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Relativistic hydrodynamic evolutions with black hole excision
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We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes
containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the
collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary
state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity
is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a
significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum
Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust
collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of
M following excision, whereM is the mass of the black hole. We perform these tests both in axisymmetry and
in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin paraitidteon the
final outcome of gravitational collapse of rapidly rotating-1 polytropes. We find that a black hole forms
only if JJM?<1, in agreement with previous simulations. Wh#iM?>1, the collapsing star forms a torus
which fragments into nonaxisymmetric clumps, capable of generating appreciable “splash” gravitational ra-
diation.
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[. INTRODUCTION can move acausally for many gauge conditions. Although
they carry no physical content, such modes may destabilize
Since many of the most interesting phenomena in astrothe code. Thus, the choice of gauge is crucial to obtaining
physics involve black holes, the modeling of black holegood excision evolutions. In addition, constraint-violating
spacetimes is one the most important problems in numericahodes can, for some formulations of the field equations,
general relativity. It is also one of the most challenging prob-propagate acausally, creating inaccuracies and instabilities.
lems. Black hole evolutions present all the usual difficultiesThus, the choice of formulation is also crucial to obtaining
of numerical relativity, such as the need to find a stable formrgood excision evolutions.
of the field evolution equations and the need to find a prac- The feasibility of black hole excision was demonstrated in
tical coordinate system. In addition, handling the singularspherically symmetric £1 dimensional evolutions of a
region is very subtle for a numerical code; the black holesingle black hole in the presence of a self-gravitating scalar
singularity must be avoided to allow the exterior evolution tofield [2—5]. Excision was also implemented successfully to
continue far into the future. study the spherically symmetric collapse of collisionless
One of the most promising methods to date of dealingmatter to a black hole in Brans-Dicke theof§]. Three-
with black hole singularities is black hole excision. This dimensional evolutions of black holes with excision were
method, first suggested by Unriilh], exploits the fact that attempted by using the standardt B Arnowitt-Deser-Misner
the singularity resides inside an event horizon, a region thafADM) formulation, for a stationary7] and for a boosted
is casually disconnected from the rest of the universe. Sincblack hole[8]. Although the introduction of excision im-
no physical information propagates from inside the evenproved the behavior of these black hole simulations, long-
horizon to outside, one should be able to evolve the exteriotrerm stability could not be achieved due to instabilities en-
independent of the interior spacetime. Inside the event horidemic to the unmodified ADM formulation.
zon, causality entitles us to do anything which will produce a  Since then, new and more stable formulations of the 3
stable exterior evolution. In particular, one can excise a rekinstein field equations have been devised. Using excision in
gion inside the horizon containing the singularity and replacea modified version of the ADM equations commonly referred
it with suitable boundary conditions at its outer surface. = to as Baumgarte-Shapiro-Shibata-Nakam@&SN) [9,10],
Although it is guaranteed that no physical signal canseveral groups have evolved stationary black hole spacetimes
propagate from inside the horizon to outside, unphysical sigénonspinning and spinnindor arbitrarily long timeq11,12.
nals often can propagate in evolution codes. Gauge moddsong-term stability has also been achieved using hyperbolic
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formulations of the field equatiorjd3—15 and using char- followed by a delayed collapgé3,44). Either way, excision
acteristic evolution$16]. Success has also been achieved inof the black hole singularities is necessary to follow binary
evolving distorted and moving black holes with excision, mergers which form black holes with accretion disks, emit
both with characteristic formalismgl6] and with BSSN gravitational waves, and drive short-duration GRBs.
[17-19. Excision has also been used to simulate the grazing The dynamics of accretion flows onto a black hole is an-
collision of two black hole$20] and to simulate binary black other problem of great importance, since black holes are usu-
holes for approximately one orbital peripal]. ally visible electromagnetically only through accretion.
The last several years also have seen significant advancég¢hen the mass of the accreting fluid is much less than that
in numerical, 3-1 relativistic hydrodynamics in dynamical of the black hole, then the matter can be evolved on a fixed
spacetimegsee, e.g[22—-24). The simulation of rapidly ro- black hole spacetime. When the masses of the hole and the
tating, relativistic stars is now possible, and fully relativistic matter are comparable, then a fixed black hole spacetime
evolution codes are being used to study the stalifiy,26| becomes a bad approximation to the true metric, and the full
and gravitational collapsE27-29 of such objects. Binary system must be evolved self-consistently. This is particularly
neutron stars can now be evolved accurately for multipldmportant for determining if and when the disk may produce
orbits[24,30, and numerical simulations have been used taan instability, as in the runaway instabilif#5], or in the
study the final merger of these binari&d,32. one-armed spiral instabilitj46] which can generate quasi-
The necessary tools are clearly being forged to enablperiodic gravitational wavegt7].
numerical relativity to model a wide variety of strong-field  Other coupled black hole—hydrodynamic matter systems
gravitational phenomena. Many interesting systems in astrdnclude a neutron-star black hole binary, which might be an
physics involve the simultaneous presence of both blacknportant source of gravitational radiation for LIGO, and
holes and hydrodynamic matter fields, and these systems widllso the disruption or capture of a star by a massive black
require a code which can handle both in order to model thenhole, which is expected to be a major source of waves for
reliably. LISA [48]. Supermassive black hole seed formation by the
One important scenario involving both hydrodynamic collapse of a massive or supermassive star is another impor-
matter and black holes is core collapse in massive stars, @ant exampld47,49.
event of immense importance due to its association with su- Successful attempts at evolving matter and a black hole
pernovae, the formulation of neutron stars and black holegpgether in a dynamical spacetime using excision have been
and gamma ray burst&RBS. Some recent numerical simu- rare. Scheeét al. [6] simulated the collapse of a spherically
lations suggesf33] that a star must have mass less thansymmetric configuration of collisionless matter in Brans-
about 20/, for core collapse to result in a conventional Dicke theory with excision. The spacetime within the nu-
neutron star and supernova explosion. For progenitor masseserical domain was evolved until the appearance of an ap-
between around 20, and 4M ., the core collapses to a parent horizon. At that time, an excision boundary was
neutron star initially, but it eventually implodes to a black introduced and the evolution of the exterior spacetime was
hole, as ejected material slowly falls back onto the remnantontinued. An attempt to evolve a dynamical black hole
(see alsd34]). For more massive stars, the core collapsespacetime with hydrodynamic matter was undertaken by
promptly to a black hole. Such a massive system is a promBrandtet al.[50] in axisymmetry. In that paper, a black hole
ising candidate for a GRIB35]. There is growing evidence is evolved with an accretion flow, using the ADM formalism
that long duration GRBs are associated with hypernovae tha&nd an isometry inner boundary condition at the apparent
accompany the collapse of massive stellar cores. This evhorizon. They were able to evolve several systems for up to
dence includes the association of the low-energyabout 100/. Little progress has been made since then, pre-
GRB980425 with a supernova36], the presence of sumably because the computational tools for performing ex-
supernova-like features in the optical afterglow of severakision and relativistic hydrodynamics intd had to be per-
GRBs[37], and the existence of freshly synthesized elementgected independently. We have only now reached the stage
in the ejecta of GRB 01121[138]. Most recently, a hyper- where these tools can be put together successfully.
nova was found to be temporally and spatially coincident In this paper, we perform the first simulations which uti-
with a normal cosmological burst source, GRB 030829). lize excision to evolve relativistic hydrodynamic matter in
Most models of the central engine of GRBs involve a black3+1 dynamical spacetimes containing black holes. In par-
hole surrounded by a rapidly accreting disk and a[46f].  ticular, we present evolutions of the gravitational collapse of
Three dimensional fully relativistic simulations of both the stars from the beginning of collapse, through black hole for-
black hole and the exterior matter will be needed to test thenation, to quiescent final states. We perform these evolutions
feasibility of various models for the production of GRBs in two stages. From the beginning of collapse until the ap-
from such “collapsars,” and it is likely that excision will be pearance of an apparent horizon, we evolve using our new,
required to track the full evolution. relativistic hydrodynamic§BSSN code without excision
The merger of binary neutron stars is a promising sourcei.e. our “pre-excision” codg¢ After an apparent horizon ap-
of gravitational waves, as well as a prime candidate for shorpears, we continue the evolution with a region inside the
duration GRBg41]. Binary mergers of stars of high com- horizon excised. At the moment we introduce excision, a
paction collapse promptly to a black hdlgl]. The coales- significant amount of matter is still outside the excision zone
cence of low-compaction neutron stars probably leads to thand the black hole is significantly distorted and in a nonsta-
formation of a hypermassive neutron star remia6t32,43  tionary state. We follow its evolution to a final stationary
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state. In Sec. Il we describe our evolution scheme, inC|Udin%:giEf~i+f)'/ij _ 3)
our gauge and boundary conditions. In Sec. Il we describe 1

our code diagnostics. In Sec. IV we test our code on systems, .~ =~

with known behavior, including vacuum black holes, relativ- S()—D=de( vi)—1, )
istic Bondi accretion, Oppenheimer-Snyder collapse, and the
collapse of unstable polytropes, both non rotating and rotat-
ing. We find that we are able to evolve many systems stabl

0=7T=tr(A;)). (5)

. Yhese constraints are solved only at the initial time, and are
fqr hundreds ofM. When we evolve systems with appre- used henceforward as diagnostics. In an attempt to improve
ciable angular momentum, we can on'ly consehver some- the stability and accuracy of the BSSN formulation, one can
what shorter durations, but this duration can be extended by, multiples of the above constraints to the field equations.
increasing resolution. In Sec. V we apply our code to StUd34\/Iany possible modifications of this kind have recently been

the late-time outcome of pressure-depletion-induced graVitaéuggesteo[lz 56—6Q. We found a slight improvement in
tional collapse of rapidly rotating polytropes with polytropic ADM mass c6nservation by adopting the following modifi-
index n=1. We find that stars witll/M?<1 collapse to cations:

Kerr black holes with no surrounding disks. Stars with

JIM?>1 collapse to tori, which then fragment. This frag- dp=- - +CyATaH, (6)
mentation process can produce copious amounts of gravita-

tional radiation, originally referred to as “splash radiation” dyi=- - +cuATay H, (7)
[51]. Finally, we summarize our results and discuss future J .

improvements to our code in Sec. VI. (9t"&ij =... —CH?’ATQA”H, (8)

Throughout this paper, latin and greek indices denote spa-
tial componentg1-3) and spacetime componen®-3), re-  where AT is the time stepcy;=0.1, ¢y,=0.5, andcys

spectively. We use geometrized units, so tBatc=1. =1. [For the complete right hand sides of E¢8)—(8), see
[24], Egs. (12), (11), and (14).] Modifications similar to
Il. SUMMARY OF METHOD those in Eqgs(6) and (7) were suggested if60], while a

modification similar to Eq(8) has recently been used|i61]

Our basic code has been described in detail in previoufor doing excision in the ADM formulation for pure vacuum
papers[12,24 and will be discussed here only briefly to spacetimes. Equatioi6) introduces a diffusive term into the
point out recent improvements. Our code evolves the fullevolution of ¢. Equation(8) introduces a nonlinear damping
Einstein field equations coupled to relativistic hydrodynam-ig m into the evolution of; . We find that modificatiortg)
ics in 3471 dimensions. We have recently genera[lzed thishas the largest impact on accuracy.
code using the Cartoon methods [@7,53 so that it can Of crucial importance for the stability of our code are our
perform 2+1 simulations in axisymmetry in the same coor-
dinate system. In order to improve its behavior near the in -
tersection of the excision zone and the symmetry axis, wén [24], our equation fow,I"" has the terms
add a small amount of Kreiss-Oliger dissipati@8-53 to 5
the evolution equation for the extrinsic curvatﬂi@. A fur- oI :_filgi’j _filgi’j N (9)
ther description of our axisymmetry algorithms, together 3
with axisymmetry code tests, will be presented in a forth-
coming papef44], in which the effects of viscosity on dif-

constraint additions to thE' evolution equation. As shown

Looking, for example, at th& component of this equation,

ferentially rotating binary neutron star remnants are studied. - 2.

We evolve the field evolution equations using the BSSN ﬁtFX=§TX,BJ,j—FXBX,X— “o (10)
formulation[9,10]. In the BSSN system, one decomposes the
3-metric asy;=e*’y; and the extrinsic curvature @ e see that i3 ;>0 or gX,<0, thens,I'* contains a term

=e4¢(5\” +7yij K/3), and one promotes the conformal con-tending to produce exponential growth. We lessen the possi-
nection coefficientsT'= -7 ; to independent variables. bility of an instability caused by these terms by using &.
One then uses the ADM equations to write evolution equat0 replace Eq(10) with

tions for the new set of fundamental variables;:, ¢, A;;, R _ _ 5 o

K, andT". On each time slice, these variables must satisfy =38+ Al [1(~ Y- FMalB I

the following constraint equations:

—[B* <+ hal BN 1= VX ) = gl BT - -,

T e’ el . e’ | 56
— — Al I
0=H=9'DDje - gR+ ?AijAJ—EK +27e®%p, (13)
(1) and similarly forTY and T'% Note that the “exponential”
terms in the above equatidine. the terms proportional to
= ~iin 2 eemi - T teed to be exponentatayterms. Wi
— M=D . (e5¥RII) — £ eb6RiK — 6¢ci 2 _ ) are now guaranteed to be exponentiatayterms. We
0=M ie ) 3¢ Bre™’S, @ find good results with ,=2/3 and\g=3/4.
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Alcubierre et al. [62] find improved behavior when they then in situations where all the matter in the problem falls
enforce the constrairf=0. Yo et al.[12] found it useful to  into the black hole, the hole would continue to accrete atmo-
enforce7=D=0. We instead apply the reasoning above tosphere indefinitely, and its mass would continue to grow un-
modify the evolution equations foy;; andA;; . Thus, in the ph)‘ll'icakljly. ] i \ at the edae of th

tion for~ . ~ The boundary conditions we apply at the edge of the ex-
equation fory,y, we find the terms cision zone are described in detail ih2]. They consist of

_ 2 _ taking the time derivatives of quantities at the excision
§t7xx:<_§ﬁ],j+2ﬁx,x Yaxt o (12 boundary from the time derivatives of these quantities at
adjacent points. We use spherical excision regions inside the
which we replace by apparent horizon througho(see[65] regarding the superi-

ority of spherical to cubic excision regiondNe have tried
~ 2 ) . 2 S~ several boundary conditions for the matter variables, and
‘9t7xx:§[_:3',i+)\C|:3',i|]Gxx_ §)\C|B',i|7’xx have found that our results are insensitive to the choice, as
they should be. In the runs described below, we simply set
+2[ 8% x+ Np| B x| 1Gxx— 2)\D|,3XYX|§,XX+ e the matter variables equal to zero when they hit the excision
zone, thus making the excision boundary a perfect one-way
(13 membrane.
where G,, is the value ofy,, as computed from the five The lapse and Sh'ft. must be _chos.en in such away that t_he
. ~ ) total system of evolution equations is stable. It is also desir-
other independent components gf, assumingD=0. We  gpje that the gauge conditions are chosen so that, as the
perform the same substitution far,, andy,,. We userc  system settles into equilibrium, it appears stationary in the
=2/3 and\p=1/10. In a similar fashion, we modify the adopted coordinates. We have experimented with several
evolution ofA,, A,,, andA,, from choices for the lapse and shiftg', and we have found that
driver conditions using the second time derivativesradnd
B' provide the most stable evolutions. Following the sugges-
tion of Alcubbierreet al. [17], we have had great success
with the hyperbolic shift driver condition:

~ 2 ~
A=+ — §,BJ’J-+2BX’X+ aK | Ay (14

to
) ) G2 =bi(ad I — b3, (16)
OA==[— B i+ | B | THe— oAl B A
A=zl A ol 1Mo 3 ol 1A with b;=0.75 andb,=0.3V1 1 (cf. [17,66]). One can create

. . N a hyperbolic lapse condition by introducing two coupled
+2[ B xF Mol B x| THxx= 2N p| B u Axx first-order equations and a new functigh
+[aK+Ng|aK|THy— 2Ng| aK Ayt - - -,

(19

dra=aA,

L. (?tA= —al(aé’tK-i— azﬁta), (17)
and similarly for the other two components. Herg=0.1,

Ac and\p are the same as above, ag, is the value ofA,, ~ with a;=0.75 anda,=0.3M ~*. (We sometimes improve a

computed from the five other independent componengsof ~Simulation slightly by using differenb, and a,. As there
assumingZ=0. might be no single gauge which is optimal for all situations,

We take spatial derivatives in a centered way—we do nott IS useful to have the freedom provided by these param-
use causal differencing. The only exception, as suggested [§fers) The « in front of A in the first equation is a “safety”
[11], is in the advection terms along the siBf; , for which ~ feature, to prevent the lapse from dropping to zero. With this
we use the second-order upwind differencing described i§afety feature, we find that the lapse levels off at finite posi-
[63]. tive values everywhere on and outside the excision zone for

Our hydrodynamics scheme uses van Leer type advectiodll our runs, thereby maintaining a “horizon penetrating”
and artificial viscosity shock handliff@4]. It is known that (a>0) time coordinate. However, at late timest (
such schemes can be inaccurate for ultrarelativistic flows 200M), we find that the asymptotic values of some of our
[64]. We monitor the Lorentz factors of our fluids, and find variables(e.g., yy,) begin to drift, increasing linearly with
that they never exceed 2, which is around the upper limit time. This drift cannot be removed by increasing resolution
for accurate evolutions with a van Leer code. In addition,or moving the outer boundaries outward—it seems to repre-
most of our runs do not involve strong shocks. We thus besent the true evolution of the metric in these coordinates. It is
lieve that our hydrodynamics scheme is adequate for thalso present when harmonic slicing, another slicing with a
present purposes, although we eventually may have to inhyperbolic charactef67], is adopted. Apparently, Eq17)
prove it. Our hydrodynamics scheme employs the “no atmo-does not sufficiently restrict the coordinate system’s evolu-
sphere” approach24], so that the density at any point on our tion. We remove the drift by adding a third term to Ef7)
grid is allowed to fall to zero. It is important that we are able proportional toK —Kyive, WhereKg,ve is Some reasonable
to dispense with an artificial atmosphere. If we could not,positive function. In this way, the value &f itself, and not
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just its time derivative, is “driven.” We shall refer to this
slicing as our “hyperbolic lapse.” The complete slicing con-
dition is

dra=aA,
dA=—a{adK+a [ date *Pa(K—Kgo ).

Here thee “#?« factor is chosen so that the new term is
small in the strong-field region, where Ed.7) works well,

but becomes comparable to the other terms in the outer por-

tions of the grid, where it successfully removes the drift.
We have tried several forms fdty,,.. The simplest, and
usually adequate, choice is zero. This dritet® zero(maxi-

PHYSICAL REVIEW D 69, 104016 (2004

-~ 2 o~
- 3y| @ A — Z k2| _THkT .
167 Qd X| e (167Tp+A|JA 3K ) [ T
+(1-eM)R +ifﬁ (T'-8D'e?)d§ (22)
167 Q0 '
1 - 2 - 1 . -
Ji:gfijkfﬂ e6¢ AJk+ §XJDkK—§X]A|n(9k’yln
) 1 —
+8mxs, d3x+—ei-kfﬁ ebxAldS. (23
8w 90

We choose the inner surfad€) to be a sphere with a coor-

mal slicing and usually causes a very slow downward drift dinate radius about twice that of the excision boundary. This
in the lapse near the horizon. For many astrophysical appliputs dQ slightly outside the apparent horizon in the simula-
cations, where we only need to evolve for several hundredions reported below.

M, this is usually unimportant. However, the effect can be

removed by a better choice Kfy,e. One possibility i ,
the value ofK at the time excision is introduced. Another
choice isKgg, a function whose form is inspired by the
Kerr-Schild representation of a Kerr black hétd. Eqg. (36)

of [12]].

Kks(a@,B8)=2a*(1+H)I'H ;+2aHI'; (19

H

1
5(0172—1),

I'=B'(2a’H).

Note that when we choose this functional form Kgg, the

In our pre-excision cod€) is chosen to cover the entire
numerical grid, and there is no surface integral contribution.
The rest masM  cannot be used as a diagnostic because it is
conserved identically in our pre-excision code. Our pre-
excision code also conservdsidentically in axisymmetry
[44]. With excision,M is not expected to be conserved in
), since matter falls into the excision region. When evolving
with excision,J is not identically conserved, even in axisym-
metry, and thus serves as a code check togetherMith

Once a black hole is present, we detect it by using an
apparent horizon findgisee[69] for detailg. As the system
approaches stationarity, the apparent horizon will approach
the event horizon. We estimate the size the horizon in our
coordinate system by the radiugy constructed from thé
=0, m=0 moment of the horizon surface. From the surface

lapse and shift typically are not the same as the Kerr-Schildyrea of the apparent horizon, we compute the irreducible

a andg'.
For K=Kgive; We apply our usual excision boundary

conditions ona. Otherwise, there are no spatial derivatives

in Eq. (18), and no explicit inner boundary condition is

needed. In some cases, however, we have found more acc\li{/
rate results when we hold the values of the lapse on th

excision zone fixed in timdthe “frozen” inner boundary
condition.

Ill. DIAGNOSTICS

Our most important diagnostics are the conserved hss
and angular momentuh These are both defined by surface
integrals at infinity[ 68]:

1 o
M:Efr:m\/;'ylm'yln(')’mn,j_')’jn,m)dzsa (20)

1

Ji:8'n’

eijkf XIKRd?S,,. (21)
r=o

We measureM and J by applying Gauss’s law to obtain a
surface integral over an inner surface) (which encloses

the singularity, plus a volume integral over the space out-

side this surface). Details of this calculation are presented
in [12]. The final integrals are

massM;,, defined by

M ir= \/A/16772.

Je also compute the proper circumference of the horizon in
the equatorial Xy) plane, which we calC.,, and we com-
pute the proper circumference in the meridiornat)( plane,
which we callC,,,. For static nonrotating black hole§,
=Cpo=4mM. For stationary rotating black holes, one can
compute Ceq and Cy, from the Kerr metric in Boyer-
Lindquist coordinates to be

(29)

Ceq=47M, (25

w2
4M f d0\/2+2\/1—q2+ q°sirt,
0

Cpol_ (26)

whereq=J/M? is the spin parameter of the black hole. The
ratio Cp,/Ceq varies from 1 forg=0 to 0.6 forq=1. For
the black holes in our simulations, we infer the horizon mass
Man from Ceq and Eq.(25). We infer the horizon angular
momentumJy from Cp,/Ceq and Eq.(26), together with
M AH .

Finally, we find the ergosurface of the black hole. The
ergosphere is defined in the stationary limit, in which case
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FIG. 1. The evolution of the maa, angular momenturd, and FIG. 2. The evolution of a nonrotating black hole in our hyper-

lapse variatiom\ « for the evolution of are/M =0.4 black hole in  po|ic gauges, starting in isotropic coordinates witk-1, 8 =0.
Kerr-Schild coordinates. We use aZ3grid to cover the meridional On top, we show the deviations of the ADM mads,oy and the
plane. irreducible massvl;, from their initial value:6M =(M —M;)/M; .

SM is shown for runs with outer boundaries atM2using a 128
dlat is a Killing vector, and the ergosurface is defined as th€grid and using a &4grid, to demonstrate convergence. We also
surface whereggg=(d/dt)-(d/dt)=0, with gop>0 inside  show a run with outer boundaries atN4 using a 256 grid to
andgye<0 outside. determine the effect of the outer boundary. Below, we show the

As in [11,12, we gauge the degree to which a figld time evolution on the 128grid of the apparent horizon coordinate
reaches stationarity by monitoringf(t), defined to be the radiusr, and the maximum values ef and7,, on the grid.
L2 norm of f(t)—f(t—AT), whereAT is the time step. We
compute the L2 norm of a grid functiomby summing over As a second test, adapted fropll], we evolve a
every grid pointi: Schwarzschild black hole in initially isotropic coordinates.

Choosinge=1 andB'=0 att=0, the initial metric is

L2(g)=\/ 2 o (27) 49— —d

IV. TESTS wherer=x?+y?+z°. The event horizon is located at
=0.5M in these coordinates. Physically, this black hole is
stationary, but it does not appear stationary in the coordinates
In a previous papefl2], we used our code to evolve generated by Eq$16) and(18) starting with the initial lapse
isolated, stationary black hole spacetimes in Kerr-Schild coand shift cited above. By evolving this spacetime, we check
ordinates. These coordinates have the advantages of beitigat our excision code can work with coordinates other than
horizon-penetrating ¢+ 0 at the horizoh and providing a stationary Kerr-Schild. We also check the ability of our
manifestly stationary metric. We were able to evolve bothgauge conditions to “find” coordinate systems which make
stationary and rotating black holes for arbitrarily long times.the metric manifestly stationary. We allow the lapse to drop,
We succeeded in doing this both when evolving only oneso we do not freeze the lapse at the excision zone, but em-
octant of the space and when evolving the full space withouploy Eq. (18) everywhere. We us& .= Ki,;=0, since
any symmetry assumptions. These evolutions were done iKg is singular for our value ofr att=0 [see Eq(19)].
three dimensions using a different set of gauge conditions In Fig. 2, we plot the results for a run in axisymmetry
from those utilized in this paper. In Fig. 1, we show the with outer boundaries at M, an excision radius of 0.36,
evolution of aa/M=J/M?=0.4 Kerr black hole in Kerr- and a grid of 128to cover the meridionalx2 plane. Also
Schild coordinates using our 2D axisymmetry code and oushown are scaled results for a’6din to demonstrate con-
hyperbolic gauge conditions. For this case, we use a frozepergence. We also performed a run on a2§6d with the
inner boundary condition oa, and turn off the third term in  same resolution as the 128in but with the outer boundaries
Eq. (18). (Using K give= Kinit gives similar result$.We use a  at 24V1. From the figure, we see that the error can be con-
grid spacing ofAX=0.4M, with outer boundaries at M trolled by the grid resolution and the location of the outer
and an excision zone at a coordinate radius oMl.Bs was boundaries. We see that the surface area of the apparent ho-
used by[12]. The event horizon foa/M=0.4 is located at rizon (i.e. M;,) remains nearly constant while the coordi-
leg=1.91M in these coordinates. nates adjust to create a stationary system. This indicates that

M ! 2 2
1+ @) (dx®+dy?+dZ%), (29

A. Field code test: vacuum black holes
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plot A(pg), as defined in Sec. I, and also the valuepght
selected points in the accretion flow. FAfpy), we reach
machine precision after less than Mpmaking further in-
tegration unnecessaifyl?]. (The velocity fields have also
frozen near their initial values by this time.

When we allow the fields to evolve, we see the irreducible
mass of the hole grow at a ratéM;,/dt~0.9dM/dt| .

10720 T B B This error is consistent with the errors in our irreducible
L ) S B B BN B B B mass found at this numerical resolution, even in the absence
1.02 = B of accreting matter.
- E Py ]
é’ 1.01 - C. Oppenheimer-Snyder collapse
< C Pe = Next, we simulate the Oppenheimer-Snyder collapse of a
1 - P B homogeneous spherical ball of dust to a black hole. The be-
c : havior of this system is known in several coordinate systems
oo Hb o Lo I [72—74. We use a 160grid with outer boundaries at M.
0 40 M 80 120 At t=0, the dust is at rest and has an areal radius\of 8ve

start in an isotropic coordinate system, in whﬁzhzaij .

FIG. 3. The settling of the restmass density to steady stateQUr initial « and 3" are set by enforcing maximal slicing and
starting from the analytic value. The change per time step quickiin€ minimal distortion gauge condition, respectivegee
drops to the machine level. On top, we plgs, for both the 64 2D [73]). Since the ball has no pressure support, it immediately
run and the 643D run. Below, we show the time evolution pf at ~ P€Qins to collapse. During the first phase of this collapse,

three points on the diagonal line=y=2z in the 3D run, each nor- (here are no trapped regions and no singularities, so we
malized to its initial valuep, corresponds tgp, measured at  €volve the entire grid without excision. Our code checks dur-

= 3x=2M, p, t0 po atr=6M, andps to po atr=10M. ing this part of the evolution are well satisfied; J@d,44].
For gauge conditions during this no-excision phase, we use

. : . . our hyperbolic lapse and shift drivers. We evolve in this way
the apparent horizon is following the event horizon well. Thefrom t=0 tot=11M, at which point our no-excision code

coordinate adjustment is reflected in the initial increase inth%rashes due to its inability to resolve the central region
coordinate radius of the horizon and in the drop of the Iapse(.ugrid stretching”). An apparent horizon appears tat 9M
Note that the lapse settles quickly, and that it remains posiz; 5 oordinate radius af,y=0.96M with an irreducible
tive everywhere outside and at the excision zone. To chec ass ofM,,=1.02M. We next repeat the evolution from
that the black hole remains a Schwarzschild black hole, we_ ;3\ witﬁr our excision algorithm and an excision bound-
monitor C.q andC,, and find that they both remain equal to ary at radiug ., =0.7M. At this point, only 1.2% of the rest

4mM to within one percent. mass is outside the horizon, but the spacetime in our coordi-
nates is still changing. We continue to evolve with our hy-
B. Hydro code test: Relativistic Bondi flow perbolic gauges, and we allow to drop at the excision

Next, we test our hydrodynamics code by solving an aC_boundary. In this example, usiryive=Ks is far superior

creton problen that s an exac saluon n a previou &Y 1% Sh0e, S ol Ter oes e pse sete
paper[24], we confirmed our code’s ability to accurately q y. ’ g

simulate shocks, spherical dust collapse, nonrotating and r(gn%Sttnl]ggjl fa;lr? dlntc;tgreeelz(]:,tlsptnhz;nzgve;qtf;e;coeut_r;ee o{/\;{f;e
tating polytropes, and binary polytropes. Now we test its XI P '400)/| VE hich t'WI th v liu hp | Ime.
ability to maintain stationary, adiabatic, spherically symmet-evo Ve tor » Oy which time the System has ‘ong since

ric accretion onto a Schwarzschild black hole, in accord withSettled to a Schwarzschild black hole. Oppenheimer-Snyder

the relativistic Bondi accretion solution fét=1.5[70]. Fol- collapse does have an analytic solution in Friedmann coordi-

; : : o tes, but not in the coordinates we are using, which are
lowing the suggestion df71], we write the metric in Kerr- nates, o ' )
Schild (ingoing Eddington-Finklestejncoordinates; in this dhef"lfd bé/ our galé%? COﬂdItIOIﬁﬁG) ian?(lB) _trohgetl}er with
way, all the variables are well behaved at the horizon. Wé e boundary conditions on and §" atr.,. Therefore we

begin by holding the field variables fixed in order to preventChec.:k the accuracy of our evgluuon using global invariants.
the black hole from growing due to accretion. In Fig. 4, we show our mass diagnostics for the post-excision

We evolve this system twice, once using & Ggid in run, which confirm that the end product is a Schwarzschild
2+1 and once using a 84grid in 3+1. We place outer black hole, and we plok e as proof of stationarity. In Fig. 5,
boundaries at 1 and an excision zone at a coordinéae- we plot the magnitude of the constraint violations as func-
ea) radius of 1.B1. At t=0, we set the density and velocity tions of time. These show that the error is not growing during

profiles according to the exact solution fbr=1.5 and an the long stationary evolution.
accretion ratedM/dt|,.=0.0031, with a sonic radius at

10°M. This accretion rate is maintained through the evolu-
tion by fixing the hydrodynamic variables on the outer The previous example possessed spherical symmetry and
boundaries at their exact steady-state values. In Fig. 3, wao pressure. In our next test, we study the collapse of an

D. Collapse of a TOV star
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FIG. 4. ADM mass, horizon diagnostics, addr for the col- FIG. 6. ADM mass, horizon diagnostics, addr for the col-

lapse of a homoge_neous sphere of dust to a S_c_hwarzschild bIachpse of a nonrotating, unstahte=1 polytrope from apparent ho-
hole. Collapse begins at=0 and black hole excision occurs &t ;0 formation att/M =27 through final stationarity. The code is
=10M. axisymmetric and uses a 128rid.

unstable nonrotating, spherical polytrope, whose initial stat€ollapse without excision using a 128rid, with outer
is given by the solution to the Tolman-Oppenheimer-Volkoff boundaries at 12M and with our hyperbolic drivers. We
(TOV) equationg 75]. evolve fromt=0 tot=28.9M, locating an apparent horizon
For initial data, we take a perfect fluid with equation of at t=27M with radiusr=0.6M and irreducible mas#;,
stateP= kp,' 1", with n=1, and we choose our units such =0.9M. We begin an excision run from=27.8M, at

thatx=1 [76]. In these units, tha=1 TOV sequence has a which point 4% of the rest mass is still outside the apparent
turning point at the critical central rest densiﬁﬁm:O.SZ horizon and 8% is outside of the excision zone. All of this

where the ADM mass of the star 8 ,,,= 0.164. We choose matter falls into the excision zone loy31.6M. It should be
R oo emphasized that the spacetime in these coordinates is more
to evolve a star with initial central rest densjpy=0.5 and

- . . dynamical than the above numbers might suggest: e.g. dur-
ADM massM =0.158. As this star is on the unstable branch-ng the first 101 of post-excision evolution, the maximum

of then=1 sequence, it is unstable to radial oscillations anol TR M2
will collapse to a black hole. We evolve the first part of the value of ATA; M~ increases from 0.25 to 0.44. The system

settles quickly thereafter, as we see by evolving an additional
350M to 39QM. In Fig. 6, we show our diagnostics for this
run.

All the runs described above were carried out on two-
dimensional axisymmetric grids. In Fig. 7, we show diagnos-
tics for the same collapse in a three dimensional simulation,
with a 64 grid and boundaries 4i0,12.M]* (employing
octant symmetry to evolve only the upper ocjarthe be-
havior of each quantity is similar to that in the 2D run.

0.01

0.008

0.006

E. Collapse of a rotating star

0.004 -, Vi2(g)z — Gravitational collapse of astrophysically realistic stars
will involve rotation. Even if the progenitor star rotates
L N slowly, it will spin up as it collapses if it conserves angular
— — momentum. It is therefore important to test our code by
A I I T AR N simulating the collapse of a rapidly rotating star.
0 100 200 300 400 The star we adopt as initial data, labeled A, is described in
t /M. Table I. The initial data were obtained using the relativistic
! equilibrium code of(77]. Star A is a “hypermassive star”
FIG. 5. Violation of the Hamiltoniart{, momentumM ', and ~ With @ massM=0.19, which is 20% higher thaM .., the
Gammag' constraints as a function of time for the collapse de-maximum allowed mass of a nonrotating TOV star. Star A is
picted in Fig. 4. We plot the un-normalized L2 norms, where we useable to maintain this mass because of the added support
the shorthand.2(M )2=L2(M ¥)2+L2(MY)?+L2(M?? and  against gravity provided bydifferentia) rotation. The star
L2(G)?=L2(G%)%+L2(GY)%+L2(G?)>. hasJ/M?=0.57, so that the eventual Kerr hole will have

0.002
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FIG. 7. Same as for Fig. 6, but now the collapse is simulated on FIG. 8. MassM and angular momentund during the post-

a 3D 64 grid. excision phase of the collapse of star A. We show results for axi-
symmetric runs carried out with a 80a 166, and a 329 grid.

. . . 3oth M andJ are measured in two ways. The solid lines are quan-

?npepr:til Crhati);eczgltrsjlrgjsbuynlwg r?(ljl|:f ébinm;?grigdcglrllag;;? meities as measured by the integré®?) and (23). The dashed lines

effects of angular momentum or.l the star are significan,t aare obtained by measuring the geometry of the apparent horizon and

e can sec by oG ht 1 12U of 1 tar O 1 10 0y o e oo, e
tion z axis (the pola}r radiusis only 70% of thg radius of the ;g or‘; top of one another.

star in the equatorial plan¢he equatorial radigsStar A has

a differential rotation profildsee next sectionso there are  22% of the total rest mass is still outside the excision region,
no turning-point theorems which can be applied to determinend 12% is still outside the apparent horiz@rhich now has

the stability of this star, but we find numerically that it is radiusr ,y=0.73M). This matter quickly falls into the hole,
unstable to collapse. Perturbations due to numeficaind-  and, after evolving for 8 with excision, the exterior space-
off) error are sufficient to trigger the collapse, but the onsetime becomes a vacuum. In Fig. 8, we check the ability of
time scale for collapse is not independent of resolution. Irour code to conserve mass and angular momentum during
order to do convergence studies, we deplete a small percerthis phase of the evolution. The mass is well conserved on all
age(4%) of the initial pressure, so that the initial perturba- three grids, but the angular momentum slowly decreases with
tion is resolution-independent. This perturbation is so smaltime. Increasing resolution reduces this lossl.oThe viola-

that re-solving the constraint equationstatO makes little  tions of the constraint equations also converge to zero as
difference. resolution is increased. We can evolve stably tferl00M,

We carry out the entire evolution, before and after exci-but the loss of angular momentum is too great past this point
sion, in the hyperbolic gaugeéThe choice ofK 4, has a  for the evolution to be reliable unless the grid exceeds 320
negligible effect on the evolution in this applicatipriVe Figure 8 suggests that the angular momentum loss can be
perform the same evolution on a%8@rid, a 166 grid, and a  controlled by increasing resolution. Moreover, we have al-
3207 grid. On the 328 grid, a horizon appears in the pre- ready shown that our code can consedvier an arbitrarily
excision run att=44M, with instantaneous radiusay long time while evolving a Kerr black hole in Kerr-Schild
=0.5M and massM;,=0.7M™, which are growing rapidly. coordinategsee Fig. 1 and12]). Given this fact, we could
We excise at timé=45.9M and radiug,,=0.43V, so that eliminate theJ loss by transforming to Kerr-Schild coordi-

TABLE |. Equilibrium star configurationsn=1, M4=0.2).

Star  M?* Ry RS q¢ T/|w|® Qe Qed R Faté'

A 0.19 0.6 0.8 0.57 0.10 0.29 0.70 BHND
B 0.19 1.2 14 0.91 0.18 0.38 0.50 BHND
C 0.19 1.6 1.8 1.18 0.23 0.40 0.39 NBH
a8 ADM mass. °Ratio of kinetic to gravitational potential energy.
®Coordinate equatorial radius. fRatio of central to equatorial angular velocity.

Areal radius at the equator. 9Ratio of polar to equatorial coordinate radius.

dg=J/Mm2. PBHND = black hole, no disk; NBH no black hole.
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nates when we introduce excision. Alternatively, we mightsingularity) Stark and Pirafi82] also performed simulations
carry out the entire evolution in Kerr-Schild-like coordinates.which showedg~1 to be the critical point of demarcation
(This would require developing gauge conditions whichbetween collapse and bounce. Shib&d] performed a de-
would force the coordinate system to maintain its Kerr-tailed study of the collapse and bounce of sub-Kerr stars in
Schild-like character as the system evolyaale are cur- axisymmetry. These hydrodynamic studies did rtahd
rently investigating these possibilities. In the meantime, wesometimes could npstudy in detail the fate of the matter in

can already evolve such matter—black hole systems lonf!® Outer layers of the star when a black hole forms. More
enough to tackle several interesting problems. recently, Shibat428] has studied the collapse to black holes
of uniformly rotating polytropes spinning at the mass-

shedding limit. He finds that, for polytropic indices 2/8
<2, the star collapses to a Kerr black hole with no appre-
ciable disk. By using high resolution, he is able to follow the
Tracking the collapse of rapidly rotating stars is one of thesystem forAt~20M after an apparent horizon is first lo-
most important applications of numerical general relativity.cated. This time approaches the limit of reliable evolution
Such simulations determine the fate of collapse and providaithout excision, but in this case it is long enough to see all
a test of the cosmic censorship conject(ir8]. If the star  the matter fall into the hole. By contrast, Shibata and Shapiro
collapses to a stationary black hole, the “no-hair” theorems[29] considered the collapse of an=3 polytrope spinning
require that it settle down to a Kerr black hole. In the Kerruniformly at the mass-shedding limit. Such a configuration is
spacetime, the singularity is covered by an event horizomearly Newtonian R.,=620M) at the onset of collapse, and
only if q=J/M?<1; otherwise the singularity is naked. Ro- it forms an appreciable diskMp/M=~0.1) around the final
tating stars, on the other hand, are not so restricted, andlack hole. While the final disk mass can be estimated from
sufficiently rapidly rotating stars will havg>1. When these the angular momentum distribution of the outermost regions
stars collapse, it thus seems conceivable that they could forifsee alsd83]), and also by extrapolating the growth of the
naked singularities. Alternatively, if the cosmic censorshipblack hole horizon to late times, it is not possible to follow
hypothesig§ 78] is true, then the collapse of the whole systemthe final relaxation to a stationary state without excision or to
must somehow be averted. This can happen if the star losgsobe for nonaxisymmetric instabilities that may arise in the
angular momentum as it collapses, either by gravitationahmbient disi{47].
wave emission or by shedding matter with high specific an- Our excision code should be well suited to finding the
gular momentum, so that the final black hole ips1. A  final state of any rapidly rotating stellar collapse—not only
naked singularity can also be averted if the collapse gf a for determining whether or not a black hole forms, but also
>1 star is always halted by centrifugal forces, so there willfor determining how much rest mass escapes collapse if one
be no black hole and no singularity at all. Nakamii#@] has  does form. To explore this capability, we take differentially
pointed out that a centrifugal barrier could protect cosmicrotating polytropes as our initial data, so that we can study
censorship in this way. Assuming no mass or angular moboth sub-Kerr and supra-Kerr cases. Differential rotation is
mentum are shed during the collapse, the raByist which  naturally produced in supernova core collaff34], accretion
the centrifugal force balances the gravitational force will beinduced collapse of white dwarfs to neutron st8S], and
binary neutron star coalescen|&l,42,84. Our adopted ro-

V. APPLICATION: THE COLLAPSE OF RAPIDLY
ROTATING STARS

M J? tation law is
52 2R3’ (29 t 2 72
RE MZR} UUy=ReAY(Q—Q), (31
so that where() is the angular velocity of the fluid), is the value
of ) on the rotation axis, anBlyq is the equatorial coordinate
Ry~Mg?. (300  radius. The parameteék measures the degree of differential

rotation and is chosen to be unity for all cases below, so that
Nakamura argues that,df<1 (i.e., the star isub-Kerp, the ~ the centers of our stars rotate about three times faster than
star will already be inside a black hole before rotation cartheir equators. We take theaxis to be the rotation axis, and
halt the collapse. Fon>1 (i.e., the star isupra-Kerp, the  define the cylindrical coordinate radius = \x2+y?. In
collapse will be halted at a radius larger thdnand no black the Newtonian limit, Eq.(31) reduces to the so-called

hole forms. “j-constant” law[87]
Shapiro and Teukolsk}54] have studied the collapse in
full general relativity of axisymmetric tori consisting of col- _ Q¢
lisionless matter, and have found that black holes form only Q= 1+m2/R§dA2' (32

from sub-Kerr initial configurations. The first numerical

simulations of the collapse of rotating relativistic fluid starsWe choose a polytropic index=1, and take our initial stars
were carried out in axisymmetry by NakamyB9] and Na-  to be sufficiently compact so that the collapse does not span
kamura and Satp81]. They found that a black hole forms a large dynamic range. Accordingly, we are able to use a
only when a sub-Kerr star collapséBor stars withg within single, modest grid for each run. As|[ip4,27,83, we induce

5% of the critical value, Nakamuf&0] could not determine collapse by depleting the initial pressure by a factBr:
the final fate and could not exclude the possibility of a naked— f,P. Below, we show results fof ,=0.01. While this
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FIG. 9. Snapshots of the rest-density contours and the velocity fig€ld%) in the meridional plane during the collapse of star B to a
black hole. The contour lines are drawn fgy=10"(021*0-DpMafor j=0,1, .. .,12. Prior to excisionpg®is set equal to the instantaneous
maximum value op,. Afterward, it is held at the maximum @f, at the time of excision. Vectors indicate the local velocity field, The
thick curve in the last three frames marks the apparent horizon. On the last frame, the exterior spacetime is nearly a vacuum.

form of artificially induced collapse does not correspond topleted. We will concentrate below on stars B and C. We
any realistic astrophysical scenario, there are several situ&egin with simulations in axisymmetry and then discuss
tions in which an “effective” pressure depletion does occur.Simulations in full three dimensions.

For example, the collapse of the core of a massive star which
produces a supernova is brought about by the removal of
pressure support both from photo-dissociation of iron-nickel Star B has)/M2=0.9, so it is sub-Kerr. Its collapse in
nuclei and the neutronization of the cai@e-leptonization  axisymmetry is shown in Fig. 9. We evolve on a 3@fid
Phase transitions in neutron stars, such as a transition swith outer boundaries at M. At t=28.4VI, we locate an
quark matter, or rapid de-leptonization via neutrino cooling,apparent horizon withyy=0.62M, M,=0.72M. We excise
could also have the effect of inducing pressure depletion. Wat t=29M, at which time M;,=0.74M, 22% of the rest
choosefp,=0.01 to make pressure forces unimportant inmass is outside our excision zone, and 15% is outside the
comparison with centrifugal forces and gravity. After deplet-apparent horizon. The horizon circumferences at this time
ing pressure from the star, we re-solve the constraint equadre in the raticCy,/Ceq=0.76, which, if this were a station-
tions to produce valid initial data. This process of depleting®"y Kerr horizon, would correspond ¢p=0.92. We continue
pressure and re-solving the constraints caudeand J to evolving with an excision boundary at radiug=0.08. All

drop by a few percent, whild/M? changes by one percent of the matter falls into the hole within R0 after excision is
or less. ' introduced. We evolve for an additional [d0after this. We

find no signs of numerical instability. Mass conservation is

Table | lists the equilibrium stars used to construct our xcellent(the amount lost due to gravitational radiation is
initial data. These initial data were generated using the cod 9
elow 0.1%, but the gradual loss of angular momentum

of [77]. Each star has the same rest mitg=0.2, so our noted in Sec. IV E is present, as can be seen in Fig. 10. We

'itiri a'(;‘ rlw(e)n;be_l[fs].of a sequence unlquelly (Jtlef|nad:b;(,t stop evolving when the total angular momentum drops below
— 4, Mp=U.2. ThIS Sequence Crossgs-1 at oné point, - gney of jts injtial value. The final state of the system has,

between. our second gnd t'h|rd stars', stars B anpl C. We Xowever, been entirely determined well before this time.
pect to find a qualitative difference in the behavior of stars

B and C.

Star A is exactly the star studied in the previous section.
It is dynamically unstable and collapses without pressure Star C hasl/M?=1.2. We remove the star’s pressure sup-
depletion to a Kerr black hole with no disk. Not surprisingly, port and evolve. In Fig. 11, we show the results of a200
this is also found to be the behavior when pressure is deaxisymmetric run with boundaries at 13 M. With its pressure

A. Sub-Kerr collapse

B. Supra-Kerr collapse
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11— e e LA H occur as in the 2D runs. Then the torus quickly fragments
T S fipemmee into four clumps symmetrically located about the origin,
E *‘\\}\ E roughly 90° apart. As these clumps collapse, they ultimately
09 —M/M; \lf become too small to be evolved accurately on our grid. We
08 E “Mu/M; E conserveM andJ to better than 10% throughout the integra-
Eo-—- J/d. 3 tion shown, and we terminate the calculation when our errors
0.7 = I/, E exceed these bounds. To check this result, we have per-
065, L L1 formed the same run on 14070x 180 and 10& 50X 100
T AN N B B grids. In each case, the torus fragments into four pieces 90°
o ! ] apart. In Fig. 13, we compare the behavior of the maximum
.08 F : 3 of pg and the minimum ofx for the evolution of star C in
< 06 l 3 3D to their behavior in 2D on 26G0and 408 grids.
> - f ] It has been pointed out by Trueloet al.[88] that spuri-
= 04p | E ous fragmentation may occur in a numerical simulation if the
0.2 | ; = Jeans length is not well resolved. The Jeans length is given
03...|..\.\a\;..|..3 by
0 20 40 60
t/M, 7-rc§
)\‘]"" y (33)
FIG. 10. Diagnostics for the collapse of star B. Above, we show p

the evolution ofVl andJ calculated from integrations of the exterior . . .
: . _wherep is the density(mass-energy density and rest-mass
spacetime and from measurements of the geometry of the horizon.

Below, we plot the total rest mass on the grid, normalized to itsdensity are nearly equaland cs=vdP/dp is the sound

initial value. Rest mass is conserved prior to excision. tAt Speed. We can get a lower boundonby ignoring the large

=30M, we excise a region from the middle of the grid. This cuts amount of shock heating, which increaggs and consider-

out the matter inside this region, which accounts for 80% of theing adiabatic compression. Accordingly, for an-1, I'=2

total rest mass. Over the nextMQ the remaining rest mass falls fluid, P= Kpg, wherex=0.01 due to our pressure depletion.

into the excision zone, leaving a vacuum being evolved in the outFragmentation  occurs  whenp~py~3, so \;~0.25

side region. =15AX. (Shock heating increases this coefficign®ur

resolution is then quite sufficient to resolve the Jeans length.
We could not determine the final fate of this systgA)].

The four clumps may continue to collapse to black holes, or

{his collapse may be halted by heating-induced pressure. The

%gstem will certainly emit substantial amounts of gravity
aves, both during the bounce and oscillation of the initially

isymmetric torus and during its rotation following frag-

mentation. To see this, we measured the gauge invariant

Moncrief variablesy,,, (or Zerilli functions at the outer part

of the grid[90]. We also measure the amplitudes of the two

gravitational wave polarizations, andh, on thex axis at

the edge of our grid. Since the outer part of the grid is not in

Eﬁ?sﬁé\/gg fﬁgtﬁ?ﬁﬁg Z‘E{,\ﬂorfgsﬂs'ggcféfge@merg('fugﬁdeThe wave zone, our measurements are only approximate. We
9 y find that the dominant mode of the emissionlis2, m

with time. This decrease cannot be accounted for by the S . .
: =0, the quadrupole radiation generated by the axisymmetric

small flux of rest mass and gravity waves out of the compu-
. o : collapse and bounce of the torus. The second largest modes,
tational domain; the loss therefore represents numerical er-, . . .
. o . which are an order of magnitude smaller than the dominant

ror. We stop our evolution after three oscillation periods be-

cause M has decreased by-15%. To check that the mg?riec, ?gﬁ: ; ;nnz ?:((ZCt?npjli ;a(cgi,:fnoréogdtig?i;:'sgm'
evolution is qualitatively correct, we performed the same run P ' - b 9

on a 208 grid and found that the collapse, torus formation erated by the rotation of the four clumptn Fig. 14, we plot

support removed, the star immediately flattens alongzthe
axis and moves inward its. This inward motion toward the
axis is halted by centrifugal forces. As seen in the upper righ
panel of Fig. 11, the inner region of the star stops collapsin
before the outer region, so a strong shock is formed. The st
then expands into a torus whose radius oscillates with a pe:
riod close to the initial central rotation period. We show the
effects of this oscillation on the maximum rest density and
the minimum lapse in Fig. 13 below. We follow the torus for
three oscillations during which time all our constraints are
satisfied to better than 10%. The angular momentlis

Mo

and oscillation of the star are very similar at this resolution.h+ on the x axis, which contains C(_)ntnbL_lthns from all

The torus formed in the above simulation could be subjec odes. The observed amplitude of this radiation from a star
. : S S IeCht a distancal from the Earth would be

to various non-axisymmetric instabilities. If the rotating

torus fragments, the system may produce a large gravita- d -1

tional wave signal“splash radiation”[51]). It is therefore h~10"% WC) : (34)

necessary to perform the above simulation 13dimen-

sions. We perform this simulation using a 28040xX200 The final evolution of this very interesting system can be

grid, with boundaries af—13M,13M]x[0,13V11?, where  undertaken only using a finer grid, presumably by employing

we use equatorial angt symmetry. The results are shown in adaptive mesh refinemefAMR), and an improved shock-

Fig. 12. The collapse, flattening, and formation of the torushandling scheme in our code.
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FIG. 11. Snapshots of the rest density contours and the velocity fi¢|d%) in the meridional plane during the axisymmetric collapse
of star C to a torus. The contours are set as in Fig. 9. Some velocity arrows appear outside the contours because the density there is very
small but nonzero. Time is normalized to the initial central rotation period of theRag=98M.

VI. DISCUSSION AND CONCLUSIONS lapse directly to black holes only if they are sub-Kerr. This is

We have constructed a code to study the collapse of as'[[1e same behavior observed for spinning configurations of

trophysical objects to black holes by evolving the full collisionless mattef54]. We also were a_ble to study_ the final
coupled Einstein-hydrodynamics system in both12(axi- s_tate of the sub-Kerr collapses by using our excision algo-
symmetry and 3+1 dimensions. When a black hole appears,/thm t0 extend the evolution far beyond what could be
it is treated by introducing an excision boundary well inside@chieved without it. We find that even for a rapidly rotating
the horizon. Our code is stable and convergent for all of theéstar withq=0.9, all the rest mass falls immediately into the
test problems and applications presented here. As a test apole, with no disk formation, in agreement with Shibg28].
plication, we study the collapse of rapidly rotating stars. Our=or the case of supra-Kerr collapse, we found that the col-
conclusions regarding their ultimate fate agree with those ofapsing star hits a centrifugal barrier and bounces, forming a
Nakamura[80] and of Stark and Pirah82]—namely, that torus which fragments due to a nonaxisymmetric instability
spinning stars deprived of their pressure support will col-into four pieces. With our current computational resources,
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FIG. 14. The gravitational wave amplitudke , at a distancel

FIG. 13. The maximum value gf, and the minimum value of from the source, for the 3D collapse, bounce, and fragmentation of
a during the evolutions of star C on different grids, plotted as aStar C. We computé., at the point (11.6M, 0, 0).
function of the initial central rotation perio®, .. The two 2D

runs are qualitatively s_imilar. The 3D run behaves sir_nilarly to _thethe resolution is increased. We are currently investigating a
_2D runs for about the first OB, .. Thereafter a nonaxisymmetric number of ways to improve our algorithm and to apply it to
instability develops, and the collapsed star fragments. other 2D and 3D problems of astrophysical interest.

we were unable to determine the final fate of the four
clumps. Systems like this one are sufficiently interesting as
gravitational wave sources that they should be pursued by
further investigation with finer resolution, including AMR. It is a pleasure to thank Charles Gammie, Yuk-Tung Liu,

Considering the stability of our excision algorithm over and Branson Stephens for useful discussions. Most of the
such a variety of applications, we believe that it has greatalculations were performed at the National Center for Su-
promise as a tool for relativistic astrophysics involving thepercomputing Applications at the University of lllinois at
simultaneous presence of hydrodynamic matter and blackirbana-Champaign(UIUC). The remaining calculations
holes. Our current post-excision algorithm exhibits a gradualvere performed at National Center for High-performance
spurious decrease in total angular momentum when applie@omputing in Taiwan. This paper was supported in part by
at moderate resolution. However, this problem is not presemiiSF Grants PHY-0090310 and PHY-0205155 and NASA
in all coordinate system&.g. Kerr-Schildland is reduced as Grant NAG 5-10781.
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