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Carrier relaxation due to electron-electron interaction in coupled double quantum well structures
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We calculate the electron-electron interaction induced energy-dependent inelastic carrier relaxation rate in
doped semiconductor coupled double quantum well nanostructures within the two-subband approximation at
zero temperature. In particular, we calculate, using many-body theory, the imaginary part of the full self-energy
matrix by expanding in the dynamically random-phase approximation screened Coulomb interaction, obtaining
the intrasubband and intersubband electron relaxation rates in the ground and excited subbands as a function of
electron energy. We separate out the single-particle and the collective excitation contributions, and comment
on the effects of structural asymmetry in the quantum well on the relaxation rate. Effects of dynamical
screening and Fermi statistics are automatically included in our many-body formalism rather than being
incorporated in arad hocmanner as one must do in the Boltzmann theory.
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[. INTRODUCTION double-well structures. An additional important issue ad-
dressed in our work is the effect of structural asymmetry in
Electron-electron interaction induced carrier relaxation isthe quantum well on the relaxation rate. This is in fact a
an important inelastic scattering process in low-dimensionapotentially significant factor in the fabrication of QCL and
semiconductor nanostructures. It is off@articularly in situ-  QWIP structures since asymmetry could lead to the opening
ations where LO phonon emission is energetically prohibitedf new electron-electron interaction channels in the inelastic
because the excited electrons do not have enough ertbigy intersubband relaxation as we discuss below in this article.
most dominant relaxation process in semiconductor quantum The central quantity we calculate in this work, within the
wells and wires, and is therefore of considerable fundamentdéading-order dynamically screened Coulomb interaction ex-
and practical importance. Band gap engineering has led tpansion(the so-calledGW approximation in the multisub-
the possibility of fabricating tunable far infrared quantumband situatiofy is the imaginary part of electronic on-shell
well cascade laser@CL'’s) and efficient quantum well in- self-energy matrixM, in the quantum well subband index
frared photodetector@QWIP’s), where inelastic carrier re- (i,j, etc). The subband self-energy in the multisubband situ-
laxation via electron-electron interaction is a cru¢@drhaps ation is, in general, off-diagonal, reflecting the breaking of
even decisive process in determining device operation andthe translational invariance along the growi direction
feasibility! For QCL and QWIP operations it is the intersub- (we take thex-y plane to be the 2D plane with all wave
band inelastic relaxation that turns out to be the primaryectors in this paper being 2D wave vectors inxhgplane.
rate-limiting scattering process. For other proposed deviceghe off-diagonal self-energy, Iy;;), incorporates in an
such as the planar hot electron transistors or related twadntrinsic many-body manner the possibility of electron-
dimensional (2D) high-speed devices, intrasubband relax-electron-interaction-induced intersubband scatter{bgth
ation is the important process. A thorough quantitative unvirtual and real of carriers. We believe that in the doped
derstanding of intra- and intersubband relaxation due tituation of our interest, where the quantum well subbands
electron-electron interaction is therefore important for theare occupied by many electrons, the many-body self-energy
successful realization of these devices. In addition to thi@pproach is also a reasonable technique in calculating the
practical technological motivation arising from QCL, QWIP, inelastic carrier relaxation rate in spite of the Boltzman equa-
and other proposed band-gap-engineered quantum well déen approach, where the scattering rates are usually calcu-
vices, there is also an obvious fundamental reason for studyated using Fermi's golden rule. The dynamical screening
ing inelastic Coulomb scattering in 2D quantum well sys-inherent in the many-electron system, which affects the cal-
tems. Inelastic electron-electron scattering determines the 2Bulated inelastic scattering rates in profound and highly non-
quasiparticle spectral width, as determined, for example, irrivial way, is automatically incorporated in our many-body
tunneling measurements, through the imaginary part of th& W expansion, whereas inclusion of dynamical screening in
electron self-energy functioh. Fermi’'s golden rule type formula is done by replacing the
In this article we use a many-body approach in calculatingbare interaction by a screened interaction inradrhocman-
the inelastic relaxation rate of 2D electrons confined inner.
GaAs-AlLGa, _,As semiconductor quantum well structures.  Our theory, as mentioned above, is based on the so-called
Our work is a multisubband generalization of the earlierGW self-energy approximatidit where the electron self-
work® by Jalabert and Das Sarma, who considered only inenergyM is obtained in a leading order expansion of the
trasubband relaxation within a single subband model. Welynamically screened Coulomb interactité=V?> where
consider both intra- and intersubband relaxation in the twahe superscrips denotes dynamical screening of the bare
lowest subbands, and consider both single-well and coupleélectron-electron interaction matri¥ in the multisubband
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situation. We use the RPA to obtain the dynamical screenedubband being considered in the theory assuming all other
interactionVs, i.e., VS=¢ 1V, with e=1—VII, wherell is  subbands to be substantially higher in energy, making negli-
the leading-ordefi.e., noninteractingelectron polarizability — gible contributions to the self-energies of the lowest two sub-
matrix. We also approximate the electron Green'’s funcBon bands. We also assume the square well structure to be sym-
by the noninteracting Green’s functig®®, making our for-  metric, so that parity is a good quantum number in the

mal expression for the self-energy matrix to be problem which makes all “off-diagonal” interaction matrix
elements vanishby virtue of parity conservation with the

wa GOVS, ) or;ly nonzero eIerSnents cS)!S being\éim,vém, V3,1, and

Viiz, (note thatVip =V3q1, and Vigp= V3,1, by symme-

where the integral involves integrating over all internal mo-Y)- In this situation Eq(4) implies that

mentum and energy variables as well as summing over all 1M Moo= M Moo=
internal subband indicegnd spin. Putting the subban@na- m Mao=1m M2, =0 ®
trix) indices explicitly in Eq.(1), we get and
Im Mj;=Im lE f GinViim; - 2 Im Mzz”f IM [G31V31151+ GoV3203. 9
m

We note, however, thag®, being the noninteracting Green’s We note that the dynamically screened interaction matrix
function, is necessarily diagonal in subband indiies, an ~ €lementVi;,, is not explicitly present in Eq(9). On the

electron cannot undergo intersubband scattering in the atfther hand, a Fermi golden rule approaetill explicitly
sence of interaction include such a/3,,,term, because it seems to arise from the

direct Coulomb interactiol;,,, between an electron in sub-
G ~Gl6m. (3  band 1 and an electron in subband 2 without any intersub-
band scattering. We mention, however, that dynamical
screening ofV,,,, produces an effectivé¥/,,, term in our
theory since dynamical screening proceeds through virtual

Then, Eq.(2) becomes

Im M;; =2, J Im[GRVi; 1, (4)  creation of electron-hole pairs.
! We have calculated the energy-dependent inelastic relax-
with ation rate at T=0 for a two-subband(1 and 2
GaAs-AlGa, _,As quantum well system with a total elec-
="V (5)  tron densityNy,=2x 10" cm 2 for the following five dis-

i , tinct situations(i) Two coupled symmetric quantum wells of
Equations(4) and(5) are the central formal equations we use iqth 150 A each with interwell tunneling induced by a tun-

in our theory to obtain the inelastic relaxation time re- neling barrier of height 228 meV and width 30 A. Here the
membering that the scattering rdteand the relaxation time |,west two subbands are the so-called symmébianding

7 are connected by and antisymmetric(antibonding levels with energiesE;
5 =15.35 meV andE,=17.03 meV, respectively. The third
r=— (6) level E3=60.53 meV is sufficiently high to be ignored
2I (Ep1=Ef—E;=4.28 meV; Ep,=Er—E,=2.61 meV,
where with both subbands 1 and 2 occupied by carriers. These re-

sults are presented in Sec. Il A belowi) Two coupled
I'=|Im M]|. 7) asymmetric quantum wells with interwell tunnelifighe
same as if(i) abovd, with one well of width 150 A and the
We emphasize that the inelastic relaxation timéefined  other of width 140 A, leading td&;=15.93 meV andE,
by Eq.(6) and calculated in this paper is an energy relaxation=18.55 meV Er=Er—E;=4.75 meV; Er,=E—E,
time (and not a momentum relaxation time, as, for example=2.13 me\). Again, the next excited subbari;=62.86
will enter the calculation of the mobility of the systgnThe  meV is high enough to be ignored. These results are pre-
inelastic relaxation time calculated in this paper defines theented in Sec. Il A below(iii) Two coupled identical sym-
lifetime of a single-particle energy eigenstate in the systemmetric quantum wells of width 150 A each with no interwell
Due to Coulomb scattering among the electrons the singletunneling (i.e., the interwell barrier is taken to be infinjty
particle stationary states are well-defined only over a limitecand with a barrier width of 8A . Here,E;=E,=23.87 meV
time scale and our calculatedis a measure of this lifetime (this degeneracy arises because the two wells are identical
arising from electron-electron interaction. and there is no tunneling Eg1=Er,=Er—E;=E—E,
In Egs.(6) and(7), I'=|Im M| is calculated on-shell, i.e., =3.44 meV, and the next subbarkt;=96 meV is suffi-
the quasiparticle self-energy definEsTo demonstrate how ciently high in energy to be neglected. These results are pre-
Eq. (4) may, in principle, differ from the Fermi golden rule sented in Sec. Il B belowiv) The same as in the last case
approach we consider the specific two-subband model of inwith no interwell tunneling but an asymmetric situation with
terest to us in this paper. Thérj,|=1,2 with only subband the two wells being different. One has a width of 150 A and
1, the ground subband, and the subband 2, the first excitetie other a width of 142.4 A so that the subband Fermi
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energies Ep;=E—E;=4.75meV and Ep,=E—E, Where the on-shell subband ener§yk) is given by

=2.13 meV, which are the same as (iin) above. In this

situationE, =23.87 meV,E,=26.49 meV(againE; can be &i(K)=Ei(k) —Eg, (12)
neglectedl Furthermore, to keep the average distance beand g(x)=0(1), forx<0(>0), is the Heaviside step func-

tween the two electron layers the same asiiin we choose  tion. The dynamically screened Coulomb interaction is given
a barrier of width 28.8 A. These results are presented in Segy [see Eq(5)]

[l B below in comparison with those irfii). (v) A single

symmetric quantum well of width 300 A and a barrier height Viim= (e~ V)ijim , (13
228 meV, which leads to the lowest two subbandsEat ) ] S .

—4.88 meV, E,=19.51 meV, and the Fermi enerdye, with the multisubband RPA approximatibdefined by the
—E.—E,=6.88 meV(with Er<E,, so that the second sub- di€lectric matrix
band is empty In this situation, the next excited subband, —(1—V. IO (14)
E;=43.74 meV, is high enough in energy to be neglected. Zijim = ( itm im).

These results are present in Sec. Ill C below. Our reason faghereV;;,,, is the bare Coulomb interaction matrix element

studying the five different classes of systems describegh the subband representation, afig , the noninteracting
above is that we are interested in understanding the effects g arizability, is given by

interwell tunneling and structural asymmetry on the electron

relaxation rate. In particular, asymmetry breaks parity con-

servation, making the off-diagonal matrix elements of H?j(k,w)z—zf
Coulomb interaction(e.g., V1112, V1121, V1211, V2111, V2221,
V012,V2122, V1290 all of which are zero in the symmetric

situation nonzero,'leading to new inelastic relaxation chan-po o4 | this paper, we take the impurity-scattering-induced
nels not present in symmetric structures. For the sake Qi qround broadening as being a small phenomenologi-
brevity we present results for a single representative carriety damping parameter which equivalent to be working in the

density and well parameters in each of the five cases. OWjean jimit, We are therefore restricting ourselves to high

theory COUI(.j be easily generalized to obtain f.'n'te temF.)erafnobility quantum wells with small impurity-scattering-
ture relaxation rates. Note that our goal here is to provide

o X ) . hduced level broadening.
qualitative understanding of how various physical param- Using Eqs.(11)—(15) it is straightforward to calculate the

eters affect Coulomb scattering rates in 2D quantum We"S'imaginary part of the on-shell self-energy. For the sake of

The plan.of this artiqle is th? following. In Sec. Il we completeness, we show below the detailed expressions for
present a brief theory with working formulas; in Sec. Il we Im M.

) : ) i . in the GW approximation for the two-subband
provide our numerical results and discussions; we concludpnode'i. PP
in Sec. IV with a summary. '

d’q  fi(k+q)—fi(k)
(27r)2 o= Ej(k+q)+Ej(k)’

(15

wheref;(k) is the Fermi distribution function in thigh sub-

Im M 14(K) = 01111(K) + 1224(K), (16)
Il. THEORY
Im M 15(K) = 01114K) + 01224 K), 17
Our basic theory is outlined in the Introduction, where the
formal expression for the self-energies to be calculated were Im M1(K) = 02111(K) + 079994(K) (18
given. Our centralGW random-phase approximatidRPA)

expressioh for the self-energy can be explicitly written out and
by using the noninteracting subband Green’s function IM M oK) = 09114 K) + 02904 K) (19)
G(w,k)= 5[0~ E (K +E] L, (10 Here,
. 1
where  is a complex frequency7(=1), and E;(k)=E; o1111k)= zj d?q{Im[V{114(Q,A)]
+k?/2m* is the noninteracting subband one-electron energy (2m)
dispersion. Using Eq(10) in Egs.(4) and (5), and carrying AN
out the internal frequency integration, and taking the imagi- XLO(=A) = 6(= &alk+ )], (20)
nary part after the on-shell analytic continuation, we get 1
01224(K) = zf d’a{Im[ Vi, g,A+ wo)]
1 (2)
Im M;; (k)= d?
M= & | & X[~ A= o)~ 0(— &x(k+aD]}, (21
XIm[V3y;[(a, & (k+a))—&(k)] 0 1 J P . :
= Im[V A
X{0(&(K)~ £(k+ Q) Tuidl)= (g e ) FAlmVind 6 A)]
—0(=&(k+a)}, 11 X[0(—=A) = 0(=&1(k+a))]}, (22)

045325-3



MARCOS R. S. TAVARES, G.-Q. HAI, AND S. DAS SARMA PHYSICAL REVIEW B4 045325

tion for the specific quantum well confinement potential.

1
01004 K) = 2f d2g{Im [ V3,04 9,A+ wg)] Furthermo_re, the potentia¥;;(q) can be separated .into
(2m) intra- and intersubband terms, and understood as follGyvs:
intralayer (intrasubbang interactions Vi114(q)=Va,
X[0(=A=wo) = 0= &(k+a)l}, (23
° Al Vo204 Q) =V, andV115{q) = V1) =V represent those
1 scattering events which the electrons remain in their original
02111(K) = f d?g{Im [V31;/0,A— wo)] well (subbangt (i) interlayer (intersubbang interactions
(2m)? = Vi12149) = V2121(d) = V120((d) = V21149) = Vp represent
scattering in which both electrons change their wslib-
X[O(— A+ wo) = 0(=&1(k+a)]}, (249 pang indices; andiii) intrawell-interwell (subbandl interac-
1 tions  Vi114d) =V11240) = V1211(d) = Vora(d) =V; and
_ 2 s V22140) = V2221(0) = V12240) = V12{0) =V} indicate the
72221 K) = (zw)zf da{Im [Vaz2{ 6.A)] scattering in which only one of the electrons suffers the in-
terwell (intersubbangtransition.
X[O(=A)= (= &x(k+a))]}, (25 For each wave vectd, the two-dimensionafj integrals
in Egs. (20—(27) are performed within the planes deter-
1 ) s mined through the variablegandA in the screened interac-
o2114K) = (27T)2-f d*a{Im [V31,4d,A— o) ] tions Vi, . The integration domains af and 7 (in A) vari-
ables are restricted by the twbfunctions appearing in the
X[ 0(—A+wg) — 0(— &1(k+q))]}, (26 integrals in Eqs(20)—(27). The integrals involving/$,,, and
and V3,1, are performed within the planes formed by those re-
gions in theq space where
1 0(—A)— 6(— £1(k+q))#£0 30
02224 K) = (277)2J d’a{im [V35,40,A)] (=A)~ 0= &u(k+0)#0, 30

while the integrals involvingv3,,, and V3,,, are calculated
X[O0(—A)— 6(— & (k+ )]}, (27) within the planes defined by

where wo=E,—E; is the subband energy differencg, 0(—A—wp)— 0(— &(k+Qq))#0. (3D
=A(q,k)=(2kq cosp+0?)/2m* with » being the angle be-
tweenk andq; andm* =0.07m, being the GaAs conduction
band electron effective mass. Now, we define tbial in-

In the same way, the integrals involving,,, andV3,,, are
performed within the planes defined by

elastic Coulomb scattering rate for an electron with wave
) ) 0(—A)—0(— &(k+q))#0, 32
vectork (i.e., an energy ok?/2m* with respect to the sub- (=A)=6(= &(k+)) (32
band bottom in the subband 1 and 2 as and, finally, forV3,,, andV3,,, the integrating plane is de-
fined by
and 0(— A+ wy)— 0(— &1(k+Qq))#0. (33
The inelastic scattering rates in Eq20)—(27) vanish out-
a2(k)=1m M3y (k) +1m My(K). (29 side each corresponding integrating plane, which means that

the momentum and energy conservation cannot be simulta-
neously obeyed for such values df,k+q), and therefore

no Coulomb scattering is allowed there. It is easy to see that
these integrals are nonvanishing only if the corresponding
integrating plane contains either some part of the single-
particle excitation continuum or some branch representing
the collective excitationgplasmongin the 2Dq plane. This

is of course expected since a finite scattering rate must in-
volve real excitations, which in this case are single-particle

It is important to realize that the screened potentilafjﬁr1 for
j#| do not appear in Eq$20)—(27) and, consequently, do
not explicitly contribute to scattering rate. They are implic-
itly induced in the theory through dynamical screefiag
discussed before. Furthermore, all screened interacifyps
involved in Eqgs.(20)—(27) are obtained from the relation
between the bare electron-electron poteftial

2re? - o
Vijim(a) = a5 J dZJ dz' ¢i(2) ¢;(2) and collective plasmon excitations.
xe 171 g (2') (') ll. NUMERICAL RESULTS AND DISCUSSIONS

and the inverse matrix of the dynamical dielectric function A. Coulomb coupled bilayers with interwell tunneling

&ijm(Q,w) [see Eqs(13) and (14), where the indices, ]I, We consider first two coupled symmetric identical quan-
m=1,2]. These bare Coulomb potential§;,(q) are calcu- tum wells of same widttw; =W,=150 A with an interwell
lated here by using both the one-electron wave functioriunneling induced by a barrier of height 228 meV and width
¢:(2) and the subband enerdy; obtained through the nu- 30 A . The total electron density No=n;+n,
merical solution of the Schdinger equation in the direc- =2X10" cm 2 in all structures studied in this paper, with
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n, andn, being the density in the subband 1 and 2, respec- 12
tively. For these sample parameters, the Fermi wave vectors (a) 150/30/150
in the first and second subband &®,=0.88<10° cm ! 10
and k2,=0.69x 10° cm™ !, respectively(the superscript sy
stands for symmetrjc Here, both subbands 1 and(&m- 5 8 (1,1) Z /'
metric and antisymmetric, respectivelre occupied by car- 2 // e
riers withn,;=1.23x 10! cm 2 andn,=0.77x 10t cm™2. > 6 e i
The plasmon dispersion relation is determined by the %‘3 7 //
roots of the determinantal equation .|dxﬁ'gm(q,w)|=0, 5 4 fao /,/ » o
which, after some algebra, can be rewritten as 7 -
2 = - = SPE,,
EintraCinter [(1_VAH21)VaHC2)2+ (1- VBHgZ)V\%Hgl SPE‘,/ = 2.2)
=2V eV VU II(T19,+ 115, ]=0, (34) 0 -

where ” (b) 150/30/140

Einra= (1= VAl (1 VI13,) — VAIIY I, (35 ]

> 8T -
and E et
0 0 > 6 -~
Einter= 1= Vp (Il +1135,). (36) ? /// /’/
7~

For notational simplicity, we do not explicitly write the en- m 4 /// ///’/
ergy and wave vector dependence in E§4)—(36). For the =~ -7
present symmetric situation, the unscreened Coulomb poten- 2 /,/”
tial V;=Vyu=0 by virtue of parity symmetry, because the P riaad
wave functionsp,(z) and¢,(z) are symmetric and antisym- (O | . ; . . ' '
metric functions ofz, respectively. According to Eq:34), 00 01 02 03 04 05 06 07 08
therefore, the plasmons dispersion relation in our symmetric q [106cm_1]

bilayer structure is determined by the roots of the equation _ o
e iner="0, .€., eithere;,x=0 corresponding to the 2D FIG. 1. Plasmon dispersions in two coupled GaAghSla, ;As

intrasubband plasmons, ef,.=0 corresponding to the in- duantum wells of widthsa) W, =W, =150 A (symmetrig and (b)
tersubband plasmons. W;=150 A andW,=140 A (asymmetrig; and separated by a

There are four roots of;,z=0. Two of them are shown barrier of width ® A . For the symmetri¢asymmetrig situation the

in Fig. 1(a) by the solid lines indicating the intrasubband energy separation between the two subbandsgs-1.68 mev

. . =2.62 meV). The shadow areas present the single-particle ex-
plasmon modes (1,1) and (2,2). Notice that, for each sohé‘."o. ) )SP here Im{I1° P 0 E ﬁ P
line, there is a corresponding dashed line that is also the roCtatlon regions SR, where My (G,)} #0. Eac structure
' % shown in the inset where,(z) and ¢,(z) are schematically

O.f the same equgtio_n alway_s lying in_ the correspondingshown by the solid and dot lines, respectively.
single-particle excitation continuum. It is well known that
the plasmon modes indicated by the dashed lines inside thive scattering rate discussion. Our numerical results of
single-particle continua are strongly Landau damped byourse include all contributions as obtained by evaluating the
single-particle excitations and will be ignored in the follow- 2D integrals in Eqs(20)—(27).

ing discussion. Furthermore, the intersubband plasmon mode Figure ib) shows the same plasmon dispersion relation
(1,2) comes from the roots ef,..,=0. The wave functions as in Fig. 1a) but now in two coupledisymmetricquantum
¢$1(2) and¢,(2z) are schematically shown in the inset by the wells with interwell tunneling. Here, one well is of width
solid and dot lines, respectively. Notice that, one is alwaysl50 A and the other is of width 140 A. For these parameters,

able to separate the intra and inter-subband plasmon modeése Fermi wave vector in the subband 1 and 2 kg

in structures that are invariant under space inversion. In ad=(0.93x 10 cm ! and k2,=0.62<10° cm™?, respectively

dition, the intrasubband plasmons are not Landau damped Qyhe superscripa stands for asymmetricBoth subbands are
intersubband single-particle excitatiofSPE’'S and vice occupied with  n;=1.37x 10" cm 2 and n,

versa in symmetric bilayer systems. The single-particle con= g g3x 10! cm™2. In this asymmetric situation, the plas-
tinua SPE; (intrasubband SPEand SPE, (intersubband on modes are obtained directly from the roots of &4d).

SPB in Fig. 1(a) are those regions where {ii},(q,0)}  Wwe show in Fig. 1b) all these roots. We mention that it does
#0 and In{I195q,»)}#0, respectively. For the sake of not make sense naming the solid lines as pure intra- or inter-
simplicity, we will not indicate the continuum SREn this  subband plasmon modes because the structural asymmetry
paper because it lies totally inside the continuum SPE leads to a strong couplingr mixing) between them, and this
Moreover, we claim that the plasmon mode (2,2) should béntrasubband-intersubband mode coupling eliminates the
strongly damped by single-particle excitations in the SPE simplicity of Fig. 1(a). The solid line that is of finite fre-
continuum and will also be ignored in the following qualita- quency asy— 0 in Fig. 1(b) is the intersubbandlike plasmon
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mode (1,2). This mode enters the continuum SP& q 4
=0.42<10° cm ! and should be, in principle, Landau
damped. For small values gof we find the same number of
roots as in the symmetric situation. The interactidjsand 3
Vy are finite in the asymmetric case and are responsible for__
the strong mixing between the intrasubbandlike plasmon%
mode (1,1) and the intersubbandlike mode (1,2) arognd §& 2
=0.18x< 1P cm~ L. Moreover, when the asymmetry is intro- .
duced, the depolarization shifte., the shift of the intersub-
band plasmon from the subband energy separdigh in 1
the intersubbandlike plasmon (1,2) @=0 decreases. We
point out that these roots of E¢34) do not provide a com-
plete description of the plasmon modes in asymmetric bi-
layer structures. A detailed theoretical calculation of the dy-
namical structure factor giving the plasmon spectral weight
provides a complete picture of the collective mode spectra
and can be obtained using our multisubband theory.

Having studied the plasmon dispersion relations we now
investigate in Fig. @) the corresponding total inelastic Cou-

=

PHYSICAL REVIEW B4 045325

(a) Symmetric

+ SPE,,
= (LD
s SPE,,
° (1,2)

lomb scattering rate; (k) (thick solid ling and o, (k) (thick

dashed lingof fast electrons in the subband 1 and 2, respec-

tively, as a function of wave vectde in our symmetric bi-

layer structure. The symbols on the thin lines identify the

contributions too; (k) ando,(k) coming from the emission

of single-particle and collective excitations individually. The
dynamically screened Coulomb interaction components en-

tering in Eqs(20)—(27) can be calculated from Eq&l3) and
(14). After some algebra, we get

Va(1-Vgll3) + VI3,

1111= o \ (37)

intra

o Va(1-VAIIT)+VEIY,

2222 ) (38)

Eintra

and
Vb

V?.221: V§112: P (39

Einter

= plasmons /
4 SPE,,

3 -

1.5
k [10°cm™]

FIG. 2. Total inelastic Coulomb scattering rate of electrons in
our coupled bilayer@ symmetric andb) asymmetric structures.
The thick solid and thick dashed lines denote the total scattering
rate o,(k) for n=1 and 2, respectively. The symbols on the thin
lines represent each contribution to the total calculated scattering:
diamonds standing for the SPEcontribution, the filled squares
stand for the intrasubban@l,1) plasmon contribution, triangles
stand for the SPE contribution, and opaque squares stand for the
intersubband1,2) plasmon contribution.

For the symmetric well case the off-diagonal components ofontributions coming from the plasmon modébed-square

the Coulomb potential all vanish by parity/3;,,= V32,
= V12117 V31117 V3001= V3015~ V3105~ V120~ 0 becauseV

=Vy=0 for symmetric systems. Therefore, according to

lines are obtained separately by excluding the continua
SPE and SPE, from the numerical integrations, whereas
contributions coming only from the single-particle continua

Eqs(20)—(29), the total inelastic scattering rates in the sub-&'€ obtained by numerically evaluating Eq81) and (26)

band 1 and 2 are

o1(K)= 011111 01221 (40

and

02(K) = 022051 02112, (41)

respectively. The terms 111, 01201, 2000, anNd o211 iN-
volve integrations of the interactioNs;;;, V3,51, V320,and
V3115, respectively, in Eqs(20), (21), (27), and (26). The
self-energy components in Eq&2)—(25) are zero in the

symmetric caselntrasubbandcontributions to the scattering

rates arise from the terms;;;; and o555, While intersub-
bandcontributions are due to the terms,,;ando,q115. The

only for the region representing each continuum. Single-
particle excitations contribute for all values of wave vectors
k. However, neither intra- nor intersubband plasmon mode
contributes to the scattering rates closéi or k2, . These
collective modes provide excitation channels for inelastic re-
laxation only above some threshold wave vectors. The intra-
subband plasmon mode (1,1) begins to contribute to either
o,(k) or a,(k) when the wave vector is larger than the same
thresholdk{=1.65x 1¢° cm™ . On the other hand, the con-
tribution coming from the plasmon mode (1,2) has a differ-
ent threshold for each scattering rate. This mode begins con-
tributing to o1 (k) ando,(k) when the wave vector is larger
than the thresholds k$%=1.25x10° cm ! and k3%,
=2.0x10° cm™?, respectively (notice thatk, <k <k3%
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<k3<k3}). Obviously, these thresholds depend on the par- 12
ticular choice of sample parameters. In the present paper, (a) Symmetric
they are smoothinstead of being a very sharp threshold 10
because we are considering the impurity-induced constant
y=0.2 meV in our numerical evaluation. These thresholds & 8
become much sharper for smaller valuesyofvithout any
other substantive changes in our numerical results.

Figure Zb) shows the same results as in Figa)2out for
the asymmetric bilayer system of Figbl In contrast to the
symmetric case, where we were able to separately obtain the
inter- and intrasubband plasmon modes through the roots of 5 |
ginter— 0 ande;,= 0, respectively; the coupled plasmon dis-
persion in the asymmetric system is obtained directly from 0
the numerical roots of Eq(34) in which the bare off-
diagonal Coulomb interactiong; andV, are now nonvan-
ishing. The terms in Eq(34) involving V; andVy are re- 10|
sponsible for the mixing between the inter- and intrasubband
plasmon modes and for not allowing the contributions com- = 8}
ing from the intra- and intersubbandlike plasmon modes v
(1,1) and (1,2) to be picked up completely separated from = 6 |
each other in the scattering rate. Notice that the dynamically &6
screened Coulomb potentidd,, is a full 16X 16 matrix = 4l
(for the two-subband model—in general, it is mhx n* ma- =
trix for an n-subband probleinin the present situation and is
obtained from Eq(13), which involves the dielectric matrix
&ijim(q,) and the bare Coulomb interactions
Va, Vg, Ve, Vp, V3, andVy (all of which are finite in 00 01 02 03 04 05 06 07 08
this strongly coupled asymmetric bilayer struch.it@here-

Energy [me

Yy | m

2t

6 -1
fore, both inelastic scattering rates (k) and o,(k) in the q [lfem "]
asymmetric case contain all terms shown in HGS)—(27), FIG. 3. Plasmon dispersions in two coupled with no interwell
which are finite in this situation. For the sake of clarity andiynneling GaAs/AlGa,-As quantum wells of widths(a) W,
to understand Fig.(®) in the same way as done for Figa® =W,=150 A and(b) W,;=150 A (symmetri¢ and W,=142.4

we choose to show three contributions to the inelastic Scat-asymmetriq; A‘ and separated by an infinity barrier of width 28.87
tering rateso,(k) and o,(k) in Fig. 2(b) separately: the A. The shadow areas present the single-particle excitation regions
single-particle excitations in the contin@ SPE, (up tri-  SPE, where In{I1},,(q,0)}#0. Each structure is shown in the
angles and (ii) SPE; (diamond$; and (iii) the plasmon inset wherep,(z) and¢,(z) are schematically shown by the solid
mode segment outside these contir{fibled squares The  and dotted lines, respectively.

filled squares in Fig. @) represent contributions coming

from those segments of the plasmon modes that lie outsidgow be treated as well indices since there is no tunneling-
any single-particle excitation continjaee Fig. 1b)]. Con-  induced bonding-antibonding states. As we mentioned in the
tributions coming from the plasmon segments lying insideintroduction, an energy degeneracy arises in this case, i.e.,
each continuum have been kept in our numerical work along, = E, because the two wells are identical with no interwell
with the single-particle excitation contributions because it istunneling. If there is no tunneling, the bare Coulomb poten-
essentially numerically impossible to separate the two in thigia| components/;=V=V,=0 and the polarizability1?,
regime. We should mention that, due to the fact that one is. Hgl=0 independent of whether the bilayer structure is
not able to eliminate the contributions coming from the OVer'symmetric or not. Besides, for this symmetric no-tunneling
damped plasmon modes lying inside the Landau continuaonayer structure, the bare Coulomb potentigl=Vg by

FITe tth‘tﬂ Iilrées in Fig. f) only serve as a qualitative gy metry and the polarizability1$,=119,=11, due to the
iustration: fact that the densities in each well are identical.
According to Eqs(34)—(36), therefore, the plasmon dis-

B. Coulomb coupled bilayers with no interwell tunneling persion relation should be obtained only from the roots of
Now we investigate the two Coulomb coupled identical
symmetric quantum wells of widthV;=W,=150 A each e=(1—V,Ilg)%—VAII3=0. (42)

with no interwell tunneling(i.e., the interwell barrier is taken

to be infinity) and with a barrier width of 30 A. Here, the Here, the subscripsuperscriptnt (sy) stands for no tunnel-
Fermi wave vectors in the two wells are of the same valueing (symmetrig. As shown in Fig. 8), we find four roots of
i.e., Keo=kp1=kgp,=0.79x10° cm™* (or, equivalently,n; Eq. (42). The solid curves correspond to the in-phase optical,
=n,=10" cm 2). Notice that the indices 1 and 2 should w,(q), and the out-of-phase acoustia_(q), plasmon
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modes in the bilayer structuté.Thesew. (q) modes have This is physically reasonable and should be experimentally
been observed in multilayer semiconductor systems via in- tested via inelastic light scattering experiments.

elastic light scattering spectroscopic experiments. They rep- Now we concentrate on the investigation of the scattering
resent in-phase and out-of-phase interlayer density fluctugates o;(k) and a,(k) in the symmetric bilayer structure
tion modes: the out-of-phase acoustic mode,(q—0)  With no tunneling. As the bare Coulomb potentiaj=V,,
~0(q) represents densities in the two layers fluctuating out=Vo=0, it is straightforward to see that onlyj;;; and

of phase with a linear wave vector dispersion and the inV3,,, are finite in the screened Coulomb interaction matrix
phase optical modey_ (q— 0)~ N.q, represents densities V* for a bilayer structure without any tunneling. Therefore
in the two layers fluctuating in phase with the usual 2Dthe scattering rates in Eq&1)—(26) all vanish by symmetry
plasma dispersion. The dashed lines represent the collectiy@ this case. The only nonvanishing terms to be calculated

modes that should be strongly Landau damped by the singlé® 91111 8nd 02552 in Egs.( 20) and(27), respectively. Fur-
particle excitation continuum SPE, i.e., the region wherethoermor(?' as we discussed before, we have the polarizability
Im {TTo(q, )} #0. 1_]11=H22:HQ and the bare potentla!AZVB for identical
(i.e., symmetric cagequantum wells. According to Eq&37)
and(38), therefore, the screened Coulomb potential is given

by

Figure 3b) shows the same quantities as in Figa)Jut
for an asymmetric no-tunneling situation with the two wells
being different, one with a width ofW,;=150 A and the
other a width oMW, =142.4 A In this case, our no-tunneling 0 210
bilayer structure is no longer invariant under space inversion VS, =S :VA(l_VAH )+Vell 43)
and, consequently, the energy level degeneracy is broken, 1L T2222 sy
leading to the energ¥,<E,. Besides, the bare Coulomb
potential V, is now different fromVy. As we discussed in the present situation of a symmetric bilayer system with
before, the two wells now have different charge densities buf0 interwell tunneling. In fact, the total inelastic Coulomb
we consider the whole system still being in equilibrium. Fur-Scatteringa(k) and o,(k) are identical because the two

thermore, the Fermi wave vector in the first and second subVells are identical with the same density. The thick line

bands is the same as indicated before, k&, and k2, shown in Fig. 4a) represents the total inelastic scattering
By F2 ate, which is equaloy(K) = o1111= 02(K) = 07225 ] in both

respectively. Because of the densities in the two wells bein .
different from each other, the polarizabilif§3,#11?,. The ubbands, as a.fun.ct|on of the wave vedtor o .Sh.OW separ
T ! . o222 L rately the contributions coming from the emission of plas-
;hadow_area in Flg.(B) is the smgle—pfartlcle exmta_tlon con- ons (squares and single-particle excitation&diamonds,
tmuurp in the wider quantum wgll, |.e:, the reg|on. where, o again exclude the region where[[ffy,(q,»)]#0 from
Im{I17,(q,w)}#0. The plasma dispersion relation is NOW the numerical calculations to obtain the plasmon contribu-
given by the roots of the Eq35). Note that all plasma tion. Single-particle excitations again contribute at all values
modes in the zero tunneling system are by definition intraof the wave vector, whereas the plasmons begin contributing
subband plasmons in our model where higher subbands ate the scattering rate for wave vectdrtarger than the Fermi
neglected. wave vectolkgq. There are clearly two thresholds wave vec-
As shown in Fig. 80), we again find four roots of such an tors in the plasmon contributiotsquares one atk=Kk3Y.
equation and consider that the dashed lines should be1.25x10° cm™! and other atk=k§3r’,:1.65><106 cm 1.
strongly Landau damped modes since they are inside thghese are the thresholds for the emission of the acoustic and
single-particle continua. Furthermore, it does not makehe optical plasmon, respectively. The substantial difference
sense, in principle, to define the solid lines in Figb)3as  between Figs. @) and 2a) demonstrates the strong effect of
pure acoustic or optical plasmon modes because the asyrtunneling on the inelastic scattering rates in bilayer struc-
metry leads to a difference between the electron densities itures. This is one of the important qualitative results in our
each layer. Now, the wider well has 30% more electrons thaipaper.
the narrower one, and, consequently, the densities in the two Figure 4b) shows the same results as in Figa}bout for
layers are not fluctuating exactly either in phase or out othe asymmetric bilayer structure without tunneling. As we
phase. The solid lines in Fig.(® are the approximate discussed before, the asymmetry leadH g+ 119, . Further-
acoustic- and optical-like plasmon modes with the strict disimore, the bare Coulomb potentM) # Vg and, therefore ac-
tinction meaningful only in the long-wavelength limit. Due cording to Eqs(37) and(38), the screened Coulomb poten-
to the structural asymmetry the acousticlike plasmon modéial V3,,,# V3,,, in the asymmetric case. In this situation,
enters the SPE continuum at a smaller wave vector, leading, (k)= 0,4, (thick solid line and o,(K)=045,, (thick
to significant Landau damping of the acoustic plasmon modelashed ling represent the total inelastic Coulomb scattering
by single-particle excitations in the asymmetric bilayer sys—ates in the wider and narrower layer, respectively. They are
tem. In the single-particle continuum of the layeftBe nar-  different from each other because the two wells have differ-
rower wel) the acousticlike plasmon mode is completely ent widths and densities in the asymmetric situation. Again,
suppressed and we find no acousticlike mode in theve separate the different contributiofis/ plasmons and by
Im {ng(q,w)}aﬁo regime. In general the acousticlike plas- SPB by excluding the single-particle excitation continuum
mon mode is found to be much more sensitive to smallSPE from the numerical calculations to obtain the plasmon
asymmetry effects than the optical-like plasmon mbte. contribution. It is important to point out again that the

€nt

045325-8



CARRIER RELAXATION DUE TO ELECTRON-ELECTR® . .. PHYSICAL REVIEW B 64 045325

4 L . L L L contribute to carrier scattering,(k) in the narrower well
but not too1 (k) in the wider well by virtue of strong Landau

(a) Symmetric . . .
damping. The difference between Figg$b)2and 4b) repre-

3t « SPE sents the strong effect of tunneling on the second component
~ = plasmons of the inelastic scattering rates,(k) in bilayer asymmetric
() P structures.
E
2r . .
o C. Single symmetric quantum well
I
=3 We now considerfor the sake of comparisora single
1 symmetric GaAs-AlGa, _,As quantum well of width 300 A,

barrier height 228 meV, and with the same total electron
densityN,=2x 10" cm™2 as used before. These sample pa-
rameters lead to the Fermi wave vector in the first subband
kSM9e~1.13x 10° cm~* with only one subband occupancy.
Here, the second subband is empty, which leadd3g=0.

(b) Asymmetric

4t As we discussed before, only the bare Coulomb potential
Va, Vg, V¢, andVp are finite becaus¥;=Vy=0 in sym-
*+ SPE metric structure. According to Eqé35) and (36), therefore,
> 3 | = plasmons the intra- and intersubband plasmon modes are obtained
°§ from the roots of the equations
o2 edndle= (1-V,I19)=0
and
1 -
» , 8isr:?(?r|e:1_VD(H22+Hgl):0'
0 bt ; ' ' Taking T19,=0 (unoccupi i '
29 pied excited subbanioh Egs. (37),
0.0 0.5 1.0 16.5 L 2.0 2.5 3.0 (38), and(39) we get
k [10cm ]
\Y
FIG. 4. Total inelastic Coulomb scattering rate of electrons in V§111:-_A (44)
. . . single’
our coupled bilayera) symmetric and(b) asymmetric structures intra
with no tunneling. In(b), the thick solid and thick dashed lines
denote the total scatteri_ng _razbg(k) forn=1 and 2, res_pe<_:tively. VB(l—VAH(fl)JrVéHO
The symbols on the thin lines represent each contribution to the 5999— Shale , (45)
total scattering: diamonds stand for the SPE contributions, and the gintr%

filled squares stand for the plasmon contributions. and

squares in Fig. @) represent contributions coming from the

emission of undamped plasmon modes whose frequency VS =\/S :A (46)
w(q) lies outside the continuum SPEee Fig. 8)]. There is 122L T2z single!

only one threshold wave vectdr=1.71x10° cm ! in the

thin solid line(squarescorresponding the plasmon contribu- Again in this case, the screened Coulomb potendg);,
tion to a4(k). This threshold is due to the emission of the =Vi151=Vis117= V5111= V5201= V5215~ V5155~ Vi20:=0 by
optical-like plasmon mode shown in Fig(t3. We also find symmetry becaus¥;=Vy=0. Therefore, as we discussed
that the thin solid lingdiamond$ corresponding to the SPE in the Sec. Il A, the total inelastic scattering rates in the first
contribution too; (k) does not contain any contribution com- and the second subband are given by Eg§) and (41),

ing from the acousticlike plasmon mode. As a matter of factfespectively. In the same way as done for the bilayer struc-
there is no contribution ter, (k) in Fig. 4b) coming from  tures, we present the scattering ratg$k) ando,(k) in Fig.

the emission of the acousticlike plasmon mode at all because in the thick solid and thick-dashed lines, respectively. The
the integral ino; (k) does not contain any segment representsymmetric nature of the single-well system enables us to
ing the acousticlike plasmon mode which is heavily Landauseparate out the different contributions to the scattering rates
damped in the asymmetric situation under consideration. Oas discussed before. We find that contributionsotgk)

the other hand, the thin dashed li(sguarel corresponding come mainly from the emission of both the intrasubband
to the plasmon contribution tar,(k), clearly has two plasmons (1,1) and the intrasubband single-particle excita-
threshold wave vectorsk=1.15x10° cm™! and k tions SPE;. The emission of intersubband excitations turn
=1.76x10° cm™1, which characterizes the emission of the out to make negligible contributions to the scattering because
acoustic- and optical-like plasmon mode, respectively. Thusof the sufficiently large energy gap between the two sub-
in the asymmetric case, the acoustic-like plasmon modeBands (o=E;;=14.63 meV). For this particular choice of
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4 T T T T r scattering rater,(k) in the second subband. Naotice that, in
contrast to the behavior af,(k), the total inelastic scatter-
ing rate in the second subband(k) does not vanish for any

+ SPE wave vectorsk. This is due the fact that there is no Fermi
surface in the second subband. This should lead to qualita-
tively different effects in the measured carrier injected in the
second subband compared with that in the ground subBand.
This lifetime, which is inversely proportional to the total
inelastic scattering rate,(k), should be finite for all finite
wave vectors in the excited empty subband.
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IV. CONCLUSIONS

o, [meV]
[\9]

We have developed a theory for calculating the inelastic
relaxation rate for Coulomb scattering in coupled bilayer
structures in semiconductor double quantum well systems.
We use a many-body theory based on a multisubband gen-
eralizedGW approximation with the inelastic scattering rate
defined by the magnitude of the imaginary part of the on-
shell electron self-energy. Effects of dynamical screening,
mode coupling, and Fermi statistics are naturally included in
our many-body theory. We demonstrate the usefulness of our
theory by obtaining results for general representative two-
R = . : subband model systems: Coulomb coupled bilayer
00 05 10 15 20 25 30 GaAs-ALGa, _,As double quantum well structures both with

k [106cm_1] and without interwell tunneling and also with and without
interwell asymmetry in the system. Our theory naturally al-

FIG. 5. Total inelastic Coulomb scattering rate of electrons in alows for distinguishing various physical mechanisms con-
single quantum well. The thick solid and thick dashed lines denotdributing to the inelastic scattering rate: intra- and intersub-
the total scattering rate,(k) for n=1 and 2, respectively. The band contributions. We provide a critical qualitative
symbols on the thin lines stand for the same as indicated in Figdiscussion of these various contributions to scattering and
2(a). comment on the effect of interwell tunneling and structural

asymmetry in bilayer quantum wells.
the sample parameters; 1, turns out to be much larger than
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