have precisely the mode structure needed to 
accelerate a particular reaction. 

Wolynes 

Random Models of the Energy Landscape of 
Liquids 

The dynamics of liquids remains a central problem 
of chemical physics. It is remarkable, but true, that 
the pictures of liquid dynamics most used really don’t 
speak to the fundamental issue of the origin of the 
fluidity of liquids. The most successful pictures view 
a liquid as merely an extremely dense gas and use the 
collision picture so prevalent in gas-phase problems.20 
Phenomenological pictures extending continuum the- 
ories such as hydrodynamics to the molecular realm 
have also been useful.21 There are theories that are 
weak perturbations to the collisional or hydrodynamic 
ones such as the mode-coupling theories of simple 
fluidsz2 and the theory of dielectric friction for polar 
fluids.23 Given the successes of these pictures, why 
should one say the origin of fluidity is still mysterious? 
This is because of the universal phenomenon of the 
glass transition. 

Because of their ubiquity, we take glassy materials 
for granted. Materials with all kinds of bonding, for 
example, ionic, covalent, van der Waals, or even metallic, 
form glasses. The viscosity of fluids ranges from a few 
centipoise to more than l O I 4  P in the glass transition 
regime. When the viscosity is as large as 1014 P, 
relaxation times are so long that the material is, for 
practical purposes, a solid. Understanding the fluidity 
of a liquid requires explaining this transition to a glass. 
The gas-like pictures of fluidity cannot account for the 
large variation of time scales. As chemists, we are open 
to the notion that large variations are easily obtained 

Guyer, D. R.; Moore, C. B. J. Chem. Phys. 1990,92, 3453. 
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Figure 3. The logarithm of viscosity is plotted against 1/T for 
a glass-forming liquid, as the solid line. The heat capacities of 
liquid and crystal are also shown. Th is the temperature of the 
entropy crisis. 

from an Arrhenius law, 7 = 70ehE/kBT, but this is the 
exception rather than the rule in describing viscosities 
of fluids. The successful theories of fluids don’t explain 
the existence of barriers at  all. Simple fluids above 
their melting point show almost no activation energy 
for molecular motion when the volume is kept constant. 
As the fluids become supercooled, their viscosity 
dramatically increases, as in Figure 3. The apparent 
activation energy near the glass transition regime can 
be 1 eV, even for fluids with weak van der Waals forces. 
This dramatic change is observed also at  constant 
volume. The data for many fluids can be fit empirically 
with the Vogel-Fulcher law, 7 = A exp(B/(T - TO)). 
This law exhibits divergence of the activation energy 
at  a temperature TO. If this law continues to hold down 
to To, it would be impossible to have fluidity below this 
temperature. The law cannot be tested very near TO 
because the relaxation times of the fluid exceed the 
investigator’s patience. 

There are thermodynamic puzzles associated with 
viscous liquids, too. The heat capacities of a glass and 
the corresponding crystal also are sketched in Figure 
3. Because the liquid’s heat capacity exceeds the 
crystal‘s, upon cooling, the liquid loses entropy much 
faster than the crystal. If the glass transition did not 
intervene, at  a temperature Tk, the liquid’s entropy 
would be smaller than the crystal‘s. Something has to 
give.24 Tk is within 10 deg the same as the TO in the 
Vogel-Fulcher law expression! 

The thermodynamic and the kinetic puzzles combine 
to suggest that there would be an equilibrium transition 
near To to a solid. What might the nature of the 
underlying transition be? We know from model- 
building studies and from computer simulations that 
collections of atoms can form aperiodic structures that 
are mechanically stable. Bernal patiently built models 
of such rigid aperiodic s01ids;~S and Stillinger and Weber 
have studied such aperiodic structures extensively on 

(24) Kauzmann, W. Chem. Rev. 1948,43, 219. Simon, F. 2. Anorg. 
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computers.26 Rigid aperiodic structures should be good 
models of an ideal glassy state. These structures are, 
by construction, stable to kfinitesimal displacements. 
What can be said about their stability to larger 
amplitude motions? It has long been recognized that 
the stability of a solid to finite amplitude thermal 
fluctuations is a prerequisite for its thermodynamic 
stability. Lindemann showed that when the width 
mean square thermal displacements of molecules ( r 2 )  
becomes roughly one-tenth of an interparticle spacing, 
melting occurs.27 Equivalently, for stability, the Debye 
Waller factor for the solid must exceed a critical vdue. 
Theories based on a self-consistent phonon picture and 
on density functional approaches provide quantitative- 
semiquantitative estimates of maximum thermal dis- 
placements from microscopic considerations. When 
these theories are applied to aperiodic lattices, they 
give a critical Lindemann ratio for the stability of a 
glass.28 There is some evidence for this ratio in glasses. 
The ratio never much exceeds 0.1, when a glass is 
sensibly solid on simulation time scales.29 In the 
laboratory the Mossbauer effect3O and neutron scat- 
tering31 show that there is a dramatic change in the 
mobility of a glassy material when the thermal dis- 
placements reach such a critical value. 

The Lindemann criterion for devitrification (( r2)" 
= 0.1) and the theories giving rise to it are themselves 
puzzling. Since the mean square displacement reaches 
a maximum, there should be a discontinuity at  the 
transition point. The transition should be first order: 
This is true for periodic crystals. The actual thermo- 
dynamic transition occurs before the limit of stability 
because the fluid phase becomes lower in free energy 
than the solid before the vanishing of the solid's local 
stability occurs, with rising temperature. 

An underlying transition resembling a first-order one 
comes from a different route. Moderately viscous fluids 
are well described by mode-coupling t h e o r i e ~ . ~ ~ ~ ~ ~  These 
theories ascribe some part of the fluctuating forces and, 
therefore, the friction on a moving molecule to long- 
lived fluctuations in the structure of the fluid around 
it. These structural fluctuations themselves decay by 
means of diffusion. When the coupling goes up, the 
friction increases, leading to slower diffusive fluctua- 
tions. This further enhances the effect of the coupling. 
Thus, a self-consistent mode-coupling theory carries 
the seeds of a catastrophe within itself. Self-consistent 
mode-coupling theories of the glass transition have been 
elaborated in great detail. They fit many of the 
properties of viscous fluids while not describing well 
the very large viscosity behavior. These theories, when 
they are used below the transition, also give a discon- 
tinuous jump in the Debye-Waller factor. 

Both the stability analyses of the aperiodic structures 
and mode-coupling theory lead to the same kind of 

(26) Stillinger, F. H.; Weber, T. Science 1984,225, 983. 
(27) Sutherland, W. Philos. Mug. 1890,30,318. Lindemann, F. A. 2. 

Phys. 1910,11, 609. 
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(29) Woodcock, L. V.; Angell, C. A. Phys. Rev. Lett. 1981, 47, 1129. 
(30)Champeney, D. C.; Sedgwich, D. F. J. Phys. C 1972, 5, 1903. 

Nienhaus, G. I.; Frauenfelder, H.; Parak, F. Phys. Rev. B 1991,43,3345. 
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transition. Kirkpatrick and Wolynes have shown that 
the two approaches are fundamentally equivalent and 
only differ in some details of appr~ximation.~~ These 
approximate microscopic theories lead to an underlying 
first-order transition of some kind. 

If the underlying first-order transition were conven- 
tional, it would not explain the viscosity. A crucial 
difference between aperiodic structures and periodic 
ones is that there are many aperiodic structures but 
relatively few periodic ones. Consideration of a single 
periodic structure suffices to give us an idea of its 
stability. For aperiodic crystal structures, one must 
understand their statistics and the transitions between 
them. Calorimetry tells us one feature about the 
aperiodic structures: their number. Since the vibra- 
tional entropies of a given aperiodic structure and the 
crystal are close, the entropy difference of the liquid 
and the crystal shows that the number of aperiodic 
structures grows exponentially with the system size 
above Tk. Below the transition temperature, Tk, the 
number of such structures should be smaller, perhaps 
growing in only a polynomial way with the size of the 
system. We should seek analogies for the glass tran- 
sition then in systems in which many different struc- 
tures can become frozen. This is where systems with 
random Hamiltonians come in. 

Systems of spins with random interactions can freeze 
into many different states. The most studied system 
of this type is the Ising spin glass.26 It is a model of 
amorphous magnets such as copper manganese alloys. 
A set of spins with two states (up or down) interact 
with each other through an exchange interaction, Jij, 
giving the Hamiltonian H = -CJ&3j. The Jij in this 
expression are randomly positive and negative. 

The Ising spin glass may seem like an esoteric system, 
but it is typical of many problems in which conflicting 
interactions are present. A well-known social analogy 
is exactly isomorphic. Consider the problem of a group 
of people deciding to divide itself into two parties. 
Imagine, however, that half of all possible pairs of people 
at random hate each other and that the other half of 
all pairs would be bosom buddies, individually. How 
can you find the best way of dividing the group? In the 
case of a small initial group the division is easy to find, 
but for a large one there are many divisions that are 
nearly optimal. 

A rather elaborate mean field theory of this spin glass 
shows that it can freeze into many states. The transition 
is continuous and in that way differs from the results 
of the simple microscopic approaches to structural 
glasses. Even though analogies between spin glasses 
and structural glasses have long been expected, it is 
widely agreed that the Ising spin glass is not an 
appropriate analogy. 

Kirkpatrick and Wolynes proposed that the analogy 
to a random system can be made, not to the Ising spin 
glass, but to the Potts spin glass with long-range 
 interaction^.^^ The underlying objects, Potts spins, 
rather than having two states, can point in multiple 
directions. In the social analogy, the Potts spin glass 
corresponds to the problem of dividing the group into 
three (or more) parties. Variables with Potts-like 
symmetry arise naturally in the study of orientationally 
disordered plastic crystals, where they represent dif- 

(33) Kirkpatrick, T. R.; Wolynes, P. G. Phys. Reu. A 1987, 35, 3072. 
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ferent ways the molecules can be oriented. In a liquid 
undergoing a glass transition, the Potts variables could 
correspond with the amplitudes of conflicting density 
waves characteristic of different polymorphic crystal 
forms. Individual atoms must decide to which of these 
density waves they most want to contribute. Potts spins 
lack the fundamental up/down symmetry of Ising spins, 
and Potts ferromagnets undergo a first-order transition 
rather than a continuous one. The Potts spin glass 
with random interactions was solved in the mean field 
limit by Gross, Kanter, and Sompolin~ky.~~ They 
showed that the long-time spin correlations q = limt-., 
(S(o) S ( t ) )  undergo a discontinuous change at  the 
transition. The parameter q is the analogue of the 
Debye-Waller factor. On the other hand, as in the case 
of the Ising spin glass, there are many different states 
into which the Potts system could freeze, and because 
of this, the’transition is thermodynamically continuous. 
Unlike an ordinary first-order transition, there is no 
latent heat but rather a discontinuity in the heat 
capacity and other susceptibilities. At a structural glass 
transition, the heat capacity shows a near discontinuity 
that would presumably become sharper as the time scale 
of measurement becomes longer. The behavior of a 
Potts spin glass is universal. Random spin systems 
with long-range interactions violating the up/down 
symmetry of the Ising model have transitions which 
have discontinuous susceptibilities. Another example 
is the random three-spin-interaction glass35 for Ising 
spins, H = CJijkSiSjSk. Here the triplet interactions 
Jijk are randomly positive and negative. 

Because of the randomness in the Hamiltonian, the 
energy landscape of a Potts spin glass can be analyzed 
much more thoroughly than that of a structural glass. 
Individual minima of the mean field Potts spin glass 
become unstable to small finite size thermodynamic 
fluctuations at  a temperature, TA, which exceeds the 
thermodynamic transition temperature. This stability 
limit coincides with the result of mode-coupling theory 
for the Potts spin gla~s.3~ The mode-coupling equation 
for the three-spin-interaction spin glass coincidesa7 
precisely with the simplified equations used in struc- 
tural glasses by Leutheusser. For this random model 
the mode-coupling theories delineate the emergence of 
stable minima. If the stability limit T A  exceeds the 
thermodynamic transition temperature, what is the 
mechanism of the thermodynamic transition? Kirk- 
patrick and Wolynes showed that Potts glass minima 
can be counted below TA,  and their configurational 
entropy makes up the difference between the free energy 
of each state and the free energy of the disordered 
~ t a t e . 3 ~  The transition occurs when the configurational 
entropy vanishes. The mean field Potts spin glass is 
a model whose phase transition occurs precisely through 
an entropy crisis. As the system is cooled, one samples 
lower and lower energy minima which are uncorrelated 
in their structure until finally there are no more states. 

The infinite range Potts glass would exhibit the 
dynamics of the mode-coupling theory, leading to a 
freezing at  the temperature TA. The entropy catas- 

(34) Gross, D. J.; Kanter, I.; Sompolinsky, H. Phys. Rev. Lett. 1985, 

(35) Gardner, E. Nucl. Phys. E 1985, FS14, 747. 
(36) Kirkpatrick, T. R.; Thirumalai, D. Phys. Rev. Lett. 1987,58,2091. 
(37) Leutheusser, E. Phys. Reu. A 1984,24,2765; 2. Phys. B 1984,55, 

(38) Kirkpatrick, T.  R.; Wolynes, P. G. Phys. Rev. B 1987, 36, 8552. 
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STRUCTURE 
1 

Figure 4. A snapshot of a new minimum nucleating in an 
aperiodic structure. Ita surface will be “wetted” by still other 
structures. 

trophe occurs at  the lower temperature, Tk. Between 
Tk and T A  one must account for the finite range of 
interactions. The finite range Potts spin glass is not 
exactly solved, but using the infinite range results as 
a starting point, one sees a new mechanism of instability 
for individual minima.38 Since there are exponentially 
many minima of the infinite range system below TA,  
one can imagine the nucleation of droplets of one phase 
(one of the minima within the other) as shown in Figure 
4. Such droplet states would no longer be minima but 
transition states for converting one structure of another. 
There should be a free energy cost dependent on the 
mismatches in the structures at the borders of a droplet. 
This will increase with the size of the droplet. On the 
other hand, the extensive configurational entropy means 
that there is a driving force for creating such droplets: 
there are many more possible kinds of droplets for large 
regions than for small ones. Thus the free energy for 
nucleating a new structure has the form F(R) = 
-kBTS,,Rd + uRY. The maximum of this free energy 
gives the barrier for converting one minimum to another. 
The activation energy increases with decreasing con- 
figurational entropy F* - s,-~. Kirkpatrick, Thiru- 
malai, and Wolynes have developed a scaling theory 
for the exponents.39 This theory presupposes that the 
finite range Potts glass exhibits an entropy crisis just 
as for the mean field model, and that the susceptibilities 
are discontinuous at  this transition as in the mean field 
model and the extrapolated laboratory structural glass 
transition. This scaling hypothesis uniquely fixes the 
exponents and leads precisely to the Vogel-Fulcher 
expression for the activation free energy! 

In summary, a system with a random Hamiltonian, 
the Potts spin glass, has many close analogies with the 
structural glass. The simplest theoretical levels of 
mode-coupling and stability analyses reveal the many 
similarities. A new kind of phase transition occurs in 
the Potts spin glass by means of an entropy catastrophe, 
just as impends for structural glasses. Scaling analyses 
of this random Hamiltonian show how the Vogel- 
Fulcher law arises. These results suggest that the energy 
landscape of a structural glass which has some specific 
Hamiltonian, in the temperatures studied in viscous 
liquids, has a configurational space topographically 
similar to that of finite range Potts spin glasses. 

(39) Kirkpatrick, T. R.; Thirumalai, D.; Wolynes, P. G. Phys. Rev. A 
1989,40, 1045. 



Randomness and Complexity in Chemical Physics 

Final Remarks 
Just as in number theory, randomness is a useful tool 

for orienting oneself to problems of complexity in 
chemical physics. At  the very minimum, random 
Hamiltonian models make us aware of new phenomena 
and new mechanisms. This is illustrated in the random 
Fermi resonance model of and the random Potta 
spin glass model for liquid glass transitions. Because 
of their universality, the various scaling laws found for 
random systems should be roughly valid for specific 
systems. 
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Random models can be a guide for detailed studies, 
but be sure to place your beta before the computations 
are done. 
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