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Transmission dips in the response of metallic compound gratings formed by several wires and slits in each
period have been recently reported for normal illumination. These anomalies are generated by a particular
arrangement of the magnetic field phases inside the subwavelength slits, and they are characterized by a
significant enhancement of the interior field. We investigate the microwave response of such systems under
non-normal illumination and show that new phase modes appear in this configuration. Contrary to the effect
produced by a defect in a photonic crystal, these systems exhibit forbidden channels within a permitted band.
We also found that the appearance of these resonances is not highly dependent on the slits’ width and
thickness, even though these parameters modify the overall transmittance.
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I. INTRODUCTION

The interest of the scientific community in periodic grat-
ings with subwavelength slits has increased considerably in
the last few years. Among recent applications, nanowire grat-
ings have been proposed for the characterization of attosec-
ond pulses �1�, integrated polarizers �2�, optical data storage,
and external storage media. Gratings with subwavelength
slits have also attracted much theoretical interest due to their
capability to produce enhanced transmission. This phenom-
enon has been first reported by Ebbesen and his group �3,4�
in metallic plates with subwavelength holes. These investi-
gations led many researchers to investigate the possibility of
enhanced transmission in different structures. In particular,
one-dimensional �1D� transmission gratings have been
widely studied �5,6�. Although there is not complete agree-
ment on the origin of enhanced transmission �7,8�, many
efforts have been devoted to understand the physical mecha-
nism responsible for the enhancement. These include the
analysis of the response of a single slit �9–14�. Many authors
propose that surface plasmons �SPs� play an important role
in the enhanced transmission process �3–6,9,15–18�. How-
ever, it is also known that in 1D transmitting structures,
waveguide mode resonances �WM� also contribute to this
phenomenon �5,6,19�.

The excitation of SPs and WMs are two of the mecha-
nisms known to produce anomalies in the response of 1D
metallic gratings. Rayleigh anomalies, produced by the ap-
pearance or disappearance of a diffracted order, also produce
sudden changes in the diffracted efficiency �20�. The above
three mechanisms take place in simple gratings, i.e., gratings
formed by a single slit in each period. However, there is
another kind of resonance that might arise in a periodic grat-
ing only when its period comprises several cavities or slits

�compound gratings�. These are called phase resonances and
were first reported in structures comprising a finite number
of cavities on a perfect conductor �21,22�, and later observed
in infinitely periodic compound reflection gratings under nor-
mal �23–25� and oblique �26� illumination. Phase resonances
appear in the reflected and/or transmitted response of a grat-
ing as sharp features, like peaks or dips. For a particular
wavelength, the field distribution inside the different cavities
or slits takes a particular form so its phase in adjacent cavi-
ties is opposite to each other and its amplitude maximizes the
inner field. In simple gratings, the condition of pseudoperi-
odicity of the fields imposes that all periods of the grating are
equivalent and therefore all the grooves have the same field
�with the exception of a phase factor�. On the other hand, the
addition of cavities or slits to the period of the grating intro-
duces new degrees of freedom regarding the possible near
field configurations �magnitude and phase�. These new ar-
rangements give place to phase resonances, a promising type
of anomaly that can have multiple applications in nonlinear
devices, selective surfaces, etc.

Recently, we have investigated the generation of phase
resonances in transmission wire gratings �27,28�, in the par-
ticular case of normal incidence. As in the case of reflection
structures �23–25�, the symmetry imposed by normal illumi-
nation leads to a minimum of three cavities or slits in each
period necessary to produce a phase resonance. In this paper,
we investigate the response of transmission compound me-
tallic gratings under oblique illumination and discuss the de-
pendence of phase resonances on the geometrical parameters
of the structure.

In Sec. II we outline the modal method used to solve the
diffraction problem of a p-polarized plane wave by a com-
pound grating, and in Sec. III we show examples of the far
field response of such complex structures for different num-
bers of slits in the period, for varying incidence angles. We
also give maps of the near field under resonant and nonreso-
nant conditions and discuss the dependence of the reso-
nances on the width and depth of the slits. Finally, conclud-
ing remarks are given in Sec. IV.
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II. MODAL APPROACH

We consider a p-polarized plane wave of wavelength �
illuminating the compound array of metallic wires immersed
in vacuum. The metallic wires are characterized by the con-
ductivity �. The different structures under study are sche-
matically shown in Fig. 1. Grating �a� is the simple transmis-
sion grating, with a single slit of width a in the period d. The
number of slits in the period is J and so the number of thin
wires is J−1. Each period of grating �b� comprises two slits
�J=2� of equal width, separated by a thin wire of width c.
Cases �c�, �d�, and �e� correspond to J=3, 4, and 5, respec-
tively.

Owing to the rectangular cross section of the wires, the
modal method �29,30� appears to be very suitable to solve
this diffraction problem. The surface impedance boundary
condition �SIBC� �31,32� is applied to account for the finite
conductivity of the metal.

The reflected and the transmitted magnetic fields are rep-
resented by Rayleigh expansions. Then the field in the inci-
dent and in the transmission medium are given by

Hz inc�x,y� = exp�i��0x − �0y�� + �
n

Rn exp�i��nx + �ny��

�1�

and

Hz trans�x,y� = �
n

Tn exp�i��nx − �ny�� , �2�

respectively, where

�n =
2�

�
sin �0 + n

2�

d
, �3�

�n
2 = �2�

�
�2

− �n
2, �4�

�0 is the angle of incidence, and Rn and Tn are the reflected
and transmitted Rayleigh amplitudes, respectively.

Inside the slits the fields are expanded in terms of eigen-
functions that take into account the SIBC on the lateral walls
of each slit �30�:

Hz slits�x,y� = �
m=0

	 �cos�um�x − xj�� +



um
sin�um�x − xj��	

�
amj cos�vmy� + bmj sin�vmy�� , �5�

where 
=−ikZ, Z is the surface impedance of the wires, � is
the incident frequency, and um and vm are the separation
constants of the Helmholtz equation that satisfy

um
2 + vm

2 = k2, �6�

and are found by solving a transcendental equation which
results from the imposition of the boundary conditions at the
walls of the slits:

tan uma =
2
um

um
2 − 
2 . �7�

The surface impedance of the highly conducting wires can be
expressed in terms of the conductivity � as Z= �1
− i��� / �8���. The xj are the positions of the left wall of
each slit �the subscript j denotes the slit�, and amj and bmj are
unknown complex amplitudes.

The fields are matched on the horizontal boundaries by
imposing the continuity of the tangential components in the
open sections, and by applying the SIBC in the metallic sur-
faces. This method leads to a system of coupled equations
that are projected in convenient bases to get a matrix system
for the unknown reflected and transmitted amplitudes.

III. RESULTS

To give a general idea of the phase resonances and their
effects on the reflected and transmitted response of com-
pound wire gratings, we draw on some of the results ob-
tained for normal incidence �27� and analyze the dependence
of the resonances on the number of slits, width, and thick-
ness of the wires, and incidence angle.

Figure 2 shows examples of the transmitted response of
three of the complex structures considered in this paper. The
parameters used for these examples are a /d=c /d=0.08,

FIG. 1. Scheme of the simple and compound gratings.

FIG. 2. Zero-order transmittance as a function of the wavelength
for a p-polarized plane wave impinging on a metallic grating with
a /d=c /d=0.08 and h /d=1.14. The conductivity of the metal is �
=5.17�1017 s−1. The different curves correspond to different num-
bers of slits in the period: J=1, 2 and 3. �a� �0=0°, �b� �0=30°.
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h /d=1.14, �=5.14�1017 s−1 �corresponding to copper for
low frequencies at room temperature �33��, for a p-polarized
normally incident plane wave. The lower curve in Figs. 2�a�
and 2�b� corresponds to a simple grating, i.e., a periodic
structure with a single slit in the period. For normal inci-
dence �Fig. 2�a��, two peaks are observed in the curves,
which correspond to waveguide modes established in the
slits �6,27�. For two slits in the period �J=2�, the response is
very similar to the J=1 case, although the peaks are slightly
widened and shifted. However, for J=3 �three equal narrow
slits, two equal narrow wires, and a wider wire within the
period�, a significant change in the behavior is found: each
peak is split into two by a deep and sharp dip.

The physical origin of these dips can be explained in
terms of phase resonances, which are generated by a particu-
lar arrangement of the phases within the slits �22,23,25,27�.
In every periodic structure, the use of the pseudoperiodic
property of the fields allows us to reduce the treatment of the
diffraction problem to a single period. Consequently, the
fields are essentially equal in all slits of a simple grating.
However, if the grating comprises several slits in the period
�compound grating�, the distribution of field phases in the
slits can have different configurations. This new possibility
gives rise to the phase resonances under study, usually found
within the Fabry-Perot resonance peaks produced in the slits.
The number of allowed resonances within each waveguide
resonance peak is mainly governed by the number of slits in
the period �J�; nevertheless, the angle of incidence is of great
importance when analyzing the possibility of excitation of
phase resonances. In the J=3 case and under normal illumi-
nation, the only phase configuration allowed �different from
having equal phases in all the slits� is the one known as the
� mode �22�. This resonance is characterized by a phase
reversal between the central and the external slits, and it is
also called the �� � �� mode. Simultaneously, when the
compound structure is illuminated by a plane wave with the
resonant wavelength, the electromagnetic field inside the
slits is strongly intensified. For one slit in the period, and for
two slits in the period under normal illumination, different
phases in adjacent slits cannot occur, and therefore no dips
are present in the corresponding curves of Fig. 2.

One of the requirements for a phase resonance to occur is
to have at least one phase reversal of the magnetic field in
adjacent slits. In a previous letter �27�, we analyzed the re-
sponse of compound transmission gratings under normal il-
lumination, and we showed that, due to the symmetry im-
posed by normal incidence, the number of possible
configurations with at least one phase reversal in adjacent
slits is determined by J. For instance, for J=3 and J=4 there
is only one possibility ��� � �� and �� � � ��, respec-
tively�, for J=5 there are three possibilities ��� � � � ��,
�� � � � ��, and �� � � � ���, etc. Thus by increasing
J we increase the number of possibilities of exciting phase
resonances in the structure.

When the array is illuminated by an oblique plane wave,
new possibilities open up. In Fig. 2�b� we show the transmit-
ted intensity for oblique incidence ��0=30�� for the same
three structures considered in Fig. 2�a� for normal incidence.
The curve for J=1 is similar to that corresponding to normal
incidence, with a difference near � /d1.5. At this wave-

length the −1 diffraction order appears, producing a Rayleigh
anomaly. Phase resonances are not found in this case since
J=1 corresponds to a simple grating, and then no different
phases are allowed within the slits. An interesting feature
appears in the curve for J=2. The sharp dip that only ap-
peared for J=3 under normal illumination is now present
when the structure comprises just two slits �J=2�. For ob-
lique incidence, the symmetry condition imposed by normal
illumination is now removed, thus allowing new phase con-
figurations inside the slits. In particular, the phase resonance
mode excited in this case is a � mode, which has opposite
phases in adjacent slits, as can be observed in Fig. 3�a�. Also,
the removal of the symmetry condition produces new dips
for J=3, with two dips within each waveguide resonance
peak instead of the single dip found for normal illumination
�upper curve in Fig. 2�a��.

To get more insight about the characteristics of phase
resonances, in Fig. 3 we show contour plots of the magnetic
field �magnitude and phase� in the vicinity of the structure
for a resonant �Figs. 3�a� and 3�b�� and a nonresonant �Figs.
3�c� and 3�d�� wavelength, in oblique incidence conditions.
We observe that the phase of the magnetic field along the x
direction is nearly constant within each slit, as is to be ex-
pected in the case of narrow slits. When a phase resonance is
generated, i.e., when the compound structure is illuminated
by the right wavelength, the phases in adjacent slits are op-
posite to each other, as observed in Fig. 3�a� �notice that the
sudden change from black to white in the left slit is a ficti-
tious discontinuity produced by the calculation of the phase,
and both values correspond to � radians as can be appreci-
ated in the legend�. The magnitude of the field is shown in
Fig. 3�b�, from which it is clear that the field is concentrated
inside the apertures, reaching a value of up to 30 times the
incoming amplitude. Note that two characteristics of phase
resonances are met in this case: �i� a phase reversal of the
magnetic field in adjacent slits, and �ii� a strong enhancement
of the interior field. On the other hand, in nonresonant con-
ditions, the phases in adjacent slits are similar �Fig. 3�c��,

FIG. 3. Magnetic field for an obliquely incident ��0=30° �
p-polarized plane wave impinging on a metallic grating with a /d
=0.08, h /d=1.14, and J=2. The conductivity of the metal is �
=5.17�1017 s−1. �a� Phase for � /d=2.496; �b� magnitude for � /d
=2.496; �c� phase for � /d=2; �d� magnitude for � /d=2.
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and the maximum interior field is about ten times smaller
than in the resonant case �Fig. 3�d��.

In Fig. 4 we show maps of transmitted intensity as func-
tions of �0 �the x component of the incident wave vector�
and the frequency �, for gratings with different numbers of
slits in the period and the same parameters as in Fig. 2. The
lighter zones represent higher transmitted intensities. In Fig.
4�a� we show the contour plot for a simple structure, i.e.,
with a single slit per period �J=1�. As expected, this map
exhibits permitted bands, which correspond to waveguide
resonances within the slits. The transmittance associated with
these resonances is almost independent of �0, and therefore
they appear as flat bands. A similar behavior can be found in
the photonic band structure shown in Fig. 2�b� of Ref. �5�. In
the range of frequencies considered, the two permitted bands
are located at �d /c2 and 4.5, which correspond to the
peaks at � /d1.2 and 2.5 observed in Fig. 2�a� for normal
incidence.

For J=2, i.e., when the structure comprises two slits sepa-
rated by a narrow wire and a wide wire in the period �see
Fig. 1�, a new characteristic appears in the map �Fig. 4�b��.
Even though the behavior of the bands tends to be that of the
J=1 case for �0 approaching 0, a narrow minimum �light
gray zone� appears within each permitted band for �0d
0.4, which roughly corresponds to incidence angles �0
=10� and 5° for the lower and upper bands, respectively. This
result is in agreement with the second curve in Fig. 2�a�,
which does not present minima for �0=0�. However, when
�0�0 new phase configurations of the magnetic field can be
formed inside the slits, producing phase resonances and al-
lowing dips within the Fabry-Perot resonances. When the
number of slits within the period is further increased �J=3,
Fig. 4�c��, the permitted bands become less localized, the
overall transmittance of the structure increases, and a new
dip appears within each maximum. This dip corresponds to
the symmetric mode discussed above, since it is present not

only for oblique but also for normal illumination. Finally, for
J=5 �Fig. 4�d�� the structure becomes mostly transmitting,
although several narrow dark curves can be identified which
correspond to transmission minima in the structure response
produced by phase resonances.

The phenomenon illustrated in Fig. 4 for a particular set
of geometrical parameters is a general characteristic of com-
pound gratings: phase resonances always produce dips in
their transmission response. The width and depth of the dips,
along with their location within the waveguide resonances,
vary with constructive parameters such as slit width and
thickness, separation between slits and period of the grating,
and also with the conductivity �or refraction index� of the
metal. Even though the SIBC is valid for highly conducting
metals, it is important to take into account that the skin depth
is approximately given by �=� /4��� /2��. Since in the
case under study the width of the metal wires is c=0.08d
and � /d� �1,5�, one gets for the skin depth-wire
width ratio � /c�4�10−5�� /d��4�10−5�1:5�
�4�10−5 , 2�10−4� �for �=5.17�1017 s−1, which is a
typical value for metals in low frequencies�. As expected, the
skin depth is negligible for copper under low frequency in-
cidence, and the use of the SIBC is justified in the micro-
wave and millimeter wave regime �34�. However, within the
optical range metals are characterized by their complex re-
fraction index �, and the corresponding skin depth can be
comparable to the wire width, in which case the SIBC could
not be applicable for the solution of the problem with the
geometrical parameters considered in the examples. Then, a
rigorous method including the exact boundary conditions
should be applied.

This phenomenon can be viewed as the photonic crystal
counterpart. A typical band diagram of a photonic crystal
presents band gaps, i.e., frequency ranges that are not al-
lowed to propagate inside the crystal and therefore, if the
structure is illuminated by a plane wave of a frequency
within the gap, all the power is reflected �35�. However, if
the perfect periodicity of the photonic crystal is broken by a
defect in the structure, allowed states arise within the gap,
enabling transmission within the originally forbidden gap.

In the compound gratings considered in this paper, the
structures are essentially transmitting, at least within the
waveguide resonances peaks, as observed in Figs. 2 and 4.
Thus when a simple grating is illuminated by a plane wave
of a wavelength within the waveguide resonance peak, most
of the power is transmitted through the structure. The addi-
tion of complexity to the period in the form of a group of
identical slits can be regarded as a defect in the perfect pe-
riodicity, and in this case one or more forbidden channels are
formed within the allowed bands. Based on the mechanism
of phase resonances, structures with a prescribed number of
resonances at specified wavelengths could be designed.

To have an idea about the sensitivity of phase resonances
to the geometrical parameters of the structure, we performed
calculations for structures having different widths a of the
slits, while keeping the depth and the distance between slits
�c� fixed. It can be observed that as a increases, the wave-
guide resonance peaks widen, resulting in higher transmis-
sion �see Fig. 5�. This behavior was already observed in Ref.

FIG. 4. Contour plots of the transmitted intensity as a function
of �0 d, and �d /c, for the same parameters as in Fig. 2, and for
gratings with different numbers of slits in the period. �a� J=1; �b�
J=2; �c� J=3; and �d� J=5.
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�27�, and it is consistent with the increase in the “open parts”
of the structure. Also, the phase resonance dips shift to
slightly different wavelengths. The curves in Fig. 5 suggest
that the appearance of phase resonances is not particularly
sensitive to the slit width, and that the resonant wavelengths
depend not only on the width but also on the distance be-
tween slits. The dependence of the resonant wavelengths on
the depth of the slits can be understood by recalling that
phase resonances occur in the vicinity of the waveguide reso-
nances of cavities. If the grating is perfectly conducting,
these wavelengths are �res=2h /m, with m integer. Then, as
the depth varies, the waveguide resonant wavelengths shift,
and consequently the dips also move. For reflection gratings,
phase resonances appear at different wavelengths since in
this case the resonant wavelengths for a perfect conductor
are given by �res=4h /m, with m integer. Another difference
between the behavior of phase resonances in transmission

and reflection gratings is that in the reflection case, the power
is either reflected or absorbed by the structure, and then, in
the wavelength range considered here �� /d� �1,5��, phase
resonances are manifested as absorption dips �25�. In the
transmission case, on the other hand, the transmittance dips
are accompanied by absorption as well as by reflection peaks
�28�. Regarding the angular behavior of phase resonances,
the requirement to have a phase resonance under normal in-
cidence in both cases is the same: to have at least three slits
or grooves within the period. For oblique illumination, it is
enough to have two slits or grooves to get a phase mode.

IV. CONCLUSIONS

We have shown that the transmission response of com-
pound gratings can have unexpected features for the p polar-
ization. When these structures are illuminated by an ob-
liquely incident plane wave, sharp dips are found within the
well known maxima produced by the Fabry-Perot resonances
inside each slit. These dips appear even for a structure with
only two slits in the period, in sharp contrast to what occurs
for normal illumination. The nature of these anomalies has
been explained in terms of phase resonances, characterized
by a particular distribution of the phase and a significant
enhancement of the field inside the slits. The capability of
exciting phase resonances in compound gratings opens up
new possibilities for practical applications, such as polariza-
tion sensitive aperture shapes for field enhancement devices.
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