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Relativistic hydrodynamic evolutions with black hole excision
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We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes
containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the
collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary
state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity
is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a
significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum
Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust
collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of
M following excision, whereM is the mass of the black hole. We perform these tests both in axisymmetry and
in full 311 dimensions. We then apply our code to study the effect of the stellar spin parameterJ/M2 on the
final outcome of gravitational collapse of rapidly rotatingn51 polytropes. We find that a black hole forms
only if J/M2,1, in agreement with previous simulations. WhenJ/M2.1, the collapsing star forms a torus
which fragments into nonaxisymmetric clumps, capable of generating appreciable ‘‘splash’’ gravitational ra-
diation.
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I. INTRODUCTION

Since many of the most interesting phenomena in as
physics involve black holes, the modeling of black ho
spacetimes is one the most important problems in nume
general relativity. It is also one of the most challenging pro
lems. Black hole evolutions present all the usual difficult
of numerical relativity, such as the need to find a stable fo
of the field evolution equations and the need to find a pr
tical coordinate system. In addition, handling the singu
region is very subtle for a numerical code; the black h
singularity must be avoided to allow the exterior evolution
continue far into the future.

One of the most promising methods to date of deal
with black hole singularities is black hole excision. Th
method, first suggested by Unruh@1#, exploits the fact that
the singularity resides inside an event horizon, a region
is casually disconnected from the rest of the universe. S
no physical information propagates from inside the ev
horizon to outside, one should be able to evolve the exte
independent of the interior spacetime. Inside the event h
zon, causality entitles us to do anything which will produc
stable exterior evolution. In particular, one can excise a
gion inside the horizon containing the singularity and repla
it with suitable boundary conditions at its outer surface.

Although it is guaranteed that no physical signal c
propagate from inside the horizon to outside, unphysical
nals often can propagate in evolution codes. Gauge mo
0556-2821/2004/69~10!/104016~16!/$22.50 69 1040
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can move acausally for many gauge conditions. Althou
they carry no physical content, such modes may destab
the code. Thus, the choice of gauge is crucial to obtain
good excision evolutions. In addition, constraint-violatin
modes can, for some formulations of the field equatio
propagate acausally, creating inaccuracies and instabili
Thus, the choice of formulation is also crucial to obtaini
good excision evolutions.

The feasibility of black hole excision was demonstrated
spherically symmetric 111 dimensional evolutions of a
single black hole in the presence of a self-gravitating sca
field @2–5#. Excision was also implemented successfully
study the spherically symmetric collapse of collisionle
matter to a black hole in Brans-Dicke theory@6#. Three-
dimensional evolutions of black holes with excision we
attempted by using the standard 311 Arnowitt-Deser-Misner
~ADM ! formulation, for a stationary@7# and for a boosted
black hole @8#. Although the introduction of excision im
proved the behavior of these black hole simulations, lo
term stability could not be achieved due to instabilities e
demic to the unmodified ADM formulation.

Since then, new and more stable formulations of the 311
Einstein field equations have been devised. Using excisio
a modified version of the ADM equations commonly referr
to as Baumgarte-Shapiro-Shibata-Nakamura~BSSN! @9,10#,
several groups have evolved stationary black hole spacet
~nonspinning and spinning! for arbitrarily long times@11,12#.
Long-term stability has also been achieved using hyperb
©2004 The American Physical Society16-1
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DUEZ, SHAPIRO, AND YO PHYSICAL REVIEW D69, 104016 ~2004!
formulations of the field equations@13–15# and using char-
acteristic evolutions@16#. Success has also been achieved
evolving distorted and moving black holes with excisio
both with characteristic formalisms@16# and with BSSN
@17–19#. Excision has also been used to simulate the graz
collision of two black holes@20# and to simulate binary black
holes for approximately one orbital period@21#.

The last several years also have seen significant adva
in numerical, 311 relativistic hydrodynamics in dynamica
spacetimes~see, e.g.@22–24#!. The simulation of rapidly ro-
tating, relativistic stars is now possible, and fully relativis
evolution codes are being used to study the stability@25,26#
and gravitational collapse@27–29# of such objects. Binary
neutron stars can now be evolved accurately for multi
orbits @24,30#, and numerical simulations have been used
study the final merger of these binaries@31,32#.

The necessary tools are clearly being forged to ena
numerical relativity to model a wide variety of strong-fie
gravitational phenomena. Many interesting systems in as
physics involve the simultaneous presence of both bl
holes and hydrodynamic matter fields, and these systems
require a code which can handle both in order to model th
reliably.

One important scenario involving both hydrodynam
matter and black holes is core collapse in massive stars
event of immense importance due to its association with
pernovae, the formulation of neutron stars and black ho
and gamma ray bursts~GRBs!. Some recent numerical simu
lations suggest@33# that a star must have mass less th
about 20M ( for core collapse to result in a convention
neutron star and supernova explosion. For progenitor ma
between around 20M ( and 40M ( , the core collapses to
neutron star initially, but it eventually implodes to a bla
hole, as ejected material slowly falls back onto the remn
~see also@34#!. For more massive stars, the core collap
promptly to a black hole. Such a massive system is a pr
ising candidate for a GRB@35#. There is growing evidence
that long duration GRBs are associated with hypernovae
accompany the collapse of massive stellar cores. This
dence includes the association of the low-ene
GRB980425 with a supernova@36#, the presence o
supernova-like features in the optical afterglow of seve
GRBs@37#, and the existence of freshly synthesized eleme
in the ejecta of GRB 011211@38#. Most recently, a hyper-
nova was found to be temporally and spatially coincid
with a normal cosmological burst source, GRB 030329@39#.
Most models of the central engine of GRBs involve a bla
hole surrounded by a rapidly accreting disk and a jet@40#.
Three dimensional fully relativistic simulations of both th
black hole and the exterior matter will be needed to test
feasibility of various models for the production of GRB
from such ‘‘collapsars,’’ and it is likely that excision will be
required to track the full evolution.

The merger of binary neutron stars is a promising sou
of gravitational waves, as well as a prime candidate for sh
duration GRBs@41#. Binary mergers of stars of high com
paction collapse promptly to a black hole@31#. The coales-
cence of low-compaction neutron stars probably leads to
formation of a hypermassive neutron star remnant@26,32,42#
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followed by a delayed collapse@43,44#. Either way, excision
of the black hole singularities is necessary to follow bina
mergers which form black holes with accretion disks, em
gravitational waves, and drive short-duration GRBs.

The dynamics of accretion flows onto a black hole is a
other problem of great importance, since black holes are u
ally visible electromagnetically only through accretio
When the mass of the accreting fluid is much less than
of the black hole, then the matter can be evolved on a fi
black hole spacetime. When the masses of the hole and
matter are comparable, then a fixed black hole spacet
becomes a bad approximation to the true metric, and the
system must be evolved self-consistently. This is particula
important for determining if and when the disk may produ
an instability, as in the runaway instability@45#, or in the
one-armed spiral instability@46# which can generate quas
periodic gravitational waves@47#.

Other coupled black hole–hydrodynamic matter syste
include a neutron-star black hole binary, which might be
important source of gravitational radiation for LIGO, an
also the disruption or capture of a star by a massive bl
hole, which is expected to be a major source of waves
LISA @48#. Supermassive black hole seed formation by
collapse of a massive or supermassive star is another im
tant example@47,49#.

Successful attempts at evolving matter and a black h
together in a dynamical spacetime using excision have b
rare. Scheelet al. @6# simulated the collapse of a spherical
symmetric configuration of collisionless matter in Bran
Dicke theory with excision. The spacetime within the n
merical domain was evolved until the appearance of an
parent horizon. At that time, an excision boundary w
introduced and the evolution of the exterior spacetime w
continued. An attempt to evolve a dynamical black ho
spacetime with hydrodynamic matter was undertaken
Brandtet al. @50# in axisymmetry. In that paper, a black ho
is evolved with an accretion flow, using the ADM formalis
and an isometry inner boundary condition at the appar
horizon. They were able to evolve several systems for up
about 100M . Little progress has been made since then, p
sumably because the computational tools for performing
cision and relativistic hydrodynamics in 311 had to be per-
fected independently. We have only now reached the st
where these tools can be put together successfully.

In this paper, we perform the first simulations which u
lize excision to evolve relativistic hydrodynamic matter
311 dynamical spacetimes containing black holes. In p
ticular, we present evolutions of the gravitational collapse
stars from the beginning of collapse, through black hole f
mation, to quiescent final states. We perform these evolut
in two stages. From the beginning of collapse until the a
pearance of an apparent horizon, we evolve using our n
relativistic hydrodynamics~BSSN! code without excision
~i.e. our ‘‘pre-excision’’ code!. After an apparent horizon ap
pears, we continue the evolution with a region inside
horizon excised. At the moment we introduce excision
significant amount of matter is still outside the excision zo
and the black hole is significantly distorted and in a nons
tionary state. We follow its evolution to a final stationa
6-2
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state. In Sec. II we describe our evolution scheme, includ
our gauge and boundary conditions. In Sec. III we desc
our code diagnostics. In Sec. IV we test our code on syst
with known behavior, including vacuum black holes, relat
istic Bondi accretion, Oppenheimer-Snyder collapse, and
collapse of unstable polytropes, both non rotating and ro
ing. We find that we are able to evolve many systems sta
for hundreds ofM. When we evolve systems with appr
ciable angular momentum, we can only conserveJ for some-
what shorter durations, but this duration can be extended
increasing resolution. In Sec. V we apply our code to stu
the late-time outcome of pressure-depletion-induced grav
tional collapse of rapidly rotating polytropes with polytrop
index n51. We find that stars withJ/M2,1 collapse to
Kerr black holes with no surrounding disks. Stars w
J/M2.1 collapse to tori, which then fragment. This fra
mentation process can produce copious amounts of gra
tional radiation, originally referred to as ‘‘splash radiation
@51#. Finally, we summarize our results and discuss fut
improvements to our code in Sec. VI.

Throughout this paper, latin and greek indices denote s
tial components~1–3! and spacetime components~0–3!, re-
spectively. We use geometrized units, so thatG5c51.

II. SUMMARY OF METHOD

Our basic code has been described in detail in previ
papers@12,24# and will be discussed here only briefly t
point out recent improvements. Our code evolves the
Einstein field equations coupled to relativistic hydrodyna
ics in 311 dimensions. We have recently generalized t
code using the Cartoon methods of@27,52# so that it can
perform 211 simulations in axisymmetry in the same coo
dinate system. In order to improve its behavior near the
tersection of the excision zone and the symmetry axis,
add a small amount of Kreiss-Oliger dissipation@53–55# to
the evolution equation for the extrinsic curvatureÃi j . A fur-
ther description of our axisymmetry algorithms, togeth
with axisymmetry code tests, will be presented in a for
coming paper@44#, in which the effects of viscosity on dif
ferentially rotating binary neutron star remnants are stud

We evolve the field evolution equations using the BS
formulation@9,10#. In the BSSN system, one decomposes
3-metric asg i j 5e4fg̃ i j and the extrinsic curvature asKi j

5e4f(Ãi j 1g̃ i j K/3), and one promotes the conformal co

nection coefficientsG̃ i52g̃ i j
, j to independent variables

One then uses the ADM equations to write evolution eq
tions for the new set of fundamental variables:g̃ i j , f, Ãi j ,

K, and G̃ i . On each time slice, these variables must sat
the following constraint equations:

05H[g̃ i j D̃ i D̃ je
f2

ef

8
R̃1

e5f

8
Ãi j Ã

i j 2
e5f

12
K212pe5fr,

~1!

05Mi[D̃ j~e6fÃj i !2
2

3
e6fD̃ iK28pe6fSi , ~2!
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05G i[G̃ i1g̃ , j
i j , ~3!

05D[det~ g̃ i j !21, ~4!

05T[tr~Ãi j !. ~5!

These constraints are solved only at the initial time, and
used henceforward as diagnostics. In an attempt to impr
the stability and accuracy of the BSSN formulation, one c
add multiples of the above constraints to the field equatio
Many possible modifications of this kind have recently be
suggested@12,56–60#. We found a slight improvement in
ADM mass conservation by adopting the following modi
cations:

] tf5•••1cH1DTaH, ~6!

] tg̃ i j 5•••1cH2DTag̃ i j H, ~7!

] tÃi j 5•••2cH3DTaÃi j H, ~8!

where DT is the time step,cH150.1, cH250.5, andcH3
51. @For the complete right hand sides of Eqs.~6!–~8!, see
@24#, Eqs. ~12!, ~11!, and ~14!.# Modifications similar to
those in Eqs.~6! and ~7! were suggested in@60#, while a
modification similar to Eq.~8! has recently been used in@61#
for doing excision in the ADM formulation for pure vacuum
spacetimes. Equation~6! introduces a diffusive term into the
evolution off. Equation~8! introduces a nonlinear dampin
term into the evolution ofÃi j . We find that modification~8!
has the largest impact on accuracy.

Of crucial importance for the stability of our code are o

constraint additions to theG̃ i evolution equation. As shown

in @24#, our equation for] tG̃
i has the terms

] tG̃
i5

2

3
G̃ ib j

, j2G̃ jb i
, j1•••. ~9!

Looking, for example, at thex component of this equation,

] tG̃
x5

2

3
G̃xb j

, j2G̃xbx
,x2••• ~10!

we see that ifb j
, j.0 or bx

,x,0, then] tG̃
x contains a term

tending to produce exponential growth. We lessen the po
bility of an instability caused by these terms by using Eq.~3!
to replace Eq.~10! with

] tG̃
x5

2

3
@b j

, j1lAub j
, j u#~2g̃xk

,k!2
2

3
lAub j

, j uG̃x

2@bx
,x1lBubx

,xu#~2g̃xk
,k!2lBubx

,xuG̃x1•••,

~11!

and similarly for G̃y and G̃z. Note that the ‘‘exponential’’
terms in the above equation~i.e. the terms proportional to

G̃x) are now guaranteed to be exponentialdecayterms. We
find good results withlA52/3 andlB53/4.
6-3
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DUEZ, SHAPIRO, AND YO PHYSICAL REVIEW D69, 104016 ~2004!
Alcubierre et al. @62# find improved behavior when the
enforce the constraintT50. Yo et al. @12# found it useful to
enforceT5D50. We instead apply the reasoning above
modify the evolution equations forg̃ i j andÃi j . Thus, in the
equation forg̃xx , we find the terms

] tg̃xx5S 2
2

3
b j

, j12bx
,xD g̃xx1••• ~12!

which we replace by

] tg̃xx5
2

3
@2b j

, j1lCub j
, j u#Gxx2

2

3
lCub j

, j ug̃xx

12@bx
,x1lDubx

,xu#Gxx22lDubx
,xug̃xx1•••,

~13!

where Gxx is the value ofg̃xx as computed from the five
other independent components ofg̃ i j , assumingD50. We
perform the same substitution forg̃yy and g̃zz. We uselC
52/3 andlD51/10. In a similar fashion, we modify th
evolution of Ãxx , Ãyy , andÃzz from

] tÃxx5•••1S 2
2

3
b j

, j12bx
,x1aK D Ãxx ~14!

to

] tÃxx5
2

3
@2b j

, j1lCub j
, j u#Hxx2

2

3
lCub j

, j uÃxx

12@bx
,x1lDubx

,xu#Hxx22lDubx
,xuÃxx

1@aK1lEuaKu#Hxx22lEuaKuÃxx1•••,

~15!

and similarly for the other two components. HerelE50.1,
lC andlD are the same as above, andHxx is the value ofÃxx

computed from the five other independent components ofÃi j
assumingT50.

We take spatial derivatives in a centered way—we do
use causal differencing. The only exception, as suggeste
@11#, is in the advection terms along the shiftb i] i , for which
we use the second-order upwind differencing described
@63#.

Our hydrodynamics scheme uses van Leer type advec
and artificial viscosity shock handling@24#. It is known that
such schemes can be inaccurate for ultrarelativistic flo
@64#. We monitor the Lorentz factors of our fluids, and fin
that they never exceed'2, which is around the upper limi
for accurate evolutions with a van Leer code. In additio
most of our runs do not involve strong shocks. We thus
lieve that our hydrodynamics scheme is adequate for
present purposes, although we eventually may have to
prove it. Our hydrodynamics scheme employs the ‘‘no atm
sphere’’ approach@24#, so that the density at any point on o
grid is allowed to fall to zero. It is important that we are ab
to dispense with an artificial atmosphere. If we could n
10401
t
by

in

on

s

,
-
e
-

-

,

then in situations where all the matter in the problem fa
into the black hole, the hole would continue to accrete atm
sphere indefinitely, and its mass would continue to grow
physically.

The boundary conditions we apply at the edge of the
cision zone are described in detail in@12#. They consist of
taking the time derivatives of quantities at the excisi
boundary from the time derivatives of these quantities
adjacent points. We use spherical excision regions inside
apparent horizon throughout~see@65# regarding the superi-
ority of spherical to cubic excision regions!. We have tried
several boundary conditions for the matter variables, a
have found that our results are insensitive to the choice
they should be. In the runs described below, we simply
the matter variables equal to zero when they hit the excis
zone, thus making the excision boundary a perfect one-w
membrane.

The lapse and shift must be chosen in such a way that
total system of evolution equations is stable. It is also de
able that the gauge conditions are chosen so that, as
system settles into equilibrium, it appears stationary in
adopted coordinates. We have experimented with sev
choices for the lapsea and shiftb i , and we have found tha
driver conditions using the second time derivatives ofa and
b i provide the most stable evolutions. Following the sugg
tion of Alcubbierreet al. @17#, we have had great succes
with the hyperbolic shift driver condition:

] t
2b i5b1~a] tG̃

i2b2] tb
i !, ~16!

with b150.75 andb250.3M 21 ~cf. @17,66#!. One can create
a hyperbolic lapse condition by introducing two coupl
first-order equations and a new functionA,

] ta5aA,

] tA52a1~a] tK1a2] ta!, ~17!

with a150.75 anda250.3M 21. ~We sometimes improve a
simulation slightly by using differentb2 and a2. As there
might be no single gauge which is optimal for all situation
it is useful to have the freedom provided by these para
eters.! Thea in front of A in the first equation is a ‘‘safety’’
feature, to prevent the lapse from dropping to zero. With t
safety feature, we find that the lapse levels off at finite po
tive values everywhere on and outside the excision zone
all our runs, thereby maintaining a ‘‘horizon penetratin
(a.0) time coordinate. However, at late timest
;200M ), we find that the asymptotic values of some of o
variables~e.g., g̃xx) begin to drift, increasing linearly with
time. This drift cannot be removed by increasing resolut
or moving the outer boundaries outward—it seems to rep
sent the true evolution of the metric in these coordinates.
also present when harmonic slicing, another slicing with
hyperbolic character@67#, is adopted. Apparently, Eq.~17!
does not sufficiently restrict the coordinate system’s evo
tion. We remove the drift by adding a third term to Eq.~17!
proportional toK2Kdrive, whereKdrive is some reasonable
positive function. In this way, the value ofK itself, and not
6-4
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RELATIVISTIC HYDRODYNAMIC EVOLUTIONS WITH . . . PHYSICAL REVIEW D 69, 104016 ~2004!
just its time derivative, is ‘‘driven.’’ We shall refer to thi
slicing as our ‘‘hyperbolic lapse.’’ The complete slicing co
dition is

] ta5aA,

] tA52a1$a] tK1a2@] ta1e24fa~K2Kdrive!#%.
~18!

Here thee24fa factor is chosen so that the new term
small in the strong-field region, where Eq.~17! works well,
but becomes comparable to the other terms in the outer
tions of the grid, where it successfully removes the drift.

We have tried several forms forKdrive. The simplest, and
usually adequate, choice is zero. This drivesK to zero~maxi-
mal slicing! and usually causes a very slow downward d
in the lapse near the horizon. For many astrophysical ap
cations, where we only need to evolve for several hund
M, this is usually unimportant. However, the effect can
removed by a better choice ofKdrive. One possibility isK init ,
the value ofK at the time excision is introduced. Anothe
choice is KKS , a function whose form is inspired by th
Kerr-Schild representation of a Kerr black hole@cf. Eq. ~36!
of @12##.

KKS~a,b i !52a3~11H !l iH ,i12aHl i
,i ~19!

H5
1

2
~a2221!,

l i5b i /~2a2H !.

Note that when we choose this functional form forKKS , the
lapse and shift typically are not the same as the Kerr-Sc
a andb i .

For K5Kdrive, we apply our usual excision bounda
conditions ona. Otherwise, there are no spatial derivativ
in Eq. ~18!, and no explicit inner boundary condition
needed. In some cases, however, we have found more a
rate results when we hold the values of the lapse on
excision zone fixed in time~the ‘‘frozen’’ inner boundary
condition!.

III. DIAGNOSTICS

Our most important diagnostics are the conserved masM
and angular momentumJ. These are both defined by surfa
integrals at infinity@68#:

M5
1

16pEr 5`
Agg img jn~gmn, j2g jn,m!d2Si , ~20!

Ji5
1

8p
« i j

kE
r 5`

xjKk
md2Sm . ~21!

We measureM and J by applying Gauss’s law to obtain
surface integral over an inner surface,]V ~which encloses
the singularity!, plus a volume integral over the space ou
side this surface,V. Details of this calculation are presente
in @12#. The final integrals are
10401
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M5
1

16pEV
d3xFe5fS 16pr1Ãi j Ã

i j 2
2

3
K2D2G̃ i jk G̃ j ik

1~12ef!R̃G1
1

16p R
]V

~G̃ i28D̃ ief!dS̃i , ~22!

Ji5
1

8p
e i j

kE
V
Fe6fS Ãj

k1
2

3
xjD̃kK2

1

2
xj Ãln]kg̃

ln

18pxjskD Gd3x1
1

8p
e i j

k R
]V

e6fxj Ãl
kdS̃l . ~23!

We choose the inner surface]V to be a sphere with a coor
dinate radius about twice that of the excision boundary. T
puts]V slightly outside the apparent horizon in the simu
tions reported below.

In our pre-excision code,V is chosen to cover the entir
numerical grid, and there is no surface integral contributi
The rest massM0 cannot be used as a diagnostic because
conserved identically in our pre-excision code. Our p
excision code also conservesJ identically in axisymmetry
@44#. With excision,M0 is not expected to be conserved
V, since matter falls into the excision region. When evolvi
with excision,J is not identically conserved, even in axisym
metry, and thus serves as a code check together withM.

Once a black hole is present, we detect it by using
apparent horizon finder~see@69# for details!. As the system
approaches stationarity, the apparent horizon will appro
the event horizon. We estimate the size the horizon in
coordinate system by the radiusr AH constructed from thel
50, m50 moment of the horizon surface. From the surfa
area of the apparent horizon, we compute the irreduc
massM irr defined by

M irr5AA/16p2. ~24!

We also compute the proper circumference of the horizon
the equatorial (xy) plane, which we callCeq, and we com-
pute the proper circumference in the meridional (xz) plane,
which we callCpol . For static nonrotating black holes,Ceq
5Cpol54pM . For stationary rotating black holes, one c
compute Ceq and Cpol from the Kerr metric in Boyer-
Lindquist coordinates to be

Ceq54pM , ~25!

Cpol54ME
0

p/2

duA212A12q21q2sin2u, ~26!

whereq[J/M2 is the spin parameter of the black hole. Th
ratio Cpol /Ceq varies from 1 forq50 to 0.6 forq51. For
the black holes in our simulations, we infer the horizon ma
MAH from Ceq and Eq.~25!. We infer the horizon angula
momentumJAH from Cpol /Ceq and Eq.~26!, together with
MAH .

Finally, we find the ergosurface of the black hole. T
ergosphere is defined in the stationary limit, in which ca
6-5



th

e
co
e

t
s
n
ou
e
on
he

ou
ze

s.

is
ates

ck
an

ur
ke
op,
em-

ry

-

s
on-
ter
t ho-
i-
that

l

r-

so

the
e
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]/]t is a Killing vector, and the ergosurface is defined as
surface whereg005(]/]t)•(]/]t)50, with g00.0 inside
andg00,0 outside.

As in @11,12#, we gauge the degree to which a fieldf
reaches stationarity by monitoringD f (t), defined to be the
L2 norm of f (t)2 f (t2DT), whereDT is the time step. We
compute the L2 norm of a grid functiong by summing over
every grid pointi:

L2~g!5A(
i

gi
2. ~27!

IV. TESTS

A. Field code test: vacuum black holes

In a previous paper@12#, we used our code to evolv
isolated, stationary black hole spacetimes in Kerr-Schild
ordinates. These coordinates have the advantages of b
horizon-penetrating (aÞ0 at the horizon! and providing a
manifestly stationary metric. We were able to evolve bo
stationary and rotating black holes for arbitrarily long time
We succeeded in doing this both when evolving only o
octant of the space and when evolving the full space with
any symmetry assumptions. These evolutions were don
three dimensions using a different set of gauge conditi
from those utilized in this paper. In Fig. 1, we show t
evolution of aa/M5J/M250.4 Kerr black hole in Kerr-
Schild coordinates using our 2D axisymmetry code and
hyperbolic gauge conditions. For this case, we use a fro
inner boundary condition ona, and turn off the third term in
Eq. ~18!. ~UsingKdrive5K init gives similar results.! We use a
grid spacing ofDX50.4M , with outer boundaries at 12M
and an excision zone at a coordinate radius of 1.5M , as was
used by@12#. The event horizon fora/M50.4 is located at
r eq51.917M in these coordinates.

FIG. 1. The evolution of the massM, angular momentumJ, and
lapse variationDa for the evolution of ana/M50.4 black hole in
Kerr-Schild coordinates. We use a 302 grid to cover the meridiona
plane.
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As a second test, adapted from@11#, we evolve a
Schwarzschild black hole in initially isotropic coordinate
Choosinga51 andb i50 at t50, the initial metric is

ds252dt21S 11
M

~2r ! D
4

~dx21dy21dz2!, ~28!

where r 5Ax21y21z2. The event horizon is located atr
50.5M in these coordinates. Physically, this black hole
stationary, but it does not appear stationary in the coordin
generated by Eqs.~16! and~18! starting with the initial lapse
and shift cited above. By evolving this spacetime, we che
that our excision code can work with coordinates other th
stationary Kerr-Schild. We also check the ability of o
gauge conditions to ‘‘find’’ coordinate systems which ma
the metric manifestly stationary. We allow the lapse to dr
so we do not freeze the lapse at the excision zone, but
ploy Eq. ~18! everywhere. We useKdrive5K init50, since
KKS is singular for our value ofa at t50 @see Eq.~19!#.

In Fig. 2, we plot the results for a run in axisymmet
with outer boundaries at 12M , an excision radius of 0.36M ,
and a grid of 1282 to cover the meridional~xz! plane. Also
shown are scaled results for a 642 run to demonstrate con
vergence. We also performed a run on a 2562 grid with the
same resolution as the 1282 run but with the outer boundarie
at 24M . From the figure, we see that the error can be c
trolled by the grid resolution and the location of the ou
boundaries. We see that the surface area of the apparen
rizon ~i.e. M irr) remains nearly constant while the coord
nates adjust to create a stationary system. This indicates

FIG. 2. The evolution of a nonrotating black hole in our hype
bolic gauges, starting in isotropic coordinates witha51, b i50.
On top, we show the deviations of the ADM massMADM and the
irreducible massM irr from their initial value:dM5(M2Mi)/Mi .
dM is shown for runs with outer boundaries at 12Mi using a 1282

grid and using a 642 grid, to demonstrate convergence. We al
show a run with outer boundaries at 24Mi using a 2562 grid to
determine the effect of the outer boundary. Below, we show
time evolution on the 1282 grid of the apparent horizon coordinat

radiusr AH and the maximum values ofa and g̃xx on the grid.
6-6
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the apparent horizon is following the event horizon well. T
coordinate adjustment is reflected in the initial increase in
coordinate radius of the horizon and in the drop of the lap
Note that the lapse settles quickly, and that it remains p
tive everywhere outside and at the excision zone. To ch
that the black hole remains a Schwarzschild black hole,
monitorCeq andCpol and find that they both remain equal
4pM to within one percent.

B. Hydro code test: Relativistic Bondi flow

Next, we test our hydrodynamics code by solving an
cretion problem that has an exact solution. In a previo
paper @24#, we confirmed our code’s ability to accurate
simulate shocks, spherical dust collapse, nonrotating and
tating polytropes, and binary polytropes. Now we test
ability to maintain stationary, adiabatic, spherically symm
ric accretion onto a Schwarzschild black hole, in accord w
the relativistic Bondi accretion solution forG51.5 @70#. Fol-
lowing the suggestion of@71#, we write the metric in Kerr-
Schild ~ingoing Eddington-Finklestein! coordinates; in this
way, all the variables are well behaved at the horizon.
begin by holding the field variables fixed in order to preve
the black hole from growing due to accretion.

We evolve this system twice, once using a 642 grid in
211 and once using a 643 grid in 311. We place outer
boundaries at 12M and an excision zone at a coordinate~ar-
eal! radius of 1.5M . At t50, we set the density and velocit
profiles according to the exact solution forG51.5 and an
accretion ratedM/dtuacc50.0031, with a sonic radius a
105M . This accretion rate is maintained through the evo
tion by fixing the hydrodynamic variables on the out
boundaries at their exact steady-state values. In Fig. 3,

FIG. 3. The settling of the rest-mass density to steady st
starting from the analytic value. The change per time step quic
drops to the machine level. On top, we plotDr0 for both the 642 2D
run and the 643 3D run. Below, we show the time evolution ofr0 at
three points on the diagonal linex5y5z in the 3D run, each nor-
malized to its initial value.r1 corresponds tor0 measured atr
5A3x52M , r2 to r0 at r 56M , andr3 to r0 at r 510M .
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plot D(r0), as defined in Sec. III, and also the values ofr0 at
selected points in the accretion flow. ForD(r0), we reach
machine precision after less than 100M , making further in-
tegration unnecessary@12#. ~The velocity fields have also
frozen near their initial values by this time.!

When we allow the fields to evolve, we see the irreduci
mass of the hole grow at a ratedM irr /dt'0.9dM/dtuacc.
This error is consistent with the errors in our irreducib
mass found at this numerical resolution, even in the abse
of accreting matter.

C. Oppenheimer-Snyder collapse

Next, we simulate the Oppenheimer-Snyder collapse o
homogeneous spherical ball of dust to a black hole. The
havior of this system is known in several coordinate syste
@72–74#. We use a 1602 grid with outer boundaries at 14M .
At t50, the dust is at rest and has an areal radius of 3M . We
start in an isotropic coordinate system, in whichg̃ i j 5d i j .
Our initial a andb i are set by enforcing maximal slicing an
the minimal distortion gauge condition, respectively~see
@73#!. Since the ball has no pressure support, it immedia
begins to collapse. During the first phase of this collap
there are no trapped regions and no singularities, so
evolve the entire grid without excision. Our code checks d
ing this part of the evolution are well satisfied; see@24,44#.
For gauge conditions during this no-excision phase, we
our hyperbolic lapse and shift drivers. We evolve in this w
from t50 to t511M , at which point our no-excision cod
crashes due to its inability to resolve the central reg
~‘‘grid stretching’’!. An apparent horizon appears att59M
at a coordinate radius ofr AH50.96M with an irreducible
mass ofM irr51.02M . We next repeat the evolution fromt
510M with our excision algorithm and an excision boun
ary at radiusr ex50.7M . At this point, only 1.2% of the res
mass is outside the horizon, but the spacetime in our coo
nates is still changing. We continue to evolve with our h
perbolic gauges, and we allowa to drop at the excision
boundary. In this example, usingKdrive5KKS is far superior
to any other choice, since only then does the lapse se
quickly. As we continue the evolution, the remaining exter
rest mass falls into the excision zone over the course of
next 100M , and we are left with a vacuum spacetime. W
evolve for 400M , by which time the system has long sinc
settled to a Schwarzschild black hole. Oppenheimer-Sny
collapse does have an analytic solution in Friedmann coo
nates, but not in the coordinates we are using, which
defined by our gauge conditions~16! and ~18! together with
the boundary conditions ona and b i at r ex. Therefore we
check the accuracy of our evolution using global invarian
In Fig. 4, we show our mass diagnostics for the post-excis
run, which confirm that the end product is a Schwarzsch
black hole, and we plotDa as proof of stationarity. In Fig. 5
we plot the magnitude of the constraint violations as fun
tions of time. These show that the error is not growing dur
the long stationary evolution.

D. Collapse of a TOV star

The previous example possessed spherical symmetry
no pressure. In our next test, we study the collapse of

e,
ly
6-7
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DUEZ, SHAPIRO, AND YO PHYSICAL REVIEW D69, 104016 ~2004!
unstable nonrotating, spherical polytrope, whose initial s
is given by the solution to the Tolman-Oppenheimer-Volk
~TOV! equations@75#.

For initial data, we take a perfect fluid with equation
stateP5kr0

111/n, with n51, and we choose our units suc
thatk51 @76#. In these units, then51 TOV sequence has
turning point at the critical central rest densityrc

crit50.32
where the ADM mass of the star isMmax50.164. We choose
to evolve a star with initial central rest densityrc50.5 and
ADM massM50.158. As this star is on the unstable bran
of then51 sequence, it is unstable to radial oscillations a
will collapse to a black hole. We evolve the first part of t

FIG. 4. ADM mass, horizon diagnostics, andDa for the col-
lapse of a homogeneous sphere of dust to a Schwarzschild b
hole. Collapse begins att50 and black hole excision occurs att
510M .

FIG. 5. Violation of the HamiltonianH, momentumM i , and
GammaG i constraints as a function of time for the collapse d
picted in Fig. 4. We plot the un-normalized L2 norms, where we
the shorthandL2(M i)25L2(M x)21L2(M y)21L2(M z)2 and
L2(G i)25L2(G x)21L2(G y)21L2(G z)2.
10401
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collapse without excision using a 1282 grid, with outer
boundaries at 12.7M and with our hyperbolic drivers. We
evolve fromt50 to t528.5M , locating an apparent horizo
at t527M with radius r 50.6M and irreducible massM irr
50.95M . We begin an excision run fromt527.8M , at
which point 4% of the rest mass is still outside the appar
horizon and 8% is outside of the excision zone. All of th
matter falls into the excision zone byt531.6M . It should be
emphasized that the spacetime in these coordinates is m
dynamical than the above numbers might suggest: e.g.
ing the first 10M of post-excision evolution, the maximum
value of Ãi j Ãi j M

2 increases from 0.25 to 0.44. The syste
settles quickly thereafter, as we see by evolving an additio
350M to 390M . In Fig. 6, we show our diagnostics for thi
run.

All the runs described above were carried out on tw
dimensional axisymmetric grids. In Fig. 7, we show diagno
tics for the same collapse in a three dimensional simulat
with a 643 grid and boundaries at@0,12.7M #3 ~employing
octant symmetry to evolve only the upper octant!. The be-
havior of each quantity is similar to that in the 2D run.

E. Collapse of a rotating star

Gravitational collapse of astrophysically realistic sta
will involve rotation. Even if the progenitor star rotate
slowly, it will spin up as it collapses if it conserves angul
momentum. It is therefore important to test our code
simulating the collapse of a rapidly rotating star.

The star we adopt as initial data, labeled A, is described
Table I. The initial data were obtained using the relativis
equilibrium code of@77#. Star A is a ‘‘hypermassive star’
with a massM50.19, which is 20% higher thanMmax, the
maximum allowed mass of a nonrotating TOV star. Star A
able to maintain this mass because of the added sup
against gravity provided by~differential! rotation. The star
has J/M250.57, so that the eventual Kerr hole will hav

ck

-
e

FIG. 6. ADM mass, horizon diagnostics, andDa for the col-
lapse of a nonrotating, unstablen51 polytrope from apparent ho
rizon formation att/M527 through final stationarity. The code i
axisymmetric and uses a 1282 grid.
6-8
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appreciable spin, assuming all of the mass and angular
mentum is captured by the hole. Even prior to collapse,
effects of angular momentum on the star are significant
we can see by noting that the radius of the star on the r
tion z axis ~the polar radius! is only 70% of the radius of the
star in the equatorial plane~the equatorial radius!. Star A has
a differential rotation profile~see next section!, so there are
no turning-point theorems which can be applied to determ
the stability of this star, but we find numerically that it
unstable to collapse. Perturbations due to numerical~round-
off! error are sufficient to trigger the collapse, but the on
time scale for collapse is not independent of resolution.
order to do convergence studies, we deplete a small perc
age~4%! of the initial pressure, so that the initial perturb
tion is resolution-independent. This perturbation is so sm
that re-solving the constraint equations att50 makes little
difference.

We carry out the entire evolution, before and after ex
sion, in the hyperbolic gauges.~The choice ofKdrive has a
negligible effect on the evolution in this application.! We
perform the same evolution on a 802 grid, a 1602 grid, and a
3202 grid. On the 3202 grid, a horizon appears in the pre
excision run at t544M , with instantaneous radiusr AH
50.5M and massM irr50.77M , which are growing rapidly.
We excise at timet545.5M and radiusr ex50.43M , so that

FIG. 7. Same as for Fig. 6, but now the collapse is simulated
a 3D 643 grid.
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22% of the total rest mass is still outside the excision regi
and 12% is still outside the apparent horizon~which now has
radiusr AH50.73M ). This matter quickly falls into the hole
and, after evolving for 6M with excision, the exterior space
time becomes a vacuum. In Fig. 8, we check the ability
our code to conserve mass and angular momentum du
this phase of the evolution. The mass is well conserved on
three grids, but the angular momentum slowly decreases
time. Increasing resolution reduces this loss ofJ. The viola-
tions of the constraint equations also converge to zero
resolution is increased. We can evolve stably fort@100M ,
but the loss of angular momentum is too great past this p
for the evolution to be reliable unless the grid exceeds 322.

Figure 8 suggests that the angular momentum loss ca
controlled by increasing resolution. Moreover, we have
ready shown that our code can conserveJ for an arbitrarily
long time while evolving a Kerr black hole in Kerr-Schil
coordinates~see Fig. 1 and@12#!. Given this fact, we could
eliminate theJ loss by transforming to Kerr-Schild coord

n FIG. 8. MassM and angular momentumJ during the post-
excision phase of the collapse of star A. We show results for a
symmetric runs carried out with a 802, a 1602, and a 3202 grid.
Both M andJ are measured in two ways. The solid lines are qu
tities as measured by the integrals~22! and ~23!. The dashed lines
are obtained by measuring the geometry of the apparent horizon
comparing with the Kerr metric (MAH as inferred byCeq andJAH

by Cpol /Ceq). For the 1602 and 3202 runs, the twoJ measurements
lie on top of one another.
TABLE I. Equilibrium star configurations (n51, M050.2).

Star Ma Req
b Rc

c qd T/uWue Vc /Veq
f Rg Fateh

A 0.19 0.6 0.8 0.57 0.10 0.29 0.70 BHND
B 0.19 1.2 1.4 0.91 0.18 0.38 0.50 BHND
C 0.19 1.6 1.8 1.18 0.23 0.40 0.39 NBH

a ADM mass. eRatio of kinetic to gravitational potential energy.
bCoordinate equatorial radius. fRatio of central to equatorial angular velocity.
cAreal radius at the equator. gRatio of polar to equatorial coordinate radius.
dq5J/M2. hBHND 5 black hole, no disk; NBH5no black hole.
6-9
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DUEZ, SHAPIRO, AND YO PHYSICAL REVIEW D69, 104016 ~2004!
nates when we introduce excision. Alternatively, we mig
carry out the entire evolution in Kerr-Schild-like coordinate
~This would require developing gauge conditions whi
would force the coordinate system to maintain its Ke
Schild-like character as the system evolves.! We are cur-
rently investigating these possibilities. In the meantime,
can already evolve such matter–black hole systems l
enough to tackle several interesting problems.

V. APPLICATION: THE COLLAPSE OF RAPIDLY
ROTATING STARS

Tracking the collapse of rapidly rotating stars is one of
most important applications of numerical general relativ
Such simulations determine the fate of collapse and prov
a test of the cosmic censorship conjecture@78#. If the star
collapses to a stationary black hole, the ‘‘no-hair’’ theore
require that it settle down to a Kerr black hole. In the Ke
spacetime, the singularity is covered by an event hori
only if q[J/M2<1; otherwise the singularity is naked. Ro
tating stars, on the other hand, are not so restricted,
sufficiently rapidly rotating stars will haveq.1. When these
stars collapse, it thus seems conceivable that they could f
naked singularities. Alternatively, if the cosmic censors
hypothesis@78# is true, then the collapse of the whole syste
must somehow be averted. This can happen if the star l
angular momentum as it collapses, either by gravitatio
wave emission or by shedding matter with high specific
gular momentum, so that the final black hole hasq,1. A
naked singularity can also be averted if the collapse ofq
.1 star is always halted by centrifugal forces, so there w
be no black hole and no singularity at all. Nakamura@79# has
pointed out that a centrifugal barrier could protect cosm
censorship in this way. Assuming no mass or angular m
mentum are shed during the collapse, the radiusRb at which
the centrifugal force balances the gravitational force will

M

Rb
2 ;

J2

M2Rb
3 , ~29!

so that

Rb;Mq2. ~30!

Nakamura argues that, ifq,1 ~i.e., the star issub-Kerr!, the
star will already be inside a black hole before rotation c
halt the collapse. Forq.1 ~i.e., the star issupra-Kerr!, the
collapse will be halted at a radius larger thanM, and no black
hole forms.

Shapiro and Teukolsky@54# have studied the collapse i
full general relativity of axisymmetric tori consisting of co
lisionless matter, and have found that black holes form o
from sub-Kerr initial configurations. The first numeric
simulations of the collapse of rotating relativistic fluid sta
were carried out in axisymmetry by Nakamura@80# and Na-
kamura and Sato@81#. They found that a black hole form
only when a sub-Kerr star collapses.~For stars withq within
5% of the critical value, Nakamura@80# could not determine
the final fate and could not exclude the possibility of a nak
10401
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singularity.! Stark and Piran@82# also performed simulations
which showedq;1 to be the critical point of demarcatio
between collapse and bounce. Shibata@27# performed a de-
tailed study of the collapse and bounce of sub-Kerr stars
axisymmetry. These hydrodynamic studies did not~and
sometimes could not! study in detail the fate of the matter i
the outer layers of the star when a black hole forms. M
recently, Shibata@28# has studied the collapse to black hol
of uniformly rotating polytropes spinning at the mas
shedding limit. He finds that, for polytropic indices 2/3,n
,2, the star collapses to a Kerr black hole with no app
ciable disk. By using high resolution, he is able to follow t
system forDt;20M after an apparent horizon is first lo
cated. This time approaches the limit of reliable evoluti
without excision, but in this case it is long enough to see
the matter fall into the hole. By contrast, Shibata and Shap
@29# considered the collapse of ann53 polytrope spinning
uniformly at the mass-shedding limit. Such a configuration
nearly Newtonian (Req5620M ) at the onset of collapse, an
it forms an appreciable disk (MD /M'0.1) around the final
black hole. While the final disk mass can be estimated fr
the angular momentum distribution of the outermost regio
~see also@83#!, and also by extrapolating the growth of th
black hole horizon to late times, it is not possible to follo
the final relaxation to a stationary state without excision or
probe for nonaxisymmetric instabilities that may arise in t
ambient disk@47#.

Our excision code should be well suited to finding t
final state of any rapidly rotating stellar collapse—not on
for determining whether or not a black hole forms, but a
for determining how much rest mass escapes collapse if
does form. To explore this capability, we take differentia
rotating polytropes as our initial data, so that we can stu
both sub-Kerr and supra-Kerr cases. Differential rotation
naturally produced in supernova core collapse@84#, accretion
induced collapse of white dwarfs to neutron stars@85#, and
binary neutron star coalescence@31,42,86#. Our adopted ro-
tation law is

utuf5Req
2 A2~Vc2V!, ~31!

whereV is the angular velocity of the fluid,Vc is the value
of V on the rotation axis, andReq is the equatorial coordinate
radius. The parameterA measures the degree of differenti
rotation and is chosen to be unity for all cases below, so
the centers of our stars rotate about three times faster
their equators. We take thez axis to be the rotation axis, an

define the cylindrical coordinate radiusÃ5Ax21y2. In
the Newtonian limit, Eq.~31! reduces to the so-calle
‘‘ j -constant’’ law@87#

V5
Vc

11Ã2/Req
2 A2

. ~32!

We choose a polytropic indexn51, and take our initial stars
to be sufficiently compact so that the collapse does not s
a large dynamic range. Accordingly, we are able to us
single, modest grid for each run. As in@24,27,82#, we induce
collapse by depleting the initial pressure by a factor:P
→ f PP. Below, we show results forf P50.01. While this
6-10
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FIG. 9. Snapshots of the rest-density contours and the velocity field (vx,vz) in the meridional plane during the collapse of star B to
black hole. The contour lines are drawn forr05102(0.2 j 10.1)r0

max for j 50,1, . . .,12. Prior to excision,r0
max is set equal to the instantaneou

maximum value ofr0. Afterward, it is held at the maximum ofr0 at the time of excision. Vectors indicate the local velocity field,v i . The
thick curve in the last three frames marks the apparent horizon. On the last frame, the exterior spacetime is nearly a vacuum.
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form of artificially induced collapse does not correspond
any realistic astrophysical scenario, there are several s
tions in which an ‘‘effective’’ pressure depletion does occ
For example, the collapse of the core of a massive star w
produces a supernova is brought about by the remova
pressure support both from photo-dissociation of iron-nic
nuclei and the neutronization of the core~de-leptonization!.
Phase transitions in neutron stars, such as a transitio
quark matter, or rapid de-leptonization via neutrino coolin
could also have the effect of inducing pressure depletion.
choose f P50.01 to make pressure forces unimportant
comparison with centrifugal forces and gravity. After depl
ing pressure from the star, we re-solve the constraint eq
tions to produce valid initial data. This process of deplet
pressure and re-solving the constraints causesM and J to
drop by a few percent, whileJ/M2 changes by one percen
or less.

Table I lists the equilibrium stars used to construct o
initial data. These initial data were generated using the c
of @77#. Each star has the same rest massM050.2, so our
stars are members of a sequence uniquely defined byn51,
A51, M050.2. This sequence crossesq51 at one point,
between our second and third stars, stars B and C. We
pect to find a qualitative difference in the behavior of st
B and C.

Star A is exactly the star studied in the previous secti
It is dynamically unstable and collapses without press
depletion to a Kerr black hole with no disk. Not surprising
this is also found to be the behavior when pressure is
10401
a-
.
ch
of
l

to
,
e

-
a-
g

r
e

x-
s

.
e

e-

pleted. We will concentrate below on stars B and C. W
begin with simulations in axisymmetry and then discu
simulations in full three dimensions.

A. Sub-Kerr collapse

Star B hasJ/M250.9, so it is sub-Kerr. Its collapse in
axisymmetry is shown in Fig. 9. We evolve on a 3002 grid
with outer boundaries at 14M . At t528.4M , we locate an
apparent horizon withr AH50.62M , M irr50.72M . We excise
at t529M , at which time M irr50.74M , 22% of the rest
mass is outside our excision zone, and 15% is outside
apparent horizon. The horizon circumferences at this ti
are in the ratioCpol /Ceq50.76, which, if this were a station
ary Kerr horizon, would correspond toq50.92. We continue
evolving with an excision boundary at radiusr ex50.08. All
of the matter falls into the hole within 20M after excision is
introduced. We evolve for an additional 20M after this. We
find no signs of numerical instability. Mass conservation
excellent~the amount lost due to gravitational radiation
below 0.1%!, but the gradual loss of angular momentu
noted in Sec. IV E is present, as can be seen in Fig. 10.
stop evolving when the total angular momentum drops be
80% of its initial value. The final state of the system ha
however, been entirely determined well before this time.

B. Supra-Kerr collapse

Star C hasJ/M251.2. We remove the star’s pressure su
port and evolve. In Fig. 11, we show the results of a 402

axisymmetric run with boundaries at 13 M. With its pressu
6-11
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support removed, the star immediately flattens along thz
axis and moves inward inÃ. This inward motion toward the
axis is halted by centrifugal forces. As seen in the upper ri
panel of Fig. 11, the inner region of the star stops collaps
before the outer region, so a strong shock is formed. The
then expands into a torus whose radius oscillates with a
riod close to the initial central rotation period. We show t
effects of this oscillation on the maximum rest density a
the minimum lapse in Fig. 13 below. We follow the torus f
three oscillations during which time all our constraints a
satisfied to better than 10%. The angular momentumJ is
conserved identically by our no-excision axisymmetric co
but we do find that the ADM massM decreases graduall
with time. This decrease cannot be accounted for by
small flux of rest mass and gravity waves out of the com
tational domain; the loss therefore represents numerica
ror. We stop our evolution after three oscillation periods b
cause M has decreased by;15%. To check that the
evolution is qualitatively correct, we performed the same
on a 2002 grid and found that the collapse, torus formatio
and oscillation of the star are very similar at this resolutio

The torus formed in the above simulation could be sub
to various non-axisymmetric instabilities. If the rotatin
torus fragments, the system may produce a large grav
tional wave signal~‘‘splash radiation’’@51#!. It is therefore
necessary to perform the above simulation in 311 dimen-
sions. We perform this simulation using a 28031403200
grid, with boundaries at@213M ,13M #3@0,13M #2, where
we use equatorial andp symmetry. The results are shown
Fig. 12. The collapse, flattening, and formation of the to

FIG. 10. Diagnostics for the collapse of star B. Above, we sh
the evolution ofM andJ calculated from integrations of the exterio
spacetime and from measurements of the geometry of the hor
Below, we plot the total rest mass on the grid, normalized to
initial value. Rest mass is conserved prior to excision. At
530M , we excise a region from the middle of the grid. This cu
out the matter inside this region, which accounts for 80% of
total rest mass. Over the next 20M , the remaining rest mass fall
into the excision zone, leaving a vacuum being evolved in the o
side region.
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occur as in the 2D runs. Then the torus quickly fragme
into four clumps symmetrically located about the origi
roughly 90° apart. As these clumps collapse, they ultimat
become too small to be evolved accurately on our grid.
conserveM andJ to better than 10% throughout the integr
tion shown, and we terminate the calculation when our err
exceed these bounds. To check this result, we have
formed the same run on 1403703180 and 1003503100
grids. In each case, the torus fragments into four pieces
apart. In Fig. 13, we compare the behavior of the maxim
of r0 and the minimum ofa for the evolution of star C in
3D to their behavior in 2D on 2002 and 4002 grids.

It has been pointed out by Trueloveet al. @88# that spuri-
ous fragmentation may occur in a numerical simulation if t
Jeans length is not well resolved. The Jeans length is g
by

lJ;Apcs
2

r
, ~33!

wherer is the density~mass-energy density and rest-ma

density are nearly equal! and cs5AdP/dr is the sound
speed. We can get a lower bound onlJ by ignoring the large
amount of shock heating, which increasescs , and consider-
ing adiabatic compression. Accordingly, for ann51, G52
fluid, P5kr0

2, wherek50.01 due to our pressure depletio
Fragmentation occurs whenr'r0'3, so lJ;0.25
515DX. ~Shock heating increases this coefficient.! Our
resolution is then quite sufficient to resolve the Jeans len

We could not determine the final fate of this system@89#.
The four clumps may continue to collapse to black holes
this collapse may be halted by heating-induced pressure.
system will certainly emit substantial amounts of grav
waves, both during the bounce and oscillation of the initia
axisymmetric torus and during its rotation following frag
mentation. To see this, we measured the gauge invar
Moncrief variablesc lm ~or Zerilli functions! at the outer part
of the grid @90#. We also measure the amplitudes of the tw
gravitational wave polarizationsh1 andh3 on thex axis at
the edge of our grid. Since the outer part of the grid is no
the wave zone, our measurements are only approximate
find that the dominant mode of the emission isl 52, m
50, the quadrupole radiation generated by the axisymme
collapse and bounce of the torus. The second largest mo
which are an order of magnitude smaller than the domin
mode, arel 54, m50 ~octopole radiation from the axisym
metric collapse! and l 54, m564 ~octopole radiation gen-
erated by the rotation of the four clumps!. In Fig. 14, we plot
h1 on the x axis, which contains contributions from a
modes. The observed amplitude of this radiation from a s
at a distanced from the Earth would be

h;10222S M

M (
D S d

100 MpcD
21

. ~34!

The final evolution of this very interesting system can
undertaken only using a finer grid, presumably by employ
adaptive mesh refinement~AMR!, and an improved shock
handling scheme in our code.

n.
s

e

t-
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FIG. 11. Snapshots of the rest density contours and the velocity field (vx,vz) in the meridional plane during the axisymmetric collap
of star C to a torus. The contours are set as in Fig. 9. Some velocity arrows appear outside the contours because the density th
small but nonzero. Time is normalized to the initial central rotation period of the star,Prot,c598M .
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VI. DISCUSSION AND CONCLUSIONS

We have constructed a code to study the collapse of
trophysical objects to black holes by evolving the fu
coupled Einstein-hydrodynamics system in both 211 ~axi-
symmetry! and 311 dimensions. When a black hole appea
it is treated by introducing an excision boundary well insi
the horizon. Our code is stable and convergent for all of
test problems and applications presented here. As a tes
plication, we study the collapse of rapidly rotating stars. O
conclusions regarding their ultimate fate agree with those
Nakamura@80# and of Stark and Piran@82#—namely, that
spinning stars deprived of their pressure support will c
10401
s-

,

e
ap-
r
f

-

lapse directly to black holes only if they are sub-Kerr. This
the same behavior observed for spinning configurations
collisionless matter@54#. We also were able to study the fina
state of the sub-Kerr collapses by using our excision al
rithm to extend the evolution far beyond what could
achieved without it. We find that even for a rapidly rotatin
star withq50.9, all the rest mass falls immediately into th
hole, with no disk formation, in agreement with Shibata@28#.
For the case of supra-Kerr collapse, we found that the c
lapsing star hits a centrifugal barrier and bounces, formin
torus which fragments due to a nonaxisymmetric instabi
into four pieces. With our current computational resourc
6-13



u
a
b

er
ea
he
la
u
li
e

g a
to

iu,
the
u-
t

ce
by

SA

a

the
c

n of

DUEZ, SHAPIRO, AND YO PHYSICAL REVIEW D69, 104016 ~2004!
we were unable to determine the final fate of the fo
clumps. Systems like this one are sufficiently interesting
gravitational wave sources that they should be pursued
further investigation with finer resolution, including AMR.

Considering the stability of our excision algorithm ov
such a variety of applications, we believe that it has gr
promise as a tool for relativistic astrophysics involving t
simultaneous presence of hydrodynamic matter and b
holes. Our current post-excision algorithm exhibits a grad
spurious decrease in total angular momentum when app
at moderate resolution. However, this problem is not pres
in all coordinate systems~e.g. Kerr-Schild! and is reduced as

FIG. 13. The maximum value ofr0 and the minimum value of
a during the evolutions of star C on different grids, plotted as
function of the initial central rotation periodProt,c . The two 2D
runs are qualitatively similar. The 3D run behaves similarly to
2D runs for about the first 0.5Prot,c . Thereafter a nonaxisymmetri
instability develops, and the collapsed star fragments.
10401
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the resolution is increased. We are currently investigatin
number of ways to improve our algorithm and to apply it
other 2D and 3D problems of astrophysical interest.
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FIG. 14. The gravitational wave amplitudeh1 , at a distanced
from the source, for the 3D collapse, bounce, and fragmentatio
star C. We computeh1 at the point (11.6M , 0, 0).
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FIG. 12. Snapshots of the res
density contour lines forr0 and
the velocity field (vx,vy) in the
equatorial plane for the 3D col
lapse, bounce, and fragmentatio
of star C. The contours and tim
normalization are set using th
same rule as in Figs. 9 and 11
Note that the origin of the system
is now shifted to the middle of the
x axis in this plot.
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