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ALGEBRAS WITH TWO GENERATORS.*

By JouN WERMER.

Introduction. Let C denote the algebra of all continuous complex-
valued functions defined on the unit circle |A|=1. With the norm
| fl =sup|f(Ar)|, C is a Banach algebra.

IA]=2

For any ¢,y in C, let [¢, ¢] be the closed subalgebra of C generated by
&,y and the constant 1. [¢,y] then consists of those functions in C which
can be uniformly approximated by polynomials in ¢ and .

In [1] the author determined the algebras [¢,y] with ¢ one-one on
[A]|=1. In this paper we shall give explicitly all algebras [¢,y] where
#(A) = A? and ¢ and ¢ together separate points on |A|=1. In §2 we
discuss the gemeral problem: when is [¢,y] equal to C?

1. We assume A* and y separate points on | A | =1. We shall prove:

TaroreM 1. If [A%y] 54 C, then there exist n distinct points A%, A2,
ce o, MEn | A < 1, where nis odd, and functions By, B, analytic in | X | < 1

and continuous in | A | = 1, such that y(A) = E.(\2) + { InI (A2 — N2 JEE,(AY).
Conversely, if ¢ has this form, then [A% y] = C. =

Definition. Let R be any Banach algebra, M a closed subalgebra. We
say M is a mazimal subalgebra of R if for any closed subalgebra M’ of R
with M C M’ we either have M’ =M or M’ =R.

THEOREM 2. Hvery subalgebra [A2 p], where p(A) = {ﬁl (A2—N2) 3,

the N are distinct points in | M| < 1 and n is odd, is a mazimal subalgebra
Of 0.

We shall use the following notations: If 2(A) is any function defined
on | A | —1, then hig(A) — ((A) —h(—A)), he(d) = (R(A) + h(—N)).
Clearly h = he -+ ho.

If Sisanyseton [A|=1, —8={r|—2re S}

If 4 is any complex-valued measure on | A | =1, then

* Received March 1, 1954.
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854 JOHN WERMER.

po(8) =3 (1(8) —u(—28))  we(8) =3(u(8) +u(—20)).

Clearly p, and p, again are measures on | A | =1, and p = ue -+ po.

I denotes the class of functions f(A) in C with f(A) analytic in | A | < 1,
continuous in || =1.

§" denotes the class of function A(A) on |A|=1 such that there

2:
exists H(A) analytic in |A] <1 with sup f mI‘H (ret?)| df <o and
r<li 0
h(et’) =lim H (re?) a.e. If he’, h(ei?) 540 a.e. (See [3].) Also
r—>1 |

fm-l RV | dr] <w and H(z) — 1 Ikl_(‘x—z)-lh(x)d)\.

2me

Lemma 1. If [A% 9] 540G, go(A)540, | A | =1, then g.(A) = E(A\?),
L in .

Proof of Lemma 1. Let o be a measure on | A | =1 with ﬂ !)tzndo(/\) =0,
Al=1
n=0. Since oo(8) — — ao(— 9), fl Kondag(0) =0, and so | o)
A=1 A=t

—0, n=0. Since oo(8) — oo(— ), fl N, () = 0. Thus
A=t

f Mdos(\) — 0, n=0.
[A]=1

By a known theorem, [R], this implies that o, is absolutely continuous,
doe(A) = h(A)dA, and h()) e §'. '

By hypothesis now [A2% g] % C. A well-known property of the space C
then yields a measure p with p=£0 and

(1) S, 2 W) o, om0,
A=1

Setting m =0, we conclude from the preceding that du,(A) = a(A)dA,

a(r) in §. Then a(A) =—a(—A).

But the measure dv(A) = g(A)dp(A) also annihilates all A%", n =0,
as is given by (1) for m =1. Hence dv.(A) =m(A)dr, m(\) in &'
Now  dve(A) = go(A)dpo(A) + ge(A) dpe(X) = go(X) dpo (X) + go(A)a () dA.
Hence duo (1) = {m(A) — ge(M)a(X)}(go(A))2dA = b(A)dr. Now g,(A) 540,
all |A|=1, by hypothesis. Hence b(A) is summable on |A|=1. Also
b(A) =0b(—2A). Thus du(A) = (a(A) +b(X))dr=F(A)d), f summable,
5%0. We can then rewrite (1):

(1,) N Aanm(A)f(A) dr = 0, n, m = 0.
=1



ALGEBRAS WITH TWO GENERATORS. 855

The above considerations, applied to the measures gm(A)f(A)da,
m=0,1,2,- - -, yield at once: (g™ (A)f(A)dA)e = ym(A)dA, v in & . Hence

2) (g™ (M) (A))o=ym(A) ae. on |A|=1.

An elementary computation then gives for n odd and setting A(N) = 12 — voy2
=g)f(AM)f(—A):

(n-1)/2
2"9 A = 2 Gvn (2')/n+1—v‘)/1/+1 = Yn-vYvs2 — 'Yn+2—1/'YV) = An;
»=0

a.e.on | A| —=1. Thus gs(A) = $A,/A(A\) =@ () a.e. on |A|=1. Here
@ is meromorphic in |A | < 1. It must be shown, of course, that As£0,
and we shall do this below. Now 2"®"A(A) = A,(A) a.e. on |A|=1. On
both sides of the equation are functions analytic in | A | < 1 and with non-
tangential boundary values existing a.e. on |A|=1. By a theorem of
Privaloff, [3], we hence get 2"®"(A)A(A) = A,(A), |A| < 1. Since A is a
fixed function and n arbitrary, ® can have no poles. Further,

[ =1 f d—mmal=a—12)* w0

Since v;(A) = (9)0(A), e get | 7;(2)| S K(1—|2|)| g | where K is
a constant. Hence

2| e ()] | AG) | = | an(x) | =S, O 4K2 A — 2|2 g |
=Ry g

Taking n-th roots and letting n-—>c, we have |®(2)| = | g, provided

A(z) 5£0. But the zeros of A are isolated in |z | < 1 and so ® is bounded

in 2] < 1. Since go(A) =lim®(7A) for a.a. A, | A | =1, and since g, is
r->1

continuous, we conclude that ®(A) is continuous in |A|=1. Thus
ge(A) = E(A?), E analytic in |A| < 1, continuous in |A|=1, i.e. £ is
in 9.

It remains to show that As£0. Suppose the contrary. Since A(A)
= go*(M)f(M)f(—A) and go* 5% 0, we get f(A)f(—A) =0 a.e.on |A]|=1.
Let D= {r|f is defined at A and — A, fo(A) %0 and f(A)f(—A) = 0}.
Now f,5% 0, for else f(A) =f(—A) and so f*(A) =0 a.e. Since f is defined
a.e., f(A)f(—A) =0 a.e. and fo e & by (R), with m = 0, and so fo(1) 550
a.e., D has measure 2.

Let § = {rin D | f(A) 54 0}. Then SU — 8 = D and SN — &8 is empty,
as is easily verified. Hence the Lebesgue measure of S, m(S), = m(— 8) — =.

By (), (9™f)o(A) =ym(X) a.e.on |A| =1, vy in &. For A in 3,
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(9mf)o(A) = 3gm(M)f(A) = g™(M)fo(A). Hence g™(A) = ym(A)/fo(A) a.e.
on 8. Set G(A) =v:1(A)/fo(r). Then @G is meromorphic in |A| <1 and
G (L) = g(\) on a subset S; of § with m (8S,) =m(S) and G(A) = g(—A)
on 85, 8, C — 8, m(8:) =m(—_8). Then fo(A)F"(A) = ym(A) a.e. on S.
Since m (8) > 0, it follows that this relation is true for | A | < 1 and a.e.
on |A|=1. Hence G has no poles in {A| <1, and also

-~

fo2) () =g, f =2 o() Gm (1) d

24

Now G(A) =g(r) a.e.on S, G(A) =g(—A) a.e.on — S, and m(SU — 8)
—2r. Hence | G(\)| =g a.e. on |A]=1. Thus

[ fo(2) || G™(2)| = (BE/Q— [zl glm

whence | G(2)| = | g || if fo(2) 0. Thus G is bounded in |z | < 1.

Choose now Ao in 8,* N 8z*, (the asterisk meaning closure). There exists
such a Ao, since S;* and S,* are closed sets on the circle, each of measure .

Set g(Ao) = @, g(— Xo) = B. We shall prove a = 8. To this end set
H(z) = (G(2) —a)(G(2) —B). H(z) is then a bounded analytic func-
tion in |z | < 1. Given e > 0, choose § > 0, so that | g(A) —a | < e and
|g(—A) —B| <e provided |A—2x | < 8.

Now a.e. on |A| =1 either G(A) =g(r) or G(A) =g(—A). Hence
ace.on |[A|=1[A—Xx|<8 |[HAN)|=2|g| e It follows from the
Poisson integral representation for H in |z | < 1 that | H(2)| < eif |2| <1
and |z—x | < ¥

Now Ao £8,* and also A, & S;*. Hence the neighborhood |z-—2x, | < &
contains z,, #z» with | G(z) —a | <&, | G(z) —B| <e. An arc in this
neighborhood which joins #;, and 2, then contains some z where both
| G(z) —a| < &and | G(z) — B | < & Hence a = B. Thus g(re) = g(— Ao).
This contradicts go(Ao) 0. Hence Az=£0. Lemma 1 is thus established.

Proof of Theorem 1. [A%¢] 5= C by assumption, and also y,(A) %0
since A%y separate points on |A|=1. Lemma 1 then gives that
Ye(A) = E1(A%) with E; in 9. Now any function in 9 may be uniformly
approximated by polynomials in || =1 and so ¢, is approximable in the
norm of € by polynomials in A% Hence y,e [A% ¢]. It follows that
Yo [A% y].

Set h =y0o* 4 ¢. Then ho=1yp£00n | A | =1. Also [A% 2] C [A% y]
5= C. By Lemma 1, then, ho(A) = 2(A) + ¢e(A) = E(A?*), E in ¥ and so
Yo’(A) = F (M), Fin A. Now ¢(1) 540 if |1 | =1 and so F(z) has only
finitely many zeros in |2z | < 1. Thus we can write
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F(z) =1,'_I1 (z— ) (B2(2))3
where E,e 9 and where the A? are distinct points in \)\| < 1. Hence
do () — {TT (A*— ) 3B (1), where {IT (\*—A)}? is one of the two
i=1 4=1

single valued branches of this multiple-valued function defined on [A]=1.
Since Yo (M) = — Yo (— A), n must be odd. Thus ¢ = ¢ + yo has the desired
representation.

Conversely, suppose y is of the form y(A) = E:(A%) + p(A)E:(A?),
where By, Bre U, p(A) — {IT (\*— A2)}:. Then [A%y] C [A% p]. Now it
=1

is easily seen, using the fact that p(A) = — p(—\), that [A% p] consists of
those and only those functions having the form: f(A) = A (A*) + p(A)B(A%),
A,Bin 9. Hence clearly [A2 p] 5= C and so [A% y] 4 C. Theorem 1 is thus
proved.

Proof of Theorem 2. Suppose [A%, p] C M/, where M’ is a proper closed
subalgebra of C. We must show M’ = [A% p].

Take any f in M’. Let h = f 4 rp where r is a constant chosen so that
ho(A) 740 on | A | =1. Since [A%, h] & M/, Theorem 1 then gives

h(A) = A(X) + {fl (— 7)) B(A), 4,B in .

Hence
ho- p(A) — {ﬁ (F — ") {IT (22— 22) B () e M.

Set & —hop 4+ p. Then ko(A) =p(A) 50 and [A% k] &M’ Hence by
Theorem 1, k,(A) = hop(A) — K (A?), K in A. Hence the £; and the A; must
be equal in pairs, whence k(1) — A(A?) + p(A\)B(A?). Thus ke [A% p] and
so fe[A% p]. Thus M= [A% p].

2. Let now ¢,y be any pair of functions in C separating points on
| ] =1. Let I be the curve in R,, the space of two complex variables, which
is given parametrically by: z; — ¢(A), 2o=y(A), |A|=1. T is then a
simple closed Jordan curve. By a piece of an analytic surface we mean a
bounded subset F of R, such that if (2,% 2.°) € &, there exist functions
2:(€), 22(¢) analytic in a neighborhood of £, in the complex £-plane such
that 2, — 2, (£), 22 = 25 (£) represent & parametrically in a neighborhood of
(72 22°) with 2, (&) = 2:°, 2:(&) = 2.°. We now have condition:
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(I) There exists no piece of an analytic surface bounded by T.
TrarorEM 3. Condition (I) ts necessary in order that [¢,y] = C.

Proof. Suppose F is a piece of an analytic surface bounded by T. Let
P(z,2;) be any polynomial. Restricted to &, P(#1,2.) is an analytic func-
tion on F and hence | P (2, 2)| attains its maximum on the boundary.

Fix now 2,°% 2,° in &F. For all polynomials P set m(P(¢, ¢)) = P(2,°, 2:°).

Then by the above,
| m(P(,9))] é( sup Fl Pz, 2) | =1 P(,9) |-

Thus m is a bounded multiplicative functional defined on a dense subset of
[#, ¢] and hence may be extended to be a multiplicative functional on all of
[¢,¢]. If now [¢,y]=C, every such multiplicative functional has the
form: f — f(Xo), Ao fixed, | Ao | = 1. Thus 2,° = m(¢) = $(Xo), 2.° =m(y)
=y (X). But (2% 2°) #T and ($(Xo), ¥ (X)) e . This is a contradiction,
and so our assertion holds.

TurorEM 4. Let ¢(A) be one-one on |A|=1. Then (I) is also
sufficient in order that [¢,y] = C.

Proof. Let y be the curve on which ¢ (1) maps the unit circle. Then y
is a simple closed curve in the plane. Suppose now [¢, ¢] 5= C. The author
showed in [1] that then  belongs to the algebra generated by ¢ and hence
that ¢(A) = F(¢(A)), where F is continuous inside and on y and analytic
inside y. Then the set of points (2, 2,) in R, with 2, = ¢, 2, = F (£) where
£ ranges over the interior of v is a piece of an analytic surface F and & is
bounded by I since (£, F'(£)) with ¢ on y is the general point on T

THEOREM 5. Let A% 4 separate points on | M| =1. Then (I) s also
sufficient in order that [A2,y] =C.

Proof. Suppose [A% ¢] 4 C. By Theorem 1,

y(A) = Ei (M%) 4 {}2 (A2 —A2) YE,(A?), Ev, B, U, n odd.

Let & be the Riemann surface of the function { InI (z — M?)}3, represented as

i=1

a two-sheeted covering of the z-plane with branch-points over A2 1=1,2,
- +,n. Let & be the region of & lying over the region |z | <1, and v
its boundary. Then vy is a simple closed Jordan curve on &. Let Z be the
function on %’ whose value at ¢, where ¢ lies over 2, — 2z, and W the function
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on &%’ whose value at ¢ is Fi(z) 4 {f[ (z— M) }YeE,(2). Z and W are
i1

analytic on &’ and together separate points on &’.

The set of points (Z(gq), W(q)) in R,, ¢ in &', is a piece of an analytic
surface &F. Its boundary is the set of points (Z(q), W(q)) with ¢ in y. But
for ¢ in v, q lying over A%, Z (q) = A% W(q) = ¢/(), and so (Z(q), W(q)) eT.
Conversely all points in I' are obtainable in this way. Hence T is the boundary
of F. Thus (I) fails if [A%¢]54C. q.e.d.

Theorems 4 and 5 suggest the conjecture that [¢,y] = C if and only
if there exists no analytic surface bounded by T. ‘

We hope to return to this question at some later date.

YALE UNIVERSITY.
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