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Carrier relaxation due to electron-electron interaction in coupled double quantum well structures
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We calculate the electron-electron interaction induced energy-dependent inelastic carrier relaxation rate in
doped semiconductor coupled double quantum well nanostructures within the two-subband approximation at
zero temperature. In particular, we calculate, using many-body theory, the imaginary part of the full self-energy
matrix by expanding in the dynamically random-phase approximation screened Coulomb interaction, obtaining
the intrasubband and intersubband electron relaxation rates in the ground and excited subbands as a function of
electron energy. We separate out the single-particle and the collective excitation contributions, and comment
on the effects of structural asymmetry in the quantum well on the relaxation rate. Effects of dynamical
screening and Fermi statistics are automatically included in our many-body formalism rather than being
incorporated in anad hocmanner as one must do in the Boltzmann theory.
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I. INTRODUCTION

Electron-electron interaction induced carrier relaxation
an important inelastic scattering process in low-dimensio
semiconductor nanostructures. It is often~particularly in situ-
ations where LO phonon emission is energetically prohibi
because the excited electrons do not have enough energy! the
most dominant relaxation process in semiconductor quan
wells and wires, and is therefore of considerable fundame
and practical importance. Band gap engineering has le
the possibility of fabricating tunable far infrared quantu
well cascade lasers~QCL’s! and efficient quantum well in-
frared photodetectors~QWIP’s!, where inelastic carrier re
laxation via electron-electron interaction is a crucial~perhaps
even decisive! process in determining device operation a
feasibility.1 For QCL and QWIP operations it is the intersu
band inelastic relaxation that turns out to be the prim
rate-limiting scattering process. For other proposed devi
such as the planar hot electron transistors or related t
dimensional~2D! high-speed devices, intrasubband rela
ation is the important process. A thorough quantitative
derstanding of intra- and intersubband relaxation due
electron-electron interaction is therefore important for
successful realization of these devices. In addition to
practical technological motivation arising from QCL, QWI
and other proposed band-gap-engineered quantum wel
vices, there is also an obvious fundamental reason for stu
ing inelastic Coulomb scattering in 2D quantum well sy
tems. Inelastic electron-electron scattering determines the
quasiparticle spectral width, as determined, for example
tunneling measurements, through the imaginary part of
electron self-energy function.2

In this article we use a many-body approach in calculat
the inelastic relaxation rate of 2D electrons confined
GaAs-AlxGa12xAs semiconductor quantum well structure
Our work is a multisubband generalization of the earl
work3 by Jalabert and Das Sarma, who considered only
trasubband relaxation within a single subband model.
consider both intra- and intersubband relaxation in the
lowest subbands, and consider both single-well and cou
0163-1829/2001/64~4!/045325~11!/$20.00 64 0453
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double-well structures. An additional important issue a
dressed in our work is the effect of structural asymmetry
the quantum well on the relaxation rate. This is in fact
potentially significant factor in the fabrication of QCL an
QWIP structures since asymmetry could lead to the open
of new electron-electron interaction channels in the inela
intersubband relaxation as we discuss below in this artic

The central quantity we calculate in this work, within th
leading-order dynamically screened Coulomb interaction
pansion~the so-calledGW approximation in the multisub-
band situation!, is the imaginary part of electronic on-she
self-energy matrix,M, in the quantum well subband inde
( i , j , etc.!. The subband self-energy in the multisubband si
ation is, in general, off-diagonal, reflecting the breaking
the translational invariance along the growth~z! direction
~we take thex-y plane to be the 2D plane with all wav
vectors in this paper being 2D wave vectors in thex-y plane!.
The off-diagonal self-energy, Im(Mi j ), incorporates in an
intrinsic many-body manner the possibility of electro
electron-interaction-induced intersubband scattering~both
virtual and real! of carriers. We believe that in the dope
situation of our interest, where the quantum well subba
are occupied by many electrons, the many-body self-ene
approach is also a reasonable technique in calculating
inelastic carrier relaxation rate in spite of the Boltzman eq
tion approach, where the scattering rates are usually ca
lated using Fermi’s golden rule. The dynamical screen
inherent in the many-electron system, which affects the c
culated inelastic scattering rates in profound and highly n
trivial way, is automatically incorporated in our many-bod
GW expansion, whereas inclusion of dynamical screening
Fermi’s golden rule type formula is done by replacing t
bare interaction by a screened interaction in anad hocman-
ner.

Our theory, as mentioned above, is based on the so-ca
GW self-energy approximation3,4 where the electron self
energyM is obtained in a leading order expansion of t
dynamically screened Coulomb interactionW[Vs, where
the superscripts denotes dynamical screening of the ba
electron-electron interaction matrixV in the multisubband
©2001 The American Physical Society25-1
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situation. We use the RPA to obtain the dynamical scree
interactionVs, i.e., Vs[«21V, with «[12VP, whereP is
the leading-order~i.e., noninteracting! electron polarizability
matrix. We also approximate the electron Green’s functionG
by the noninteracting Green’s functionG0, making our for-
mal expression for the self-energy matrix to be

M;E G0Vs, ~1!

where the integral involves integrating over all internal m
mentum and energy variables as well as summing over
internal subband indices~and spin!. Putting the subband~ma-
trix! indices explicitly in Eq.~1!, we get

Im Mi j 5Im (
lm

E Glm
0 Vilm j

s . ~2!

We note, however, thatG0, being the noninteracting Green
function, is necessarily diagonal in subband indices~i.e., an
electron cannot undergo intersubband scattering in the
sence of interaction!:

Glm
0 ;Gll

0d lm . ~3!

Then, Eq.~2! becomes

Im Mi j 5(
l
E Im @Gll

0Vill j
s #, ~4!

with

Vill j
s 5~«21V! i l l j . ~5!

Equations~4! and~5! are the central formal equations we u
in our theory to obtain the inelastic relaxation timet, re-
membering that the scattering rateG and the relaxation time
t are connected by

t5
\

2G
, ~6!

where

G5uIm M u. ~7!

We emphasize that the inelastic relaxation timet defined
by Eq.~6! and calculated in this paper is an energy relaxat
time ~and not a momentum relaxation time, as, for examp
will enter the calculation of the mobility of the system!. The
inelastic relaxation time calculated in this paper defines
lifetime of a single-particle energy eigenstate in the syste
Due to Coulomb scattering among the electrons the sin
particle stationary states are well-defined only over a limi
time scale and our calculatedt is a measure of this lifetime
arising from electron-electron interaction.

In Eqs.~6! and~7!, G5uIm M u is calculated on-shell, i.e.
the quasiparticle self-energy definesG. To demonstrate how
Eq. ~4! may, in principle, differ from the Fermi golden rul
approach we consider the specific two-subband model o
terest to us in this paper. Theni , j ,l 51,2 with only subband
1, the ground subband, and the subband 2, the first exc
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subband being considered in the theory assuming all o
subbands to be substantially higher in energy, making ne
gible contributions to the self-energies of the lowest two s
bands. We also assume the square well structure to be s
metric, so that parity is a good quantum number in t
problem which makes all ‘‘off-diagonal’’ interaction matri
elements vanish5 by virtue of parity conservation with the
only nonzero elements ofVs beingV1111

s ,V2222
s , V1212

s , and
V1122

s ~note thatV1221
s 5V2112

s and V1122
s 5V2211

s by symme-
try!. In this situation Eq.~4! implies that

Im M125Im M2150 ~8!

and

Im M22;E Im @G11
0 V2112

s 1G22
0 V2222

s #. ~9!

We note that the dynamically screened interaction ma
elementV1122

s is not explicitly present in Eq.~9!. On the
other hand, a Fermi golden rule approach6 will explicitly
include such aV1122

s term, because it seems to arise from t
direct Coulomb interactionV1122 between an electron in sub
band 1 and an electron in subband 2 without any inters
band scattering. We mention, however, that dynami
screening ofV2222 produces an effectiveV2211 term in our
theory since dynamical screening proceeds through vir
creation of electron-hole pairs.

We have calculated the energy-dependent inelastic re
ation rate at T50 for a two-subband ~1 and 2!
GaAs-AlxGa12xAs quantum well system with a total elec
tron densityNe5231011 cm22 for the following five dis-
tinct situations.~i! Two coupled symmetric quantum wells o
width 150 Å each with interwell tunneling induced by a tu
neling barrier of height 228 meV and width 30 Å. Here th
lowest two subbands are the so-called symmetric~bonding!
and antisymmetric~antibonding! levels with energiesE1
515.35 meV andE2517.03 meV, respectively. The third
level E3560.53 meV is sufficiently high to be ignore
(EF15EF2E154.28 meV; EF25EF2E252.61 meV!,
with both subbands 1 and 2 occupied by carriers. These
sults are presented in Sec. III A below.~ii ! Two coupled
asymmetric quantum wells with interwell tunneling@the
same as in~i! above#, with one well of width 150 Å and the
other of width 140 Å, leading toE1515.93 meV andE2
518.55 meV (EF15EF2E154.75 meV; EF25EF2E2
52.13 meV!. Again, the next excited subbandE3562.86
meV is high enough to be ignored. These results are p
sented in Sec. III A below.~iii ! Two coupled identical sym-
metric quantum wells of width 150 Å each with no interwe
tunneling ~i.e., the interwell barrier is taken to be infinity!
and with a barrier width of 30 Å . Here,E15E2523.87 meV
~this degeneracy arises because the two wells are iden
and there is no tunneling!, EF15EF25EF2E15EF2E2
53.44 meV, and the next subbandE3596 meV is suffi-
ciently high in energy to be neglected. These results are
sented in Sec. III B below.~iv! The same as in the last cas
with no interwell tunneling but an asymmetric situation wi
the two wells being different. One has a width of 150 Å a
the other a width of 142.4 Å so that the subband Fer
5-2



be

e

h

-
d
ed
f

be
ts
ro
on
o

c
n

rri
O
ra
e
m
lls
e
e
ud

he
e

t

rg

g

-
en

nt

ed
i-
the
gh
-

of
for

d

CARRIER RELAXATION DUE TO ELECTRON-ELECTRON . . . PHYSICAL REVIEW B 64 045325
energies EF15EF2E154.75 meV and EF25EF2E2
52.13 meV, which are the same as in~ii ! above. In this
situationE1523.87 meV,E2526.49 meV~againE3 can be
neglected!. Furthermore, to keep the average distance
tween the two electron layers the same as in~ii !, we choose
a barrier of width 28.8 Å. These results are presented in S
III B below in comparison with those in~ii !. ~v! A single
symmetric quantum well of width 300 Å and a barrier heig
228 meV, which leads to the lowest two subbands atE1
54.88 meV, E2519.51 meV, and the Fermi energyEF1
5EF2E156.88 meV~with EF,E2, so that the second sub
band is empty!. In this situation, the next excited subban
E3543.74 meV, is high enough in energy to be neglect
These results are present in Sec. III C below. Our reason
studying the five different classes of systems descri
above is that we are interested in understanding the effec
interwell tunneling and structural asymmetry on the elect
relaxation rate. In particular, asymmetry breaks parity c
servation, making the off-diagonal matrix elements
Coulomb interaction~e.g., V1112,V1121,V1211,V2111,V2221,
V2212,V2122,V1222 all of which are zero in the symmetri
situation! nonzero, leading to new inelastic relaxation cha
nels not present in symmetric structures. For the sake
brevity we present results for a single representative ca
density and well parameters in each of the five cases.
theory could be easily generalized to obtain finite tempe
ture relaxation rates. Note that our goal here is to provid
qualitative understanding of how various physical para
eters affect Coulomb scattering rates in 2D quantum we

The plan of this article is the following. In Sec. II w
present a brief theory with working formulas; in Sec. III w
provide our numerical results and discussions; we concl
in Sec. IV with a summary.

II. THEORY

Our basic theory is outlined in the Introduction, where t
formal expression for the self-energies to be calculated w
given. Our centralGW random-phase approximation~RPA!
expression7 for the self-energy can be explicitly written ou
by using the noninteracting subband Green’s function

Gi j
0 ~v,k!5d i j @v2Ei~k!1EF#21, ~10!

where v is a complex frequency (\51), and Ei(k)5Ei
1k2/2m* is the noninteracting subband one-electron ene
dispersion. Using Eq.~10! in Eqs.~4! and ~5!, and carrying
out the internal frequency integration, and taking the ima
nary part after the on-shell analytic continuation, we get

Im Mi j ~k!5
1

~2p!2 (
l
E d2q

3Im@Vill j
s u~q,j l~k1q!…2j i~k!#

3$u„j i~k!2j l~k1q!…

2u„2j l~k1q!…%, ~11!
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where the on-shell subband energyj i(k) is given by

j i~k!5Ei~k!2EF , ~12!

andu(x)50(1), for x,0(.0), is the Heaviside step func
tion. The dynamically screened Coulomb interaction is giv
by @see Eq.~5!#

Vi jlm
s 5~«21V! i j lm , ~13!

with the multisubband RPA approximation7 defined by the
dielectric matrix

« i j lm5~12Vi jlmP lm
0 !, ~14!

whereVi jlm is the bare Coulomb interaction matrix eleme
in the subband representation, andP i j

0 , the noninteracting
polarizability, is given by

P i j
0 ~k,v!522E d2q

~2p!2

f i~k1q!2 f i~k!

v2Ei~k1q!1Ej~k!
, ~15!

wheref i(k) is the Fermi distribution function in thei th sub-
band. In this paper, we take the impurity-scattering-induc
background broadeningg as being a small phenomenolog
cal damping parameter which equivalent to be working in
clean limit. We are therefore restricting ourselves to hi
mobility quantum wells with small impurity-scattering
induced level broadening.

Using Eqs.~11!–~15! it is straightforward to calculate the
imaginary part of the on-shell self-energy. For the sake
completeness, we show below the detailed expressions
Im Mi j in the GW approximation for the two-subban
model:

Im M11~k!5s1111~k!1s1221~k!, ~16!

Im M12~k!5s1112~k!1s1222~k!, ~17!

Im M21~k!5s2111~k!1s2221~k! ~18!

and

Im M22~k!5s2112~k!1s2222~k!. ~19!

Here,

s1111~k!5
1

~2p!2E d2q$Im@V1111
s ~q,A!#

3@u~2A!2u„2j1~k1q!…#%, ~20!

s1221~k!5
1

~2p!2E d2q$Im@V1221
s ~q,A1v0!#

3@u~2A2v0!2u„2j2~k1q!…#%, ~21!

s1112~k!5
1

~2p!2E d2q$Im@V1112
s ~q,A!#

3@u~2A!2u„2j1~k1q!…#%, ~22!
5-3
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s1222~k!5
1

~2p!2E d2q$Im @V1222
s ~q,A1v0!#

3@u~2A2v0!2u„2j2~k1q!…#%, ~23!

s2111~k!5
1

~2p!2E d2q$Im @V2111
s ~q,A2v0!#

3@u~2A1v0!2u„2j1~k1q!…#%, ~24!

s2221~k!5
1

~2p!2E d2q$Im @V2221
s ~q,A!#

3@u~2A!2u„2j2~k1q!…#%, ~25!

s2112~k!5
1

~2p!2E d2q$Im @V2112
s ~q,A2v0!#

3@u~2A1v0!2u„2j1~k1q!…#%, ~26!

and

s2222~k!5
1

~2p!2E d2q$Im @V2222
s ~q,A!#

3@u~2A!2u„2j2~k1q!…#%, ~27!

where v05E22E1 is the subband energy difference,A
[A(q,k)5(2kq cosh1q2)/2m* with h being the angle be
tweenk andq; andm* 50.07me being the GaAs conduction
band electron effective mass. Now, we define thetotal in-
elastic Coulomb scattering rate for an electron with wa
vectork ~i.e., an energy ofk2/2m* with respect to the sub
band bottom! in the subband 1 and 2 as

s1~k!5Im M11~k!1Im M12~k! ~28!

and

s2~k!5Im M21~k!1Im M22~k!. ~29!

It is important to realize that the screened potentialsVi jlm
s for

j Þ l do not appear in Eqs.~20!–~27! and, consequently, do
not explicitly contribute to scattering rate. They are impl
itly induced in the theory through dynamical screening8 as
discussed before. Furthermore, all screened interactionsVi jlm

s

involved in Eqs.~20!–~27! are obtained from the relatio
between the bare electron-electron potential7

Vi jlm~q!5
2pe2

q«0
E dzE dz8f i~z!f j~z!

3e2quz2z8uf l~z8!fm~z8!

and the inverse matrix of the dynamical dielectric functi
« i j lm(q,v) @see Eqs.~13! and ~14!, where the indicesi , j ,l ,
m51,2#. These bare Coulomb potentialsVi jlm(q) are calcu-
lated here by using both the one-electron wave funct
f i(z) and the subband energyEi obtained through the nu
merical solution of the Schro¨dinger equation in thez direc-
04532
e

n

tion for the specific quantum well confinement potenti
Furthermore, the potentialVi jlm(q) can be separated int
intra- and intersubband terms, and understood as follows~i!
intralayer ~intrasubband! interactions V1111(q)5VA ,
V2222(q)5VB , andV1122(q)5V2211(q)5VC represent those
scattering events which the electrons remain in their origi
well ~subband!; ~ii ! interlayer ~intersubband! interactions
V1212(q)5V2121(q)5V1221(q)5V2112(q)5VD represent
scattering in which both electrons change their well~sub-
band! indices; and~iii ! intrawell-interwell~subband! interac-
tions V1112(q)5V1121(q)5V1211(q)5V2111(q)5VJ and
V2212(q)5V2221(q)5V1222(q)5V2122(q)5VH indicate the
scattering in which only one of the electrons suffers the
terwell ~intersubband! transition.

For each wave vectork, the two-dimensionalq integrals
in Eqs. ~20!–~27! are performed within the planes dete
mined through the variablesq andA in the screened interac
tionsVi jlm

s . The integration domains ofq andh ~in A) vari-
ables are restricted by the twou functions appearing in the
integrals in Eqs.~20!–~27!. The integrals involvingV1111

s and
V1112

s are performed within the planes formed by those
gions in theq space where

u~2A!2u„2j1~k1q!…Þ0, ~30!

while the integrals involvingV1221
s and V1222

s are calculated
within the planes defined by

u~2A2v0!2u„2j2~k1q!…Þ0. ~31!

In the same way, the integrals involvingV2222
s andV2221

s are
performed within the planes defined by

u~2A!2u„2j2~k1q!…Þ0, ~32!

and, finally, forV2112
s and V2111

s the integrating plane is de
fined by

u~2A1v0!2u„2j1~k1q!…Þ0. ~33!

The inelastic scattering rates in Eqs.~20!–~27! vanish out-
side each corresponding integrating plane, which means
the momentum and energy conservation cannot be simu
neously obeyed for such values of (k,k1q), and therefore
no Coulomb scattering is allowed there. It is easy to see
these integrals are nonvanishing only if the correspond
integrating plane contains either some part of the sing
particle excitation continuum or some branch represen
the collective excitations~plasmons! in the 2Dq plane. This
is of course expected since a finite scattering rate must
volve real excitations, which in this case are single-parti
and collective plasmon excitations.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Coulomb coupled bilayers with interwell tunneling

We consider first two coupled symmetric identical qua
tum wells of same widthW15W25150 Å with an interwell
tunneling induced by a barrier of height 228 meV and wid
30 Å . The total electron density Ne5n11n2
5231011 cm22 in all structures studied in this paper, wit
5-4
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n1 andn2 being the density in the subband 1 and 2, resp
tively. For these sample parameters, the Fermi wave vec
in the first and second subband arekF1

sy .0.883106 cm21

and kF2
sy .0.693106 cm21, respectively~the superscript sy

stands for symmetric!. Here, both subbands 1 and 2~sym-
metric and antisymmetric, respectively! are occupied by car
riers with n1.1.2331011 cm22 andn2.0.7731011 cm22.

The plasmon dispersion relation is determined by
roots of the determinantal equation detu« i j lm(q,v)u50,
which, after some algebra, can be rewritten as

« intra« inter2@~12VAP11
0 !VH

2 P22
0 1~12VBP22

0 !VJ
2P11

0

22VCVJVHP11
0 P22

0 ~P12
0 1P21

0 !#50, ~34!

where

« intra5~12VAP11
0 !~12VBP22

0 !2VC
2 P11

0 P22
0 ~35!

and

« inter512VD~P12
0 1P21

0 !. ~36!

For notational simplicity, we do not explicitly write the en
ergy and wave vector dependence in Eqs.~34!–~36!. For the
present symmetric situation, the unscreened Coulomb po
tial VJ5VH50 by virtue of parity symmetry, because th
wave functionsf1(z) andf2(z) are symmetric and antisym
metric functions ofz, respectively. According to Eq.~34!,
therefore, the plasmons dispersion relation in our symme
bilayer structure is determined by the roots of the equa
« intra« inter50, i.e., either« intra50 corresponding to the 2D
intrasubband plasmons, or« inter50 corresponding to the in
tersubband plasmons.

There are four roots of« intra50. Two of them are shown
in Fig. 1~a! by the solid lines indicating the intrasubban
plasmon modes (1,1) and (2,2). Notice that, for each s
line, there is a corresponding dashed line that is also the
of the same equation always lying in the correspond
single-particle excitation continuum. It is well known th
the plasmon modes indicated by the dashed lines inside
single-particle continua are strongly Landau damped
single-particle excitations and will be ignored in the follow
ing discussion. Furthermore, the intersubband plasmon m
(1,2) comes from the roots of« inter50. The wave functions
f1(z) andf2(z) are schematically shown in the inset by t
solid and dot lines, respectively. Notice that, one is alwa
able to separate the intra and inter-subband plasmon m
in structures that are invariant under space inversion. In
dition, the intrasubband plasmons are not Landau dampe
intersubband single-particle excitations~SPE’s! and vice
versa in symmetric bilayer systems. The single-particle c
tinua SPE11 ~intrasubband SPE! and SPE12 ~intersubband
SPE! in Fig. 1~a! are those regions where Im$P11

0 (q,v)%
Þ0 and Im$P12

0 (q,v)%Þ0, respectively. For the sake o
simplicity, we will not indicate the continuum SPE22 in this
paper because it lies totally inside the continuum SPE11.
Moreover, we claim that the plasmon mode (2,2) should
strongly damped by single-particle excitations in the SP11
continuum and will also be ignored in the following qualit
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tive scattering rate discussion. Our numerical results
course include all contributions as obtained by evaluating
2D integrals in Eqs.~20!–~27!.

Figure 1~b! shows the same plasmon dispersion relat
as in Fig. 1~a! but now in two coupledasymmetricquantum
wells with interwell tunneling. Here, one well is of widt
150 Å and the other is of width 140 Å. For these paramete
the Fermi wave vector in the subband 1 and 2 arekF1

a

.0.933106 cm21 and kF2
a .0.623106 cm21, respectively

~the superscripta stands for asymmetric!. Both subbands are
occupied with n1.1.3731011 cm22 and n2
.0.6331011 cm22. In this asymmetric situation, the plas
mon modes are obtained directly from the roots of Eq.~34!.
We show in Fig. 1~b! all these roots. We mention that it doe
not make sense naming the solid lines as pure intra- or in
subband plasmon modes because the structural asymm
leads to a strong coupling~or mixing! between them, and this
intrasubband-intersubband mode coupling eliminates
simplicity of Fig. 1~a!. The solid line that is of finite fre-
quency asq→0 in Fig. 1~b! is the intersubbandlike plasmo

FIG. 1. Plasmon dispersions in two coupled GaAs/Al0.3Ga0.7As
quantum wells of widths~a! W15W25150 Å ~symmetric! and ~b!
W15150 Å and W25140 Å ~asymmetric!; and separated by a
barrier of width 30 Å . For the symmetric~asymmetric! situation the
energy separation between the two subbands isv051.68 meV
(v052.62 meV). The shadow areas present the single-particle
citation regions SPEnn8 where Im$Pnn8

0 (q,v)%Þ0. Each structure
is shown in the inset wheref1(z) and f2(z) are schematically
shown by the solid and dot lines, respectively.
5-5
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mode (1,2). This mode enters the continuum SPE12 at q
.0.423106 cm21 and should be, in principle, Landa
damped. For small values ofq, we find the same number o
roots as in the symmetric situation. The interactionsVJ and
VH are finite in the asymmetric case and are responsible
the strong mixing between the intrasubbandlike plasm
mode (1,1) and the intersubbandlike mode (1,2) arounq
>0.183106 cm21. Moreover, when the asymmetry is intro
duced, the depolarization shift~i.e., the shift of the intersub
band plasmon from the subband energy separationE21) in
the intersubbandlike plasmon (1,2) atq50 decreases. We
point out that these roots of Eq.~34! do not provide a com-
plete description of the plasmon modes in asymmetric
layer structures. A detailed theoretical calculation of the
namical structure factor giving the plasmon spectral wei
provides a complete picture of the collective mode spe
and can be obtained using our multisubband theory.

Having studied the plasmon dispersion relations we n
investigate in Fig. 2~a! the corresponding total inelastic Cou
lomb scattering rates1(k) ~thick solid line! ands2(k) ~thick
dashed line! of fast electrons in the subband 1 and 2, resp
tively, as a function of wave vectork in our symmetric bi-
layer structure. The symbols on the thin lines identify t
contributions tos1(k) ands2(k) coming from the emission
of single-particle and collective excitations individually. Th
dynamically screened Coulomb interaction components
tering in Eqs.~20!–~27! can be calculated from Eqs.~13! and
~14!. After some algebra, we get

V1111
s 5

VA~12VBP22
0 !1VC

2 P22
0

« intra
, ~37!

V2222
s 5

VB~12VAP11
0 !1VC

2 P11
0

« intra
, ~38!

and

V1221
s 5V2112

s 5
VD

« inter
. ~39!

For the symmetric well case the off-diagonal components
the Coulomb potential all vanish by parity:V1112

s 5V1121
s

5V1211
s 5V2111

s 5V2221
s 5V2212

s 5V2122
s 5V1222

s 50 becauseVJ

5VH50 for symmetric systems. Therefore, according
Eqs.~20!–~29!, the total inelastic scattering rates in the su
band 1 and 2 are

s1~k!5s11111s1221 ~40!

and

s2~k!5s22221s2112, ~41!

respectively. The termss1111, s1221, s2222, and s2112 in-
volve integrations of the interactionsV1111

s , V1221
s , V2222

s and
V2112

s , respectively, in Eqs.~20!, ~21!, ~27!, and ~26!. The
self-energy components in Eqs.~22!–~25! are zero in the
symmetric case.Intrasubbandcontributions to the scatterin
rates arise from the termss1111 and s2222, while intersub-
bandcontributions are due to the termss1221 ands2112. The
04532
or
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contributions coming from the plasmon modes~filled-square
lines! are obtained separately by excluding the contin
SPE11 and SPE12 from the numerical integrations, wherea
contributions coming only from the single-particle contin
are obtained by numerically evaluating Eqs.~21! and ~26!
only for the region representing each continuum. Sing
particle excitations contribute for all values of wave vecto
k. However, neither intra- nor intersubband plasmon mo
contributes to the scattering rates close tokF1

sy or kF2
sy . These

collective modes provide excitation channels for inelastic
laxation only above some threshold wave vectors. The in
subband plasmon mode (1,1) begins to contribute to ei
s1(k) or s2(k) when the wave vector is larger than the sam
thresholdk11

sy.1.653106 cm21. On the other hand, the con
tribution coming from the plasmon mode (1,2) has a diffe
ent threshold for each scattering rate. This mode begins c
tributing tos1(k) ands2(k) when the wave vector is large
than the thresholds k12

sy.1.253106 cm21 and k128
sy

.2.03106 cm21, respectively~notice that kF2
sy ,kF1

sy ,k12
sy

FIG. 2. Total inelastic Coulomb scattering rate of electrons
our coupled bilayer~a! symmetric and~b! asymmetric structures
The thick solid and thick dashed lines denote the total scatte
rate sn(k) for n51 and 2, respectively. The symbols on the th
lines represent each contribution to the total calculated scatte
diamonds standing for the SPE11 contribution, the filled squares
stand for the intrasubband~1,1! plasmon contribution, triangles
stand for the SPE12 contribution, and opaque squares stand for
intersubband~1,2! plasmon contribution.
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,k11
sy,k128

sy ). Obviously, these thresholds depend on the p
ticular choice of sample parameters. In the present pa
they are smooth~instead of being a very sharp threshol!
because we are considering the impurity-induced cons
g50.2 meV in our numerical evaluation. These thresho
become much sharper for smaller values ofg without any
other substantive changes in our numerical results.

Figure 2~b! shows the same results as in Fig. 2~a! but for
the asymmetric bilayer system of Fig. 1~b!. In contrast to the
symmetric case, where we were able to separately obtain
inter- and intrasubband plasmon modes through the root
« inter50 and« intra50, respectively; the coupled plasmon di
persion in the asymmetric system is obtained directly fr
the numerical roots of Eq.~34! in which the bare off-
diagonal Coulomb interactionsVJ andVH are now nonvan-
ishing. The terms in Eq.~34! involving VJ and VH are re-
sponsible for the mixing between the inter- and intrasubb
plasmon modes and for not allowing the contributions co
ing from the intra- and intersubbandlike plasmon mod
(1,1) and (1,2) to be picked up completely separated fr
each other in the scattering rate. Notice that the dynamic
screened Coulomb potentialVi jlm

s is a full 16316 matrix
~for the two-subband model—in general, it is ann43n4 ma-
trix for an n-subband problem! in the present situation and i
obtained from Eq.~13!, which involves the dielectric matrix
« i j lm(q,v) and the bare Coulomb interaction
VA , VB , VC , VD , VJ , and VH ~all of which are finite in
this strongly coupled asymmetric bilayer structure!.9 There-
fore, both inelastic scattering ratess1(k) and s2(k) in the
asymmetric case contain all terms shown in Eqs.~20!–~27!,
which are finite in this situation. For the sake of clarity a
to understand Fig. 2~b! in the same way as done for Fig. 2~a!,
we choose to show three contributions to the inelastic s
tering ratess1(k) and s2(k) in Fig. 2~b! separately: the
single-particle excitations in the continua~i! SPE12 ~up tri-
angles! and ~ii ! SPE11 ~diamonds!; and ~iii ! the plasmon
mode segment outside these continua~filled squares!. The
filled squares in Fig. 2~b! represent contributions comin
from those segments of the plasmon modes that lie out
any single-particle excitation continua@see Fig. 1~b!#. Con-
tributions coming from the plasmon segments lying ins
each continuum have been kept in our numerical work al
with the single-particle excitation contributions because i
essentially numerically impossible to separate the two in
regime. We should mention that, due to the fact that on
not able to eliminate the contributions coming from the ov
damped plasmon modes lying inside the Landau contin
the thin lines in Fig. 2~b! only serve as a qualitative
illustration.10

B. Coulomb coupled bilayers with no interwell tunneling

Now we investigate the two Coulomb coupled identic
symmetric quantum wells of widthW15W25150 Å each
with no interwell tunneling~i.e., the interwell barrier is taken
to be infinity! and with a barrier width of 30 Å. Here, th
Fermi wave vectors in the two wells are of the same val
i.e., kF05kF15kF2.0.793106 cm21 ~or, equivalently,n1
5n251011 cm22). Notice that the indices 1 and 2 shou
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now be treated as well indices since there is no tunneli
induced bonding-antibonding states. As we mentioned in
Introduction, an energy degeneracy arises in this case,
E15E2 because the two wells are identical with no interw
tunneling. If there is no tunneling, the bare Coulomb pote
tial componentsVJ5VH5VD50 and the polarizabilityP12

0

5P21
0 50 independent of whether the bilayer structure

symmetric or not. Besides, for this symmetric no-tunneli
bilayer structure, the bare Coulomb potentialVA5VB by
symmetry and the polarizabilityP11

0 5P22
0 5P0 due to the

fact that the densities in each well are identical.
According to Eqs.~34!–~36!, therefore, the plasmon dis

persion relation should be obtained only from the roots o

«nt
sy5~12VAP0!22VC

2 P0
250. ~42!

Here, the subscript~superscript! nt ~sy! stands for no tunnel-
ing ~symmetric!. As shown in Fig. 3~a!, we find four roots of
Eq. ~42!. The solid curves correspond to the in-phase optic
v1(q), and the out-of-phase acoustic,v2(q), plasmon

FIG. 3. Plasmon dispersions in two coupled with no interw
tunneling GaAs/Al0.3Ga0.7As quantum wells of widths~a! W1

5W25150 Å and ~b! W15150 Å ~symmetric! and W25142.4
~asymmetric! Å, and separated by an infinity barrier of width 28.8
Å. The shadow areas present the single-particle excitation reg
SPE118 where Im$P118

0 (q,v)%Þ0. Each structure is shown in th
inset wheref1(z) andf2(z) are schematically shown by the soli
and dotted lines, respectively.
5-7



-
re
tu

ou
in
s
D

ct
g

er

lls

g
io
ke
b

b
r
u

in

-
re
w

tra
a

n

t
k

sy
s
ha
tw
o

is
e
od
di
od
ys

ly
th
s-
a
.

ally

ing

rix
re

ted

ility

en

ith
b
o
ne
ng

s-

bu-
es
ting
i
c-

and
nce
of
uc-
ur

e

-
n,

ng
are
er-
in,

m
on
e

MARCOS R. S. TAVARES, G.-Q. HAI, AND S. DAS SARMA PHYSICAL REVIEW B64 045325
modes in the bilayer structure.11 Thesev6(q) modes have
been observed12 in multilayer semiconductor systems via in
elastic light scattering spectroscopic experiments. They
resent in-phase and out-of-phase interlayer density fluc
tion modes: the out-of-phase acoustic mode,v2(q→0)
;O(q) represents densities in the two layers fluctuating
of phase with a linear wave vector dispersion and the
phase optical mode,v1(q→0);ANeq, represents densitie
in the two layers fluctuating in phase with the usual 2
plasma dispersion. The dashed lines represent the colle
modes that should be strongly Landau damped by the sin
particle excitation continuum SPE, i.e., the region wh
Im $P0(q,v)%Þ0.

Figure 3~b! shows the same quantities as in Fig. 3~a! but
for an asymmetric no-tunneling situation with the two we
being different, one with a width ofW15150 Å and the
other a width ofW25142.4 Å. In this case, our no-tunnelin
bilayer structure is no longer invariant under space invers
and, consequently, the energy level degeneracy is bro
leading to the energyE1,E2. Besides, the bare Coulom
potential VA is now different fromVB . As we discussed
before, the two wells now have different charge densities
we consider the whole system still being in equilibrium. Fu
thermore, the Fermi wave vector in the first and second s
bands is the same as indicated before, i.e.,kF1

a and kF2
a ,

respectively. Because of the densities in the two wells be
different from each other, the polarizabilityP22

0 ÞP11
0 . The

shadow area in Fig. 3~b! is the single-particle excitation con
tinuum in the wider quantum well, i.e., the region whe
Im$P11

0 (q,v)%Þ0. The plasma dispersion relation is no
given by the roots of the Eq.~35!. Note that all plasma
modes in the zero tunneling system are by definition in
subband plasmons in our model where higher subbands
neglected.

As shown in Fig. 3~b!, we again find four roots of such a
equation and consider that the dashed lines should
strongly Landau damped modes since they are inside
single-particle continua. Furthermore, it does not ma
sense, in principle, to define the solid lines in Fig. 3~b! as
pure acoustic or optical plasmon modes because the a
metry leads to a difference between the electron densitie
each layer. Now, the wider well has 30% more electrons t
the narrower one, and, consequently, the densities in the
layers are not fluctuating exactly either in phase or out
phase. The solid lines in Fig. 3~b! are the approximate
acoustic- and optical-like plasmon modes with the strict d
tinction meaningful only in the long-wavelength limit. Du
to the structural asymmetry the acousticlike plasmon m
enters the SPE continuum at a smaller wave vector, lea
to significant Landau damping of the acoustic plasmon m
by single-particle excitations in the asymmetric bilayer s
tem. In the single-particle continuum of the layer 2~the nar-
rower well! the acousticlike plasmon mode is complete
suppressed and we find no acousticlike mode in
Im $P22

0 (q,v)%Þ0 regime. In general the acousticlike pla
mon mode is found to be much more sensitive to sm
asymmetry effects than the optical-like plasmon mode13
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This is physically reasonable and should be experiment
tested via inelastic light scattering experiments.

Now we concentrate on the investigation of the scatter
rates s1(k) and s2(k) in the symmetric bilayer structure
with no tunneling. As the bare Coulomb potentialVJ5VH

5VD50, it is straightforward to see that onlyV1111
s and

V2222
s are finite in the screened Coulomb interaction mat

Vs for a bilayer structure without any tunneling. Therefo
the scattering rates in Eqs.~21!–~26! all vanish by symmetry
in this case. The only nonvanishing terms to be calcula
ares1111 ands2222 in Eqs.~ 20! and~27!, respectively. Fur-
thermore, as we discussed before, we have the polarizab
P11

0 5P22
0 5P0 and the bare potentialVA5VB for identical

~i.e., symmetric case! quantum wells. According to Eqs.~37!
and~38!, therefore, the screened Coulomb potential is giv
by

V1111
s 5V2222

s 5
VA~12VAP0!1VC

2 P0

«nt
sy

~43!

in the present situation of a symmetric bilayer system w
no interwell tunneling. In fact, the total inelastic Coulom
scatterings1(k) and s2(k) are identical because the tw
wells are identical with the same density. The thick li
shown in Fig. 4~a! represents the total inelastic scatteri
rate, which is equal@s1(k)5s11115s2(k)5s2222 # in both
subbands, as a function of the wave vectork. To show sepa-
rately the contributions coming from the emission of pla
mons ~squares! and single-particle excitations~diamonds!,
we again exclude the region where Im@P0(q,v)#Þ0 from
the numerical calculations to obtain the plasmon contri
tion. Single-particle excitations again contribute at all valu
of the wave vector, whereas the plasmons begin contribu
to the scattering rate for wave vectorsk larger than the Ferm
wave vectorkF0. There are clearly two thresholds wave ve
tors in the plasmon contribution~squares!, one at k5kac

sy

.1.253106 cm21 and other atk5kop
sy.1.653106 cm21.

These are the thresholds for the emission of the acoustic
the optical plasmon, respectively. The substantial differe
between Figs. 4~a! and 2~a! demonstrates the strong effect
tunneling on the inelastic scattering rates in bilayer str
tures. This is one of the important qualitative results in o
paper.

Figure 4~b! shows the same results as in Fig. 4~a! but for
the asymmetric bilayer structure without tunneling. As w
discussed before, the asymmetry leads toP22

0 ÞP11
0 . Further-

more, the bare Coulomb potentialVAÞVB and, therefore ac-
cording to Eqs.~37! and ~38!, the screened Coulomb poten
tial V1111

s ÞV2222
s in the asymmetric case. In this situatio

s1(k)5s1111 ~thick solid line! and s2(k)5s2222 ~thick
dashed line! represent the total inelastic Coulomb scatteri
rates in the wider and narrower layer, respectively. They
different from each other because the two wells have diff
ent widths and densities in the asymmetric situation. Aga
we separate the different contributions~by plasmons and by
SPE! by excluding the single-particle excitation continuu
SPE from the numerical calculations to obtain the plasm
contribution. It is important to point out again that th
5-8
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squares in Fig. 4~b! represent contributions coming from th
emission of undamped plasmon modes whose freque
v(q) lies outside the continuum SPE@see Fig. 3~b!#. There is
only one threshold wave vectork.1.713106 cm21 in the
thin solid line~squares! corresponding the plasmon contrib
tion to s1(k). This threshold is due to the emission of th
optical-like plasmon mode shown in Fig. 3~b!. We also find
that the thin solid line~diamonds! corresponding to the SPE
contribution tos1(k) does not contain any contribution com
ing from the acousticlike plasmon mode. As a matter of fa
there is no contribution tos1(k) in Fig. 4~b! coming from
the emission of the acousticlike plasmon mode at all beca
the integral ins1(k) does not contain any segment represe
ing the acousticlike plasmon mode which is heavily Land
damped in the asymmetric situation under consideration.
the other hand, the thin dashed line~squares!, corresponding
to the plasmon contribution tos2(k), clearly has two
threshold wave vectors k.1.153106 cm21 and k
.1.763106 cm21, which characterizes the emission of th
acoustic- and optical-like plasmon mode, respectively. Th
in the asymmetric case, the acoustic-like plasmon mo

FIG. 4. Total inelastic Coulomb scattering rate of electrons
our coupled bilayer~a! symmetric and~b! asymmetric structures
with no tunneling. In~b!, the thick solid and thick dashed line
denote the total scattering ratesn(k) for n51 and 2, respectively
The symbols on the thin lines represent each contribution to
total scattering: diamonds stand for the SPE contributions, and
filled squares stand for the plasmon contributions.
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contribute to carrier scatterings2(k) in the narrower well
but not tos1(k) in the wider well by virtue of strong Landau
damping. The difference between Figs. 2~b! and 4~b! repre-
sents the strong effect of tunneling on the second compo
of the inelastic scattering ratess2(k) in bilayer asymmetric
structures.

C. Single symmetric quantum well

We now consider~for the sake of comparison! a single
symmetric GaAs-AlxGa12xAs quantum well of width 300 Å,
barrier height 228 meV, and with the same total electr
densityNe5231011 cm22 as used before. These sample p
rameters lead to the Fermi wave vector in the first subb
kF1

single.1.133106 cm21 with only one subband occupancy
Here, the second subband is empty, which leads toP22

0 50.
As we discussed before, only the bare Coulomb poten
VA , VB , VC , andVD are finite becauseVJ5VH50 in sym-
metric structure. According to Eqs.~35! and ~36!, therefore,
the intra- and intersubband plasmon modes are obta
from the roots of the equations

« intra
single5~12VAP11

0 !50

and

« inter
single512VD~P12

0 1P21
0 !50.

Taking P22
0 50 ~unoccupied excited subband! in Eqs. ~37!,

~38!, and~39! we get

V1111
s 5

VA

« intra
single

, ~44!

V2222
s 5

VB~12VAP11
0 !1VC

2 P11
0

« intra
single

, ~45!

and

V1221
s 5V2112

s 5
VD

« inter
single

. ~46!

Again in this case, the screened Coulomb potentialV1112
s

5V1121
s 5V1211

s 5V2111
s 5V2221

s 5V2212
s 5V2122

s 5V1222
s 50 by

symmetry becauseVJ5VH50. Therefore, as we discusse
in the Sec. III A, the total inelastic scattering rates in the fi
and the second subband are given by Eqs.~40! and ~41!,
respectively. In the same way as done for the bilayer str
tures, we present the scattering ratess1(k) ands2(k) in Fig.
5 in the thick solid and thick-dashed lines, respectively. T
symmetric nature of the single-well system enables us
separate out the different contributions to the scattering r
as discussed before. We find that contributions tos1(k)
come mainly from the emission of both the intrasubba
plasmons (1,1) and the intrasubband single-particle exc
tions SPE11. The emission of intersubband excitations tu
out to make negligible contributions to the scattering beca
of the sufficiently large energy gap between the two s
bands (v05E21514.63 meV). For this particular choice o

e
he
5-9
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the sample parameters,s1111turns out to be much larger tha
s1221, implying that the carrier relaxation process in t
ground subband is almost entirely via intrasubband sca
ing. Another important point in Fig. 5 is that inter- and i
trasubband plasmon modes as well as intra- and intersub
single-particle excitations contribute to the total inelas

FIG. 5. Total inelastic Coulomb scattering rate of electrons i
single quantum well. The thick solid and thick dashed lines den
the total scattering ratesn(k) for n51 and 2, respectively. The
symbols on the thin lines stand for the same as indicated in
2~a!.
o

,

04532
r-

nd

scattering rates2(k) in the second subband. Notice that,
contrast to the behavior ofs1(k), the total inelastic scatter
ing rate in the second subbands2(k) does not vanish for any
wave vectorsk. This is due the fact that there is no Ferm
surface in the second subband. This should lead to qua
tively different effects in the measured carrier injected in t
second subband compared with that in the ground subban14

This lifetime, which is inversely proportional to the tota
inelastic scattering rates2(k), should be finite for all finite
wave vectors in the excited empty subband.

IV. CONCLUSIONS

We have developed a theory for calculating the inelas
relaxation rate for Coulomb scattering in coupled bilay
structures in semiconductor double quantum well syste
We use a many-body theory based on a multisubband g
eralizedGW approximation with the inelastic scattering ra
defined by the magnitude of the imaginary part of the o
shell electron self-energy. Effects of dynamical screeni
mode coupling, and Fermi statistics are naturally included
our many-body theory. We demonstrate the usefulness of
theory by obtaining results for general representative tw
subband model systems: Coulomb coupled bila
GaAs-AlxGa12xAs double quantum well structures both wi
and without interwell tunneling and also with and witho
interwell asymmetry in the system. Our theory naturally
lows for distinguishing various physical mechanisms co
tributing to the inelastic scattering rate: intra- and intersu
band contributions. We provide a critical qualitativ
discussion of these various contributions to scattering
comment on the effect of interwell tunneling and structu
asymmetry in bilayer quantum wells.
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