

Algebras with Two Generators Author(s): John Wermer Source: American Journal of Mathematics, Vol. 76, No. 4 (Oct., 1954), pp. 853-859 Published by: The Johns Hopkins University Press Stable URL: <u>http://www.jstor.org/stable/2372659</u> Accessed: 01/12/2009 00:48

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=jhup.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Mathematics.

ALGEBRAS WITH TWO GENERATORS.*

By JOHN WERMER.

Introduction. Let **C** denote the algebra of all continuous complexvalued functions defined on the unit circle $|\lambda| = 1$. With the norm $||f|| = \sup_{|\lambda|=1} |f(\lambda)|$, **C** is a Banach algebra.

For any ϕ, ψ in **C**, let $[\phi, \psi]$ be the closed subalgebra of **C** generated by ϕ, ψ and the constant 1. $[\phi, \psi]$ then consists of those functions in **C** which can be uniformly approximated by polynomials in ϕ and ψ .

In [1] the author determined the algebras $[\phi, \psi]$ with ϕ one-one on $|\lambda| = 1$. In this paper we shall give explicitly all algebras $[\phi, \psi]$ where $\phi(\lambda) = \lambda^2$ and ϕ and ψ together separate points on $|\lambda| = 1$. In §2 we discuss the general problem: when is $[\phi, \psi]$ equal to **C**?

1. We assume λ^2 and ψ separate points on $|\lambda| = 1$. We shall prove:

THEOREM 1. If $[\lambda^2, \psi] \neq \mathbb{C}$, then there exist *n* distinct points λ_1^2, λ_2^2 , \cdots, λ_n^2 in $|\lambda| < 1$, where *n* is odd, and functions E_1, E_2 analytic in $|\lambda| < 1$ and continuous in $|\lambda| \leq 1$, such that $\psi(\lambda) = E_1(\lambda^2) + \{\prod_{i=1}^n (\lambda^2 - \lambda_i^2)\}^{\frac{1}{2}} E_2(\lambda^2)$. Conversely, if ψ has this form, then $[\lambda^2, \psi] \neq \mathbb{C}$.

Definition. Let **R** be any Banach algebra, **M** a closed subalgebra. We say **M** is a maximal subalgebra of **R** if for any closed subalgebra **M'** of **R** with $\mathbf{M} \subseteq \mathbf{M'}$ we either have $\mathbf{M'} = \mathbf{M}$ or $\mathbf{M'} = \mathbf{R}$.

THEOREM 2. Every subalgebra $[\lambda^2, p]$, where $p(\lambda) = \{\prod_{i=1}^n (\lambda^2 - \lambda_i^2)\}^{\frac{1}{2}}$, the λ_i are distinct points in $|\lambda| < 1$ and n is odd, is a maximal subalgebra of C.

We shall use the following notations: If $h(\lambda)$ is any function defined on $|\lambda| = 1$, then $h_0(\lambda) = \frac{1}{2}(h(\lambda) - h(-\lambda)), h_e(\lambda) = \frac{1}{2}(h(\lambda) + h(-\lambda)).$ Clearly $h = h_e + h_0$.

If S is any set on $|\lambda| = 1, -S = {\lambda | -\lambda \varepsilon S}.$

If μ is any complex-valued measure on $|\lambda| = 1$, then

853

^{*} Received March 1, 1954.

JOHN WERMER.

$$\mu_0(S) = \frac{1}{2}(\mu(S) - \mu(-S)), \qquad \mu_e(S) = \frac{1}{2}(\mu(S) + \mu(-S)).$$

Clearly μ_0 and μ_e again are measures on $|\lambda| = 1$, and $\mu = \mu_e + \mu_0$.

 \mathfrak{A} denotes the class of functions $f(\lambda)$ in \mathbb{C} with $f(\lambda)$ analytic in $|\lambda| \leq 1$, continuous in $|\lambda| \leq 1$.

$$\begin{split} & \tilde{\mathfrak{G}}' \text{ denotes the class of function } h(\lambda) \text{ on } |\lambda| = 1 \text{ such that there} \\ & \text{exists } H(\lambda) \text{ analytic in } |\lambda| < 1 \text{ with } \sup_{\substack{r < 1 \\ r < 1}} \int_{0}^{2\pi} |H(re^{i\theta})| \, d\theta < \infty \text{ and} \\ & h(e^{i\theta}) = \lim_{r \to 1} H(re^{i\theta}) \text{ a.e. If } h \in \tilde{\mathfrak{G}}', \ h(e^{i\theta}) \neq 0 \text{ a.e. (See [3].) Also} \\ & \int_{|\lambda|=1} |h(\lambda)| \, |d\lambda| < \infty \text{ and } H(z) = \frac{1}{2\pi i} \int_{|\lambda|=1} (\lambda - z)^{-1} h(\lambda) \, d\lambda. \end{split}$$

LEMMA 1. If $[\lambda^2, g] \neq \mathbb{C}$, $g_0(\lambda) \neq 0$, $|\lambda| = 1$, then $g_e(\lambda) = \mathbb{E}(\lambda^2)$, E in \mathfrak{A} .

Proof of Lemma 1. Let
$$\sigma$$
 be a measure on $|\lambda| = 1$ with $\int_{|\lambda|=1}^{\lambda^{2n}} d\sigma(\lambda) = 0$,
 $n \ge 0$. Since $\sigma_0(S) = -\sigma_0(-S)$, $\int_{|\lambda|=1}^{\lambda^{2n}} d\sigma_0(\lambda) \equiv 0$, and so $\int_{|\lambda|=1}^{\lambda^{2n}} d\sigma_e(\lambda)$
 $= 0, n \ge 0$. Since $\sigma_e(S) = \sigma_e(-S)$, $\int_{|\lambda|=1}^{\lambda^{2k+1}} d\sigma_e(\lambda) \equiv 0$. Thus
 $\int_{|\lambda|=1}^{\lambda^n} d\sigma_e(\lambda) = 0, \quad n \ge 0$.

By a known theorem, [2], this implies that σ_e is absolutely continuous, $d\sigma_e(\lambda) = h(\lambda) d\lambda$, and $h(\lambda) \in \mathfrak{H}'$.

By hypothesis now $[\lambda^2, g] \neq C$. A well-known property of the space C then yields a measure μ with $\mu \not\equiv 0$ and

(1)
$$\int_{|\lambda|=1}^{\lambda^{2n}g^m}(\lambda)d\mu(\lambda) = 0, \qquad n, m \ge 0.$$

Setting m = 0, we conclude from the preceding that $d\mu_e(\lambda) = a(\lambda)d\lambda$, $a(\lambda)$ in §'. Then $a(\lambda) = -a(-\lambda)$.

But the measure $d\nu(\lambda) = g(\lambda)d\mu(\lambda)$ also annihilates all λ^{2n} , $n \ge 0$, as is given by (1) for m = 1. Hence $d\nu_e(\lambda) = m(\lambda)d\lambda$, $m(\lambda)$ in §'. Now $d\nu_e(\lambda) = g_0(\lambda)d\mu_0(\lambda) + g_e(\lambda)d\mu_e(\lambda) = g_0(\lambda)d\mu_0(\lambda) + g_e(\lambda)a(\lambda)d\lambda$. Hence $d\mu_0(\lambda) = \{m(\lambda) - g_e(\lambda)a(\lambda)\}(g_0(\lambda))^{-1}d\lambda = b(\lambda)d\lambda$. Now $g_0(\lambda) \neq 0$, all $|\lambda| = 1$, by hypothesis. Hence $b(\lambda)$ is summable on $|\lambda| = 1$. Also $b(\lambda) = b(-\lambda)$. Thus $d\mu(\lambda) = (a(\lambda) + b(\lambda))d\lambda = f(\lambda)d\lambda$, f summable, $\neq 0$. We can then rewrite (1):

(1')
$$\int_{|\lambda|=1}^{n} \lambda^{2n} g^m(\lambda) f(\lambda) d\lambda = 0, \qquad n, m \ge 0.$$

The above considerations, applied to the measures $g^m(\lambda)f(\lambda)d\lambda$, $m = 0, 1, 2, \cdots$, yield at once: $(g^m(\lambda)f(\lambda)d\lambda)_e = \gamma_m(\lambda)d\lambda$, γ_m in §'. Hence (2) $(g^m(\lambda)f(\lambda))_e = \gamma_m(\lambda)$ a. e. on $|\lambda| = 1$.

An elementary computation then gives for *n* odd and setting $\Delta(\lambda) = \gamma_1^2 - \gamma_0 \gamma_2$ = $g_0^2 f(\lambda) f(-\lambda)$:

$$2^{n}g_{e}{}^{n}\Delta = \sum_{\nu=0}^{(n-1)/2} C_{\nu}{}^{n} \left(2\gamma_{n+1-\nu}\gamma_{\nu+1} - \gamma_{n-\nu}\gamma_{\nu+2} - \gamma_{n+2-\nu}\gamma_{\nu} \right) = \Delta_{n};$$

a. e. on $|\lambda| = 1$. Thus $g_e(\lambda) = \frac{1}{2}\Delta_1/\Delta(\lambda) = \Phi(\lambda)$ a. e. on $|\lambda| = 1$. Here Φ is meromorphic in $|\lambda| < 1$. It must be shown, of course, that $\Delta \neq 0$, and we shall do this below. Now $2^n \Phi^n \Delta(\lambda) = \Delta_n(\lambda)$ a. e. on $|\lambda| = 1$. On both sides of the equation are functions analytic in $|\lambda| < 1$ and with non-tangential boundary values existing a. e. on $|\lambda| = 1$. By a theorem of Privaloff, [3], we hence get $2^n \Phi^n(\lambda) \Delta(\lambda) = \Delta_n(\lambda)$, $|\lambda| < 1$. Since Δ is a fixed function and *n* arbitrary, Φ can have no poles. Further,

$$|\gamma_j(z)| = \left| \frac{1}{2\pi i} \int_{|\lambda|=1} (\lambda - z)^{-1} \gamma_j(\lambda) d\lambda \right| \leq (1 - |z|)^{-1} \int_{|\lambda|=1} |\gamma_j(\lambda)| |d\lambda|.$$

Since $\gamma_j(\lambda) = (g^j f)_0(\lambda)$, we get $|\gamma_j(z)| \leq K(1 - |z|)^{-1} ||g||^j$ where K is a constant. Hence

$$2^{n} | \Phi^{n}(z) | | \Delta(z) | = | \Delta_{n}(z) | \leq \sum_{p=0}^{(n-1)/2} C_{p^{n}} \cdot 4K^{2} (1 - |z|)^{-2} ||g||^{n+2}$$

 $\leq K'(1 - |z|)^{-2} \cdot 2^{n} ||g||^{n+2}.$

Taking n-th roots and letting $n \to \infty$, we have $|\Phi(z)| \leq ||g||$, provided $\Delta(z) \neq 0$. But the zeros of Δ are isolated in |z| < 1 and so Φ is bounded in |z| < 1. Since $g_e(\lambda) = \lim_{r \to 1} \Phi(r\lambda)$ for a. a. λ , $|\lambda| = 1$, and since g_e is continuous, we conclude that $\Phi(\lambda)$ is continuous in $|\lambda| \leq 1$. Thus $g_e(\lambda) = E(\lambda^2)$, E analytic in $|\lambda| < 1$, continuous in $|\lambda| \leq 1$, i.e. E is in \mathfrak{A} .

It remains to show that $\Delta \neq 0$. Suppose the contrary. Since $\Delta(\lambda) = g_0^2(\lambda)f(\lambda)f(-\lambda)$ and $g_0^2 \neq 0$, we get $f(\lambda)f(-\lambda) = 0$ a.e. on $|\lambda| = 1$. Let $D = \{\lambda \mid f \text{ is defined at } \lambda \text{ and } -\lambda, f_0(\lambda) \neq 0 \text{ and } f(\lambda)f(-\lambda) = 0\}$. Now $f_0 \neq 0$, for else $f(\lambda) \equiv f(-\lambda)$ and so $f^2(\lambda) = 0$ a.e. Since f is defined a. e., $f(\lambda)f(-\lambda) = 0$ a. e. and $f_0 \in \mathfrak{F}'$ by (2), with m = 0, and so $f_0(\lambda) \neq 0$ a. e., D has measure 2π .

Let $S = \{\lambda \text{ in } D \mid f(\lambda) \neq 0\}$. Then $S \cup -S = D$ and $S \cap -S$ is empty, as is easily verified. Hence the Lebesgue measure of $S, m(S), = m(-S) = \pi$.

By (2), $(g^m f)_0(\lambda) = \gamma_m(\lambda)$ a.e. on $|\lambda| = 1$, γ_m in \mathfrak{H}' . For λ in S,

 $(g^{m}f)_{0}(\lambda) = \frac{1}{2}g^{m}(\lambda)f(\lambda) = g^{m}(\lambda)f_{0}(\lambda).$ Hence $g^{m}(\lambda) = \gamma_{m}(\lambda)/f_{0}(\lambda)$ a.e. on S. Set $G(\lambda) = \gamma_{1}(\lambda)/f_{0}(\lambda)$. Then G is meromorphic in $|\lambda| < 1$ and $G(\lambda) = g(\lambda)$ on a subset S_{1} of S with $m(S_{1}) = m(S)$ and $G(\lambda) = g(-\lambda)$ on $S_{2}, S_{2} \subset -S, m(S_{2}) = m(-S)$. Then $f_{0}(\lambda)G^{m}(\lambda) = \gamma_{m}(\lambda)$ a.e. on S. Since m(S) > 0, it follows that this relation is true for $|\lambda| < 1$ and a.e. on $|\lambda| = 1$. Hence G has no poles in $|\lambda| < 1$, and also

$$f_0(z)G^m(z) = \frac{1}{2\pi i} \int_{|\lambda|=1} (\lambda - z)^{-1} f_0(\lambda) G^m(\lambda) d\lambda.$$

Now $G(\lambda) = g(\lambda)$ a. e. on S, $G(\lambda) = g(-\lambda)$ a. e. on -S, and $m(S \cup -S) = 2\pi$. Hence $|G(\lambda)| \leq ||g||$ a. e. on $|\lambda| = 1$. Thus

$$|f_0(z)| |G^m(z)| \leq (K/(1-|z|)) ||g||^m,$$

whence $|G(z)| \leq ||g||$ if $f_0(z) \neq 0$. Thus G is bounded in |z| < 1.

Choose now λ_0 in $S_1^* \cap S_2^*$, (the asterisk meaning closure). There exists such a λ_0 , since S_1^* and S_2^* are closed sets on the circle, each of measure π .

Set $g(\lambda_0) = \alpha, g(-\lambda_0) = \beta$. We shall prove $\alpha = \beta$. To this end set $H(z) = (G(z) - \alpha) (G(z) - \beta)$. H(z) is then a bounded analytic function in |z| < 1. Given $\epsilon > 0$, choose $\delta > 0$, so that $|g(\lambda) - \alpha| < \epsilon$ and $|g(-\lambda) - \beta| < \epsilon$ provided $|\lambda - \lambda_0| < \delta$.

Now a. e. on $|\lambda| = 1$ either $G(\lambda) = g(\lambda)$ or $G(\lambda) = g(-\lambda)$. Hence a. e. on $|\lambda| = 1$, $|\lambda - \lambda_0| < \delta$, $|H(\lambda)| \leq 2 ||g|| \cdot \epsilon$. It follows from the Poisson integral representation for H in |z| < 1 that $|H(z)| < \epsilon$ if |z| < 1and $|z - \lambda_0| < \delta'$.

Now $\lambda_0 \in S_1^*$ and also $\lambda_0 \in S_2^*$. Hence the neighborhood $|z - \lambda_0| < \delta'$ contains z_1, z_2 with $|G(z_1) - \alpha| < \epsilon^{\frac{1}{2}}$, $|G(z_2) - \beta| < \epsilon^{\frac{1}{2}}$. An arc in this neighborhood which joins z_1 and z_2 then contains some z where both $|G(z) - \alpha| < \epsilon^{\frac{1}{2}}$ and $|G(z) - \beta| < \epsilon^{\frac{1}{2}}$. Hence $\alpha = \beta$. Thus $g(\lambda_0) = g(-\lambda_0)$. This contradicts $g_0(\lambda_0) \neq 0$. Hence $\Delta \not\equiv 0$. Lemma 1 is thus established.

Proof of Theorem 1. $[\lambda^2, \psi] \neq \mathbb{C}$ by assumption, and also $\psi_0(\lambda) \neq 0$ since λ^2, ψ separate points on $|\lambda| = 1$. Lemma 1 then gives that $\psi_e(\lambda) = E_1(\lambda^2)$ with E_1 in \mathfrak{A} . Now any function in \mathfrak{A} may be uniformly approximated by polynomials in $|\lambda| \leq 1$ and so ψ_e is approximable in the norm of \mathbb{C} by polynomials in λ^2 . Hence $\psi_e \in [\lambda^2, \psi]$. It follows that $\psi_0 \in [\lambda^2, \psi]$.

Set $h = \psi_0^2 + \psi$. Then $h_0 = \psi_0 \neq 0$ on $|\lambda| = 1$. Also $[\lambda^2, h] \subseteq [\lambda^2, \psi] \neq \mathbb{C}$. By Lemma 1, then, $h_e(\lambda) = \psi_0^2(\lambda) + \psi_e(\lambda) = E(\lambda^2)$, E in \mathfrak{A} and so $\psi_0^2(\lambda) = F(\lambda^2)$, F in \mathfrak{A} . Now $\psi_0(\lambda) \neq 0$ if $|\lambda| = 1$ and so F(z) has only finitely many zeros in |z| < 1. Thus we can write

$$F(z) = \prod_{i=1}^{n} (z - \lambda_i^2) (E_2(z))^2$$

where $E_2 \in \mathfrak{A}$ and where the λ_i^2 are distinct points in $|\lambda| < 1$. Hence $\psi_0(\lambda) = \{\prod_{i=1}^n (\lambda^2 - \lambda_i^2)\}^{\frac{1}{2}} E_2(\lambda^2)$, where $\{\prod_{i=1}^n (\lambda^2 - \lambda_i^2)\}^{\frac{1}{2}}$ is one of the two single valued branches of this multiple-valued function defined on $|\lambda| = 1$. Since $\psi_0(\lambda) = -\psi_0(-\lambda)$, *n* must be odd. Thus $\psi = \psi_e + \psi_0$ has the desired representation.

Conversely, suppose ψ is of the form $\psi(\lambda) = E_1(\lambda^2) + p(\lambda)E_2(\lambda^2)$, where $E_1, E_2 \in \mathfrak{A}, p(\lambda) = \{\prod_{i=1}^n (\lambda^2 - \lambda_i^2)\}^{\frac{1}{2}}$. Then $[\lambda^2, \psi] \subseteq [\lambda^2, p]$. Now it is easily seen, using the fact that $p(\lambda) = -p(-\lambda)$, that $[\lambda^2, p]$ consists of those and only those functions having the form: $f(\lambda) = A(\lambda^2) + p(\lambda)B(\lambda^2)$, A, B in \mathfrak{A} . Hence clearly $[\lambda^2, p] \neq \mathbb{C}$ and so $[\lambda^2, \psi] \neq \mathbb{C}$. Theorem 1 is thus proved.

Proof of Theorem 2. Suppose $[\lambda^2, p] \subseteq \mathbf{M'}$, where $\mathbf{M'}$ is a proper closed subalgebra of **C**. We must show $\mathbf{M'} = [\lambda^2, p]$.

Take any f in **M'**. Let h = f + rp where r is a constant chosen so that $h_0(\lambda) \neq 0$ on $|\lambda| = 1$. Since $[\lambda^2, h] \subseteq \mathbf{M'}$, Theorem 1 then gives

$$h(\lambda) = A(\lambda^2) + \{\prod_{j=1}^m (\lambda^2 - \xi_j^2)\}^{\frac{1}{2}} \cdot B(\lambda^2), A, B \text{ in } \mathfrak{A}.$$

Hence

$$h_0 \cdot p(\lambda) = \{\prod_{j=1}^m (\lambda^2 - \xi_j^2)\}^{\frac{1}{2}} \cdot \{\prod_{i=1}^n (\lambda^2 - \lambda_i^2)\}^{\frac{1}{2}} B(\lambda^2) \in \mathbf{M}'.$$

Set $k = h_0 p + p$. Then $k_0(\lambda) = p(\lambda) \neq 0$ and $[\lambda^2, k] \subseteq \mathbf{M}'$. Hence by Theorem 1, $k_e(\lambda) = h_0 p(\lambda) = K(\lambda^2)$, K in \mathfrak{A} . Hence the ξ_j and the λ_i must be equal in pairs, whence $h(\lambda) = A(\lambda^2) + p(\lambda)B(\lambda^2)$. Thus $h \in [\lambda^2, p]$ and so $f \in [\lambda^2, p]$. Thus $\mathbf{M}' = [\lambda^2, p]$.

2. Let now ϕ, ψ be any pair of functions in **C** separating points on $|\lambda| = 1$. Let Γ be the curve in R_4 , the space of two complex variables, which is given parametrically by: $z_1 = \phi(\lambda)$, $z_2 = \psi(\lambda)$, $|\lambda| = 1$. Γ is then a simple closed Jordan curve. By a piece of an analytic surface we mean a bounded subset \mathcal{F} of R_4 such that if $(z_1^0, z_2^0) \in \mathcal{F}$, there exist functions $z_1(\xi), z_2(\xi)$ analytic in a neighborhood of ξ_0 in the complex ξ -plane such that $z_1 = z_1(\xi), z_2 = z_2(\xi)$ represent \mathcal{F} parametrically in a neighborhood of (z_1^0, z_2^0) with $z_1(\xi_0) = z_1^0, z_2(\xi_0) = z_2^0$. We now have condition:

JOHN WERMER.

(I) There exists no piece of an analytic surface bounded by Γ .

THEOREM 3. Condition (I) is necessary in order that $[\phi, \psi] = \mathbf{C}$.

Proof. Suppose \mathcal{F} is a piece of an analytic surface bounded by Γ . Let $P(z_1, z_2)$ be any polynomial. Restricted to \mathcal{F} , $P(z_1, z_2)$ is an analytic function on \mathcal{F} and hence $|P(z_1, z_2)|$ attains its maximum on the boundary.

Fix now z_1^0, z_2^0 in \mathfrak{F} . For all polynomials P set $m(P(\phi, \psi)) = P(z_1^0, z_2^0)$. Then by the above,

$$|m(P(\phi,\psi))| \leq \sup_{(z_1,z_2) \in \Gamma} |P(z_1,z_2)| = ||P(\phi,\psi)||.$$

Thus *m* is a bounded multiplicative functional defined on a dense subset of $[\phi, \psi]$ and hence may be extended to be a multiplicative functional on all of $[\phi, \psi]$. If now $[\phi, \psi] = \mathbf{C}$, every such multiplicative functional has the form: $f \to f(\lambda_0), \lambda_0$ fixed, $|\lambda_0| = 1$. Thus $z_1^0 = m(\phi) = \phi(\lambda_0), z_2^0 = m(\psi) = \psi(\lambda_0)$. But $(z_1^0, z_2^0) \notin \Gamma$ and $(\phi(\lambda_0), \psi(\lambda_0)) \in \Gamma$. This is a contradiction, and so our assertion holds.

THEOREM 4. Let $\phi(\lambda)$ be one-one on $|\lambda| = 1$. Then (I) is also sufficient in order that $[\phi, \psi] = C$.

Proof. Let γ be the curve on which $\phi(\lambda)$ maps the unit circle. Then γ is a simple closed curve in the plane. Suppose now $[\phi, \psi] \neq \mathbb{C}$. The author showed in [1] that then ψ belongs to the algebra generated by ϕ and hence that $\psi(\lambda) = F(\phi(\lambda))$, where F is continuous inside and on γ and analytic inside γ . Then the set of points (z_1, z_2) in R_4 with $z_1 = \xi$, $z_2 = F(\xi)$ where ξ ranges over the interior of γ is a piece of an analytic surface \mathcal{F} and \mathcal{F} is bounded by Γ since $(\xi, F(\xi))$ with ξ on γ is the general point on Γ .

THEOREM 5. Let λ^2, ψ separate points on $|\lambda| = 1$. Then (I) is also sufficient in order that $[\lambda^2, \psi] = \mathbb{C}$.

Proof. Suppose $[\lambda^2, \psi] \neq \mathbf{C}$. By Theorem 1,

$$\psi(\lambda) = E_1(\lambda^2) + \{\prod_{i=1}^n (\lambda^2 - \lambda_i^2)\}^{\frac{1}{2}} E_2(\lambda^2), E_1, E_2 \in \mathfrak{A}, n \text{ odd.}$$

Let \mathcal{G} be the Riemann surface of the function $\{\prod_{i=1}^{n} (z - \lambda_i^2)\}^{\frac{1}{2}}$, represented as a two-sheeted covering of the z-plane with branch-points over λ_i^2 , $i = 1, 2, \cdots, n$. Let \mathcal{G}' be the region of \mathcal{G} lying over the region |z| < 1, and γ its boundary. Then γ is a simple closed Jordan curve on \mathcal{G} . Let Z be the function on \mathcal{G}' whose value at q, where q lies over z, = z, and W the function on \mathcal{G}' whose value at q is $E_1(z) + \{\prod_{i=1}^n (z - \lambda_i^2)\}^{\frac{1}{2}} E_2(z)$. Z and W are analytic on \mathcal{G}' and together separate points on \mathcal{G}' .

The set of points (Z(q), W(q)) in R_4 , q in \mathscr{G}' , is a piece of an analytic surface \mathscr{G} . Its boundary is the set of points (Z(q), W(q)) with q in γ . But for q in γ , q lying over λ^2 , $Z(q) = \lambda^2$, $W(q) = \psi(\lambda)$, and so $(Z(q), W(q)) \in \Gamma$. Conversely all points in Γ are obtainable in this way. Hence Γ is the boundary of \mathscr{G} . Thus (I) fails if $[\lambda^2, \psi] \neq \mathbb{C}$. q. e. d.

Theorems 4 and 5 suggest the conjecture that $[\phi, \psi] = \mathbb{C}$ if and only if there exists no analytic surface bounded by Γ .

We hope to return to this question at some later date.

YALE UNIVERSITY.

REFERENCES.

- J. Wermer, "On algebras of continuous functions," Proceedings of the American Mathematical Society, vol. 4 (1953), pp. 866-869.
- [2] C. Esseen, "Fourier analysis of distribution functions," Acta Mathematica, vols. 77-78 (1945-46), pp. 3-125.
- [3] N. N. Lusin and I. I. Privaloff, "Sur l'unicité et multiplicité des fonctions analytiques," Annales de l'École Normale Superieur, ser. 3, vol. 42 (1925), pp. 143-191.